Skip to main content

Convergence analysis of Agarwal et al. iterative scheme for Lipschitzian hemicontractive mappings

Abstract

In this paper, we establish strong convergence for the Agarwal et al. iterative scheme associated with Lipschitzian hemicontractive mappings in Hilbert spaces.

MSC:47H10, 47J25.

1 Introduction and preliminaries

Let K be a nonempty subset of a Hilbert space H and T:K→K be a mapping.

The mapping T is called Lipschitzian if there exists L>0 such that

∥Tx−Ty∥≤L∥x−y∥,∀x,y∈K.

If L=1, then T is called nonexpansive and if 0≤L<1, then T is called contractive.

The mapping T:K→K is said to be pseudocontractive (see, for example, [1, 2]) if

∥ T x − T y ∥ 2 ≤ ∥ x − y ∥ 2 + ∥ ( I − T ) x − ( I − T ) y ∥ 2 ,∀x,y∈K,

and it is said to be strongly pseudocontractive if there exists k∈(0,1) such that

∥ T x − T y ∥ 2 ≤ ∥ x − y ∥ 2 +k ∥ ( I − T ) x − ( I − T ) y ∥ 2 ,∀x,y∈K.

Let F(T):={x∈H:Tx=x}, and the mapping T:K→K is called hemicontractive if F(T)≠∅ and

∥ T x − x ∗ ∥ 2 ≤ ∥ x − x ∗ ∥ 2 + ∥ x − T x ∥ 2 ,∀x∈K, x ∗ ∈F(T).

It is easy to see that the class of pseudocontractive mappings with fixed points is a subclass of the class of hemicontractions. For the importance of fixed points of pseudocontractions, the reader may consult [1].

In 1974, Ishikawa [3] proved the following result.

Theorem 1.1 Let K be a compact convex subset of a Hilbert space H, and let T:K→K be a Lipschitzian pseudocontractive mapping. For arbitrary x 1 ∈K, let { x n } be a sequence defined iteratively by

{ x n + 1 = ( 1 − α n ) x n + α n T y n , y n = ( 1 − β n ) x n + β n T x n , n ≥ 1 ,

where { α n } and { β n } are sequences satisfying

  1. (i)

    0≤ α n ≤ β n ≤1;

  2. (ii)

    lim n → ∞ β n =0;

  3. (iii)

    ∑ n = 1 ∞ α n β n =∞.

Then the sequence { x n } converges strongly to a fixed point of T.

Another iteration scheme has been studied extensively in connection with fixed points of pseudocontractive mappings.

In 2007, Agarwal et al. [4] introduced the new iterative scheme as in the following.

The sequence { x n } defined by, for arbitrary x 1 ∈K,

{ x n + 1 = ( 1 − α n ) T x n + α n T y n , y n = ( 1 − β n ) x n + β n T x n , n ≥ 1 ,

where { α n } and { β n } are sequences in [0,1], is known as the Agarwal et al. iterative scheme.

In this paper, we establish the strong convergence for the Agarwal et al. iterative scheme associated with Lipschitzian hemicontractive mappings in Hilbert spaces.

2 Main results

We need the following lemma.

Lemma 2.1 [5]

For all x,y∈H and λ∈[0,1], we have

∥ ( 1 − λ ) x + λ y ∥ 2 =(1−λ) ∥ x ∥ 2 +λ ∥ y ∥ 2 −λ(1−λ) ∥ x − y ∥ 2 .

Now we prove our main results.

Theorem 2.2 Let K be a compact convex subset of a real Hilbert space H, and let T:K→K be a Lipschitzian hemicontractive mapping satisfying

∥x−Ty∥≤∥Tx−Ty∥,∀x,y∈K.
(C)

Let { α n } and { β n } be sequences in [0,1] satisfying

  1. (ii)

    lim n → ∞ β n =0;

  2. (iii)

    ∑ n = 1 ∞ α n β n =∞;

  3. (iv)

    lim n → ∞ α n =1.

For arbitrary x 1 ∈K, let { x n } be a sequence iteratively defined by

{ x n + 1 = ( 1 − α n ) T x n + α n T y n , y n = ( 1 − β n ) x n + β n T x n , n ≥ 1 .
(2.1)

Then the sequence { x n } converges strongly to the fixed point x ∗ of T.

Proof From Schauder’s fixed point theorem, F(T) is nonempty since K is a convex compact set and T is continuous, let x ∗ ∈F(T).

By using condition (C), we have

∥ x − T x ∥ ≤ ∥ x − T y ∥ + ∥ T x − T y ∥ ≤ 2 ∥ T x − T y ∥ .
(2.2)

Using the fact that T is hemicontractive, we obtain

∥ T x n − x ∗ ∥ 2 ≤ ∥ x n − x ∗ ∥ 2 + ∥ x n − T x n ∥ 2
(2.3)

and

∥ T y n − x ∗ ∥ 2 ≤ ∥ y n − x ∗ ∥ 2 + ∥ y n − T y n ∥ 2 .
(2.4)

With the help of (2.1), (2.3) and Lemma 2.1, we obtain

∥ y n − x ∗ ∥ 2 = ∥ ( 1 − β n ) x n + β n T x n − x ∗ ∥ 2 = ∥ ( 1 − β n ) ( x n − x ∗ ) + β n ( T x n − x ∗ ) ∥ 2 = ( 1 − β n ) ∥ x n − x ∗ ∥ 2 + β n ∥ T x n − x ∗ ∥ 2 − β n ( 1 − β n ) ∥ x n − T x n ∥ 2 ≤ ( 1 − β n ) ∥ x n − x ∗ ∥ 2 + β n ( ∥ x n − x ∗ ∥ 2 + ∥ x n − T x n ∥ 2 ) − β n ( 1 − β n ) ∥ x n − T x n ∥ 2 = ∥ x n − x ∗ ∥ 2 + β n 2 ∥ x n − T x n ∥ 2
(2.5)

and

∥ y n − T y n ∥ 2 = ∥ ( 1 − β n ) x n + β n T x n − T y n ∥ 2 = ∥ ( 1 − β n ) ( x n − T y n ) + β n ( T x n − T y n ) ∥ 2 = ( 1 − β n ) ∥ x n − T y n ∥ 2 + β n ∥ T x n − T y n ∥ 2 − β n ( 1 − β n ) ∥ x n − T x n ∥ 2 .
(2.6)

Substituting (2.5) and (2.6) in (2.4), we obtain

∥ T y n − x ∗ ∥ 2 ≤ ∥ x n − x ∗ ∥ 2 + ( 1 − β n ) ∥ x n − T y n ∥ 2 + β n ∥ T x n − T y n ∥ 2 − β n ( 1 − 2 β n ) ∥ x n − T x n ∥ 2 .
(2.7)

Also, with the help of conditions (2.2) and (2.7), we have

∥ x n + 1 − x ∗ ∥ 2 = ∥ ( 1 − α n ) T x n + α n T y n − x ∗ ∥ 2 = ∥ ( 1 − α n ) ( T x n − x ∗ ) + α n ( T y n − x ∗ ) ∥ 2 = ( 1 − α n ) ∥ T x n − x ∗ ∥ 2 + α n ∥ T y n − x ∗ ∥ 2 − α n ( 1 − α n ) ∥ T x n − T y n ∥ 2 ≤ ( 1 − α n ) ( ∥ x n − x ∗ ∥ 2 + ∥ x n − T x n ∥ 2 ) + α n ( ∥ x n − x ∗ ∥ 2 + ( 1 − β n ) ∥ x n − T y n ∥ 2 + β n ∥ T x n − T y n ∥ 2 − β n ( 1 − 2 β n ) ∥ x n − T x n ∥ 2 ) = ∥ x n − x ∗ ∥ 2 + ( 1 − α n ) ∥ x n − T x n ∥ 2 + α n β n ∥ T x n − T y n ∥ 2 − α n β n ( 1 − 2 β n ) ∥ x n − T x n ∥ 2 + α n ( 1 − β n ) ∥ x n − T y n ∥ 2 ≤ ∥ x n − x ∗ ∥ 2 + ( 4 ( 1 − α n ) + α n β n + α n ( 1 − β n ) ) ∥ T x n − T y n ∥ 2 − α n β n ( 1 − 2 β n ) ∥ x n − T x n ∥ 2 ≤ ∥ x n − x ∗ ∥ 2 + θ α n ∥ T x n − T y n ∥ 2 − α n β n ( 1 − 2 β n ) ∥ x n − T x n ∥ 2 ,
(2.8)

because by (iv), there exists n 0 ∈N such that for all n≥ n 0 ,

1− α n ≤ θ − 1 θ + 3 ,
(2.9)

where θ>1, which implies that

4(1− α n )+ α n β n + α n (1− β n )≤θ α n .
(2.10)

Hence (2.8) yields

∥ x n + 1 − x ∗ ∥ 2 ≤ ∥ x n − x ∗ ∥ 2 + θ α n L 2 ∥ x n − y n ∥ 2 − α n β n ( 1 − 2 β n ) ∥ x n − T x n ∥ 2 = ∥ x n − x ∗ ∥ 2 + θ α n β n 2 L 2 ∥ x n − T x n ∥ 2 − α n β n ( 1 − 2 β n ) ∥ x n − T x n ∥ 2 = ∥ x n − x ∗ ∥ 2 − α n β n ( 1 − ( 2 + θ L 2 ) β n ) ∥ x n − T x n ∥ 2 .
(2.11)

Now, by (ii), since lim n → ∞ β n =0, there exists n 0 ∈N such that for all n≥ n 0 ,

β n ≤ 1 2 ( 2 + θ L 2 ) .
(2.12)

With the help of (iii) and (2.12), (2.11) yields

∥ x n + 1 − x ∗ ∥ 2 ≤ ∥ x n − x ∗ ∥ 2 − 1 2 α n β n ∥ x n − T x n ∥ 2 ,

which implies that

1 2 α n β n ∥ x n − T x n ∥ 2 ≤ ∥ x n − x ∗ ∥ 2 − ∥ x n + 1 − x ∗ ∥ 2 ,

so that

1 2 ∑ j = N n α j β j ∥ x j − T x j ∥ 2 ≤ ∥ x N − x ∗ ∥ 2 − ∥ x n + 1 − x ∗ ∥ 2 .

The rest of the argument follows exactly as in the proof of theorem of [3]. This completes the proof. □

Theorem 2.3 Let K be a compact convex subset of a real Hilbert space H; let T:K→K be a Lipschitzian hemicontractive mapping satisfying condition (C). Let { α n } and { β n } be sequence in [0,1] satisfying conditions (ii)-(iv).

Let P K :H→K be the projection operator of H onto K. Let { x n } be a sequence defined iteratively by

{ x n + 1 = P K ( ( 1 − α n ) T x n + α n T y n ) , y n = P K ( ( 1 − β n ) x n + β n T x n ) , n ≥ 1 .

Then the sequence{ x n } converges strongly to a fixed point of T.

Proof The operator P K is nonexpansive (see, e.g., [2]). K is a Chebyshev subset of H so that P K is a single-valued mapping. Hence, we have

∥ x n + 1 − x ∗ ∥ 2 = ∥ P K ( ( 1 − α n ) T x n + α n T y n ) − P K x ∗ ∥ 2 ≤ ∥ ( 1 − α n ) T x n + α n T y n − x ∗ ∥ 2 = ∥ ( 1 − α n ) ( x n − x ∗ ) + α n ( T y n − x ∗ ) ∥ 2 ≤ ∥ x n − x ∗ ∥ 2 − α n β n ( 1 − ( 2 + θ L 2 ) β n ) ∥ x n − T x n ∥ 2 .

The set K=K∪T(K) is compact and so the sequence {∥ x n −T x n ∥} is bounded. The rest of the argument follows exactly as in the proof of Theorem 2.2. This completes the proof. □

Example 2.4 The choice for the control parameters is α n = n n + 1 and β n = 1 n .

Remark 2.5 (1) We remove the condition α n ≤ β n as introduced in [3].

(2) The condition (C) is not new and it is due to [6].

References

  1. Browder FE: Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces, Nonlinear Functional Analysis. Am. Math. Soc., Providence; 1976.

    Book  Google Scholar 

  2. Browder FE, Petryshyn WV: Construction of fixed points of nonlinear mappings in Hilbert spaces. J. Math. Anal. Appl. 1967, 20: 197–228. 10.1016/0022-247X(67)90085-6

    Article  MATH  MathSciNet  Google Scholar 

  3. Ishikawa S: Fixed point by a new iteration method. Proc. Am. Math. Soc. 1974, 4: 147–150. 10.2307/2039245

    Article  MathSciNet  Google Scholar 

  4. Agarwal RP, O’Regan D, Sahu DR: Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal. 2007, 8: 61–79.

    MATH  MathSciNet  Google Scholar 

  5. Xu HK: Inequalities in Banach spaces with applications. Nonlinear Anal. 1991, 16: 1127–1138. 10.1016/0362-546X(91)90200-K

    Article  MATH  MathSciNet  Google Scholar 

  6. Liu Z, Feng C, Ume JS, Kang SM: Weak and strong convergence for common fixed points of a pair of nonexpansive and asymptotically nonexpansive mappings. Taiwan. J. Math. 2007, 11: 27–42.

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and referees for useful comments and suggestions. This study was supported by research funds from Dong-A University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Chel Kwun.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Kang, S.M., Rafiq, A., Ali, F. et al. Convergence analysis of Agarwal et al. iterative scheme for Lipschitzian hemicontractive mappings. J Inequal Appl 2013, 525 (2013). https://doi.org/10.1186/1029-242X-2013-525

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-525

Keywords