Skip to main content

Table 1 Padé approximants for arcsin x and arctan x

From: Padé approximants for inverse trigonometric functions and their applications

Function

Padé approximant

Associate Taylor polynomials

arcsinx

\(\arcsin _{[1/2]}(x)=\frac{6}{6-x^{2}}\)

\(x+\frac{x^{3}}{6}\)

arcsinx

\(\arcsin_{[5/2]}(x)=\frac{61x^{5}+1\text{,}080x^{3}-2\text{,}520x}{1\text{,}500x^{2}-2\text{,}520}\)

\(x+\frac{x^{3}}{6}+\frac{3x^{5}}{40}+\frac{5x^{7}}{112} \)

arctanx

\(\arctan_{[1/2]}(x)=\frac{3x}{x^{2}+3}\)

\(x-\frac{x^{3}}{3} \)

arctanx

\(\arctan_{[3/2]}(x)=\frac{4x^{3}+15x}{9x^{2}+15}\)

\(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}\)

arctanx

\(\arctan _{[5/2]}(x)=\frac{-4x^{5}+40x^{3}+105x}{75x^{2}+105}\)

\(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}\)

arctanx

\(\arctan _{[3/4]}(x)=\frac{55x^{3}+105x}{9x^{4}+90x^{2}+105}\)

\(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}\)