Skip to main content

Generalizations of the strong Ekeland variational principle with a generalized distance in complete metric spaces

Abstract

In this paper, we prove a generalization of the strong Ekeland variational principle for a generalized distance (i.e., u-distance) on complete metric spaces. The result present in this paper extends and improves the corresponding result of Georgiev (J. Math. Anal. Appl. 131:1-21, 1988) and Suzuki (J. Math. Anal. Appl. 320:788-794, 2006).

1 Introduction

In 1974, Ekeland [1] proved the following, which is called the Ekeland variational principle (for short, EVP).

Theorem 1.1 [1]

Let (X,d) be a complete metric space with metric d and f be a function from X into (,+] which is proper lower semicontinuous bounded from below. Then for uX and λ>0, there exists vX such that

  1. (P)
    f(v)f(u)λd(u,v)

    ;

  2. (Q)
    f(w)>f(v)λd(v,w)

    for every wv.

Later, Takahashi [2] showed that this principle is equivalent to the Caristis fixed point theorem and nonconvex minimization theorem. In 1988, Georgiev [3] proved the following generalization of Theorem 1.1, which is called the strong Ekeland variational principle.

Theorem 1.2 [3]

Let X be a complete metric space with metric d and f:X(,+] be proper lower semicontinuous bounded from below. Then, for all uX, λ>0 and δ>0, there exists vX satisfying the following:

(P)′ f(v)<f(u)λd(u,v)+δ;

  1. (Q)
    f(w)>f(v)λd(v,w)

    for every wX{v};

  2. (R)

    if a sequence { x n } in X satisfies lim n (f( x n )+λd(v, x n ))=f(v), then { x n } converges to v.

On the other hand, Kada et al. [4] introduced the concept of w-distance defined on a metric space and extended the Ekeland variational principle, the Kirk-Caristi fixed point theorem and the minimization theorem for w-distance. Recently, Suzuki [5, 6] introduced a more general concept than w-distance, which is called τ-distance, and established the strong Ekeland variational principle for τ-distance. Very recently, Ume [7] introduced a more generalized concept than τ-distance, which is called u-distance, and proved a new minimization and a new fixed point theorem by using u-distance on a complete metric space.

In this paper, we prove the strong Ekeland variational principle for u-distance on a complete metric space. The results of this paper extend and generalize some results in Georgiev [3], Suzuki [5], Ansari [9] and Park [10].

2 Preliminaries

Throughout the paper, we denote by the set of all positive integers, by the set of real numbers, R + =[0,). Let us recall the following well-known definition of a u-distance.

Definition 2.1 ([8] and [7])

Let X be a complete metric space with metric d. Then a function p:X×X R + is called a u-distance on X if there exists a function θ:X×X×[0,)×[0,) R + such that

(u1) p(x,z)p(x,y)+p(y,z) for all x,y,zX;

(u2) θ(x,y,0,0)=0, θ(x,y,s,t)min{s,t} for all x,yX and s,t[0,), and for any xX and for every ϵ>0, there exists δ>0 such that |s s 0 |<δ, |t t 0 |<δ, s, s 0 ,t, t 0 [0,) and yX imply

| θ ( x , y , s , t ) θ ( x , y , s 0 , t 0 ) | <ϵ;

(u3) lim n x n =x and lim n sup{θ( w n , z n , ,p( w n , x m ),p( z n , x m )):mn}=0 imply p(y,x) lim n infp(y, x n ) for all yX;

(u4) lim n sup{p( x n , w m ):mn}=0, lim n sup{p( y n , z m ):mn}=0, lim n θ( x n , w n , s n , t n )=0 and lim n θ( y n , z n , s n , t n )=0 imply lim n θ( w n , z n , s n , t n )=0 or lim n sup{p( w m , x n ):mn}=0, lim n sup{p( z m , y n ):mn}=0, lim n θ( x n , w n , s n , t n )=0 and lim n θ( y n , z n , s n , t n )=0 imply lim n θ( w n , z n , s n , t n )=0;

(u5) lim n θ( w n , z n ,p( w n , x n ),p( z n , x n ))=0 and lim n θ( w n , z n ,p( w n , y n ),p( z n , y n ))=0 imply lim n d( x n , y n )=0 or lim n θ( a n , b n ,p( x n , a n ),p( x n , b n ))=0 and lim n θ( a n , b n ,p( y n , a n ),p( y n , b n ))=0 imply lim n d( x n , y n )=0.

Proposition 2.2 [7]

Let p be a u-distance on a metric space (X,d) and c be a positive real number. Then a function q:X×X R + defined by q(x,y)=cp(x,y) for every x,yX is also a u-distance on X.

Lemma 2.3 [7]

Let (X,d) be a metric space and let p be a u-distance on X. If { x n } is a p-Cauchy sequence, then { x n } is a Cauchy sequence.

Lemma 2.4 [7]

Let (X,d) be a metric space and p be a u-distance on X. Suppose that a sequence { x n } of X satisfies

lim n sup { p ( x n , x m ) : m > n } =0

or

lim n sup { p ( x m , x n ) : m > n } =0.

Then, { x n } is a p-Cauchy sequence and { x n } is a Cauchy sequence.

3 Main theorem

Lemma 3.1 Let X be a complete metric space and p be a u-distance on X. If a sequence { x n } of X satisfies lim n p(z, x n )=0 for some zX, then { x n } is a p-Cauchy sequence. Moreover, if a sequence { y n } of X also satisfies lim n p(z, y n )=0, then lim n p( x n , y n )=0. In particular, for x,y,zX, p(z,x)=0 and p(z,y)=0 imply x=y.

Proof Let θ be a function from X×X×[0,)×[0,) into R + satisfying (u1)-(u5). From lim n p(z, x n )=0, it follows by (u2) that lim n θ(z,z,p(z, x n ),p(z, x n ))=0. Therefore, { x n } is a p-Cauchy sequence. □

Theorem 3.2 Let X be a complete metric space and T be a mapping from X into itself. Suppose that there exists a u-distance p on X and r[0,1) such that p(Tx, T 2 x)rp(x,Tx) for all xX. Assume that either of the following hold:

  1. (i)

    If lim n sup{p( x n , x m ):m>n}=0, lim n p( x n , T x n )=0 and lim n p( x n ,y)=0, then Ty=y;

  2. (ii)

    if { x n } and {T x n } converge to y, then Ty=y;

  3. (iii)

    T is continuous.

Then, there exists x 0 X such that T x 0 = x 0 and p( x 0 , x 0 )=0.

Proof It is the same as the proof of Theorem 1 in [5]. □

Lemma 3.3 Let X be a complete metric space, p be a u-distance on X and ϕ be a function from X×X into (,] satisfying

  1. (1)
    ϕ(x,z)ϕ(x,y)+ϕ(y,z)

    for all x,y,zX;

  2. (2)
    ϕ(x,):X(,]

    is lower semicontinuous for any xX;

  3. (3)

    there exists an x 0 such that inf y X ϕ( x 0 ,y)>; and

  4. (4)
    ϕ(x,y)=ϕ(y,x)

    .

Define Mx={yX:ϕ(x,y)+p(x,y)0}. Let uX and c R + such that ϕ(x,u)< for all xX, Mu and cϕ(x,u) inf y M u ϕ(u,y). Then a function q:X×X R + defined by

q(x,y)={ ϕ ( u , x ) inf y M x ϕ ( u , y ) if  x M u  and  y M x , c + p ( x , y ) if  x M u  or  y M x

is a u-distance on X.

Proof Let η be a function from X×X× R + × R + into R + satisfying (u2)-(u5) for a u-distance. We note that ϕ(x,y)+ϕ(y,z)+p(x,y)+p(y,z)0 and ϕ(x,z)+p(x,z)0. Thus, yMx and zMy imply zMx. If xMu and yMx, then

p ( x , y ) ϕ ( y , x ) q ( x , y ) = ϕ ( y , x ) inf y M x ϕ ( x , y ) ϕ ( x , u ) inf y M u ϕ ( x , y ) c .

Therefore, p(x,y)q(y,x)c+p(x,y) for all x,yX. To complete the proof, we will show (u1) q , (u3) q , η , (u4) q , η and (u5) q , η . Let x, y and z be fixed elements in X. In the case xMu, yMx, yMu and zMy, we have zMx and hence q(x,z)=q(x,y)q(x,y)+q(y,z). In the other case, we note that

q ( x , z ) c + p ( x , z ) c + p ( x , y ) + p ( y , z ) 2 c + p ( x , y ) + p ( y , z ) = q ( x , y ) + q ( y , z ) .

This shows (u1) q .

We next suppose that lim n x n =x and lim n sup{η( w n , z n ,q( w n , x m ),q( z n , x m )):mn}=0 and fix wX. Since lim n sup{θ( w n , z n ,p( w n , x m ),p( z n , x m )):mn}=0, we have p(w,x)lim inf n p(w, x n ) for all yX.

In the case that wMu and there exists a subsequence { x n k } of { x n } such that x n k Mw for all kN, we have

ϕ ( w , x ) + p ( w , x ) lim n inf ϕ ( w , x n ) + lim n p ( w , x n ) lim n inf ( ϕ ( w , x n ) + p ( w , x n ) ) lim k inf ( ϕ ( w , x n k ) + p ( w , x n k ) ) 0 ,

and so xMu. Hence

q(w,x)=ϕ(u,w) inf x M w ϕ(u,x)= lim k q(w, x n k )= lim n infq(w, x n ).

In the other case, we obtain

q ( w , x ) c + p ( w , x ) lim n inf ( c + p ( w , x n ) ) = lim n inf q ( w , x n ) .

This shows (u3) q , η . We will show that q satisfies (u4) q , η .

Case I: Suppose that lim n sup{q( x n , w m ):mn}=0, lim n sup{q( y n , z m ):mn}=0, lim n η( x n , w n , s n , t n )=0, and lim n η( y n , z n , s n , t n )=0.

In the case x n Mu and w m M x n , we note that q( x n , w n )=ϕ(u, x n ) inf w m M x n ϕ(u, w m ). Since ϕ( x n , w m )+p( x n , w n )0, it follows that

p ( x n , w m ) ϕ ( x n , w n ) = ϕ ( w m , x n ) ϕ ( w m , u ) + ϕ ( u , x n ) = ϕ ( u , x n ) ϕ ( u , w m ) ϕ ( u , x n ) inf w m M x n ϕ ( u , w m ) = q ( x n , w m ) .

Thus, we have p( x n , w m )q( x n , w m ). This implies that sup m n p( x n , w n ) sup m n q( x n , w m ). Take n, so

0 lim n supp( x n , w m ) lim n supq( x n , w m )=0

and therefore lim n supp( x n , w m )=0.

Similarly, if y n Mu and z m M y n , then lim n supp( y n , z m )=0.

We note that lim n θ( x n , w n , s n , t n )=0= lim n θ( y n , z n , s n , t n ) and hence

lim n η( w n , z n , s n , t n )=0.

In the case x n Mu or w m M x n , we note that p( x n , w m )c+p( x n , w m )=q( x n , w m ). Thus, we have p( x n , w m )q( x n , w m ). This implies that sup m n p( x n , w m ) sup m n q( x n , w m ). Taking n, we obtain

0 lim n supp( x n , w m ) lim n supq( x n , w m )=0

and therefore lim n supp( x n , w n )=0. Similarly as above, if y n Mu and z m M y n , then lim n supp( y n , z m )=0. We note that lim n θ( x n , w n , s n , t n )=0= lim n θ( y n , z n , s n , t n ) and hence lim n η( w n , z n , s n , t n )=0.

Case II: Suppose that lim n sup{q( w m , x n ):mn}=0, lim n sup{q( z m , y n ):mn}=0, lim n η( x n , w n , s n , t n )=0 and lim n η( y n , z n , s n , t n )=0. Similarly as in Case I, we can show that lim n η( w n , z n , s n , t n )=0. This shows (u4) q , η . We will show that q satisfies (u5) q , η .

Case I: Suppose that lim n η( w n , z n ,q( x n , w n ),q( x n , z n ))=0 and lim n η( w n , z n ,q( y n , w n ),q( y n , z n ))=0. In the case x n Mu and w n , z n M x n , we note that q( x n , w n )=ϕ(u, x n ) inf w n M x n ϕ(u, w n ) and hence q( x n , z n )=ϕ(u, x n ) inf z n M x n ϕ(u, z n ). Thus, we have

θ ( w n , z n , p ( x n , w n ) , p ( x n , z n ) ) θ ( w n , z n , ϕ ( z n , x n ) , ϕ ( z n , x n ) ) θ ( w n , z n , ϕ ( w n , u ) + ϕ ( u , x n ) , ϕ ( z n , u ) + ϕ ( u , x n ) ) = θ ( w n , z n , ϕ ( u , x n ) ϕ ( u , w n ) , ϕ ( u , x n ) ϕ ( u , z n ) ) θ ( w n , z n , ϕ ( u , x n ) inf w n M x n ϕ ( u , w n ) , ϕ ( u , x n ) inf z n M x n ϕ ( u , z n ) ) = η ( w n , z n , q ( x n , w n ) , q ( x n , z n ) ) .

Taking n, we have

0 lim n θ ( w n , z n , p ( x n , w n ) , p ( x n , z n ) ) lim n η ( w n , z n , q ( x n , w n ) , q ( x n , z n ) ) =0.

Therefore lim n θ( w n , z n ,p( x n , w n ),p( x n , z n ))=0. Similarly, if y n Mu and z n , w n M y n , then lim n θ( w n , z n ,p( y n , w n ),p( y n , z n ))=0. In the case x n Mu or w n , z n M x n , we have q( x n , w n )=c+p( x n , w n ) and q( x n , z n )=c+p( x n , z n ). Since p is a u-distance, we have lim n d( x n , y n )=0. Hence

θ ( w n , z n , c + p ( x n , w n ) , c + p ( x n , z n ) ) θ ( w n , z n , c + p ( x n , w n ) , c + p ( x n , z n ) ) η ( w n , z n , q ( x n , w n ) , q ( x n , z n ) ) .

Take n, thus

0 lim n θ ( w n , z n , p ( x n , w n ) , p ( x n , z n ) ) lim n η ( w n , z n , q ( x n , w n ) , q ( x n , z n ) ) =0.

Therefore lim n θ( w n , z n ,p( x n , w n ),p( x n , z n ))=0. Similarly, if y n Mu or w n , z n M y n , then lim n θ( w n , z n ,p( y n , w n ),p( y n , z n ))=0. Since p is a u-distance, we have lim n d( x n , y n )=0.

Case II: Suppose that lim n η( w n , z n ,q( w n , x n ),q( z n , x n ))=0 and lim n η( w n , z n ,q( w n , y n ),q( z n , y n ))=0. Similarly as in Case I, we can show that lim n d( x n , y n )=0. This shows (u5) q , η . □

Proposition 3.4 Let X be a complete metric space, p be a u-distance on X and ϕ be a function from X×X into (,] satisfying

  1. (1)
    ϕ(x,z)ϕ(x,y)+ϕ(y,z)

    for all x,y,zX;

  2. (2)
    ϕ(x,):X(,]

    is lower semicontinuous for any xX;

  3. (3)

    there exists an x 0 such that inf y X ϕ( x 0 ,y)>; and

  4. (4)
    ϕ(x,y)=ϕ(y,x)

    .

Define Mx={yX:ϕ(x,y)+p(x,y)0} for all xX. Then, for each uX with Mu, there exists x 0 Mu such that M x 0 { x 0 }. In particular, there exists y 0 X such that M y 0 { y 0 }.

Proof Let uX with Mu. We have u 1 Mu by ϕ(u, u 1 )<. If Mu=, the assertion holds. Suppose that M u 1 and Mx(X{x}) for all xM u 1 . Let u 2 M u 1 . We know that ϕ(x,y)0 for all xX and yMx, we define a mapping T:XX as follows: For each xM u 1 ,Tx satisfies TxMx, Txx and

ϕ( u 1 ,Tx) ϕ ( u 1 , x ) + inf y M x ϕ ( u 1 , y ) 2 .

For each xM u 1 , define Tx= u 2 x. We also define a function q:X×X R + by

q(x,y)={ ϕ ( u , x ) inf y M x ϕ ( u 1 , y ) if  x M u 1  and  y M x , 2 ϕ ( u , u 1 ) 2 inf w M u 1 ϕ ( u , w ) + 1 + p ( x , y ) if  x M u 1  or  y M x .

By Lemma 3.3, we have q is a u-distance on X. Since yMy and zMy, it follows by Lemma 3.3 that zMx. Hence TxM u 1 and MTxMx for all xM u 1 . If xM u 1 , we obtain

q ( T x , T 2 x ) = ϕ ( u 1 , T x ) inf y M T x ϕ ( u 1 , y ) ϕ ( u 1 , x ) + inf y M x ϕ ( u 1 , y ) 2 inf y M x ϕ ( u 1 , y ) = q ( x , T x ) 2 .

If xM u 1 ,

q ( T x , T 2 x ) = q ( u 2 , T u 2 ) = ϕ ( u 1 , u 2 ) inf T u 2 M u 2 ϕ ( u 1 , T u 2 ) ϕ ( u , u 1 ) inf T u 1 ϕ ( u , T u 1 ) q ( x , u 2 ) 2 = q ( x , T x ) 2 .

We will show (i) in Theorem 3.2. Suppose that lim n sup{q( x n , x m ):m>n}=0 and lim n q( x n ,y)=0. We may assume x n M u 1 and yM x n for all nN by the definition of q. Then yM u 1 and hence TyMyM x n . By Lemma 2.4 we have lim n q( x n ,Ty)= lim n q( x n ,y)=0 and Ty=y. Hence, by Theorem 3.2, T has a fixed point. This is a contradiction. So, there is x 0 M u 1 Mu such that M x 0 { x 0 }. □

Theorem 3.5 Let X be a complete metric space, p be a u-distance on X and ϕ be a function from X×X into (,] satisfying

  1. (1)
    ϕ(x,z)ϕ(x,y)+ϕ(y,z)

    for all x,y,zX;

  2. (2)
    ϕ(x,):X(,]

    is lower semicontinuous for any xX;

  3. (3)

    there exists an x 0 such that inf y X ϕ( x 0 ,y)>; and

  4. (4)
    ϕ(x,y)=ϕ(y,x)

    .

Then the following hold:

  1. (A)

    For each uX, there exists vX such that ϕ(u,v)0 and ϕ(v,w)+p(v,w)>0 for all wX{v};

  2. (B)

    For each λ>0 and uX with p(u,u)=0, there exists vX such that ϕ(u,v)+λp(u,v)0 and ϕ(v,w)+λp(v,w)>0 for all wX{v}.

Proof We will show that (A). For each xX, we define Mx as in Proposition 3.4. If Mu=, we have u that satisfies ϕ(u,w)+p(u,w)>0 for all wX with wu. If Mu and there exists vMu, then it follows by Proposition 3.4 that Mv{v}. Since vMu implies ϕ(u,v)0 and Mv{v}, this shows that ϕ(v,w)+p(v,w)>0 for all wX with wv.

We will show that (B). By Proposition 2.2, we note that λp is a u-distance. We define Mx={yX:ϕ(x,y)+λp(x,y)0} for all xX. Since p(u,u)=0, we have Mu, and hence there exists vMu such that Mv{v} by Proposition 3.4. Therefore v satisfies ϕ(u,v)+λp(u,v)0 and ϕ(v,w)+λp(v,w)>0 for all wX with wv. This completes the proof. □

Remark 3.6 By setting ϕ(x,y)=f(y)f(x), where f:XR is lower semicontinuous bounded below, and letting p be a τ-distance in Theorem 3.5, we obtain the Ekeland variational principle proved by Suzuki [5].

Theorem 3.7 Let X be a complete metric space, p be a u-distance on X and ϕ be a function from X×X into (,] satisfying

  1. (1)
    ϕ(x,z)ϕ(x,y)+ϕ(y,z)

    for all x,y,zX;

  2. (2)
    ϕ(x,):X(,]

    is lower semicontinuous for any xX;

  3. (3)

    there exists an x 0 such that inf y X ϕ( x 0 ,y)>; and

  4. (4)
    ϕ(x,y)=ϕ(y,x)

    .

Let uX with p(u,u)=0. Then λ>0 and δ>0, there exists vX satisfying the following:

  1. (i)
    ϕ(u,v)0

    ;

  2. (ii)
    ϕ(u,v)+λp(u,v)<δ

    ;

  3. (iii)
    ϕ(v,w)+λp(v,w)>0

    for all wX{v};

  4. (iv)

    if a sequence { x n } in X satisfies lim n (ϕ(v, x n )+λp(v, x n ))=0, then { x n } is p-Cauchy, lim n x n =v and p(v,v)= lim n p(v, x n )=0.

Proof In the case ϕ(v,u)=, (i) and (ii) hold for all vX. We also note that (iii) and (iv) do not depend on ϕ(v,u). In the case ϕ(v,u)<, set λ (0,λ) satisfying

λ λ λ ( ϕ ( u , v ) inf x X ϕ ( v , x ) ) <δ.

By Theorem 3.5(B), there exists vX such that ϕ(u,v)+ λ p(u,v)0 and ϕ(v,w)+ λ p(v,w)>0 for all wX{v}. Thus, we have

Therefore, ϕ(u,v)+λp(u,v)<δ. For wX{v}, we note that

ϕ(v,w)> λ p(v,w)λp(v,w).

So, ϕ(v,w)+λp(v,w)>0. Finally, we will show that (iv). Suppose that a sequence { x n } in X satisfies lim n (ϕ(v, x n )+λp(v, x n ))=0. We note that ϕ(v,w)+ λ p(v,w)0 for all wX. We have

lim n sup p ( v , x n ) = lim n sup ( λ λ λ λ ) p ( v , x n ) = lim n λ p ( v , x n ) λ p ( v , x n ) λ λ lim n λ p ( v , x n ) ϕ ( v , x n ) λ λ lim n λ p ( v , x n ) + ϕ ( v , x n ) λ λ = 0 .

By Lemma 3.1, { x n } is a p-Cauchy sequence. From Lemma 2.3, therefore { x n } is a Cauchy sequence. By the completeness of X, { x n } converges to some point xX. From (u3), we have p(v,x)=0 and so

ϕ ( v , x ) lim n inf ϕ ( v , x n ) lim n ( ϕ ( v , x n ) + λ p ( v , x n ) ) = 0 .

Thus, if vx, then we have

ϕ(v,x)> λ p(v,x)ϕ(v,x).

This is a contradiction. Hence, we obtain v=x. □

Remark 3.8 By setting ϕ(x,y)=f(y)f(x), where f:XR is lower semicontinuous bounded below. Let p be a τ-distance in Theorem 3.7, we obtain the strong Ekeland variational principle proved by Suzuki [6].

References

  1. Ekeland I: On the variational principle. J. Math. Anal. Appl. 1974, 47: 324–353. 10.1016/0022-247X(74)90025-0

    Article  MathSciNet  Google Scholar 

  2. Takahashi W: Existence theorems generalizing fixed point theorems for multivalued mappings. Pitman Res. Notes in Math. Ser. 252. In Fixed Point Theory and Applications. Edited by: Thera MA, Baillon JB. Longman, Harlow; 1991:397–406.

    Google Scholar 

  3. Georgiev PG: The strong Ekeland variational principle, the strong drop theorem and applications. J. Math. Anal. Appl. 1988, 131: 1–21. 10.1016/0022-247X(88)90187-4

    Article  MathSciNet  Google Scholar 

  4. Kada O, Suzuki T, Takahashi W: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. Jpn. 1996, 44: 381–391.

    MathSciNet  Google Scholar 

  5. Suzuki T: Generalized distance and existence theorem in complete metric spaces. J. Math. Anal. Appl. 2001, 253: 440–458. 10.1006/jmaa.2000.7151

    Article  MathSciNet  Google Scholar 

  6. Suzuki T: The strong Ekeland variational principle. J. Math. Anal. Appl. 2006, 320: 787–794. 10.1016/j.jmaa.2005.08.004

    Article  MathSciNet  Google Scholar 

  7. Ume JS: Existence theorem for generalized distance on complete metric spaces. Fixed Point Theory Appl. 2010., 2010: Article ID 397150

    Google Scholar 

  8. Hirunworakit S, Petrot N: Some fixed point theorems for contractive multivalued mappings induced by generalized distance in metric spaces. Fixed Point Theory Appl. 2011. doi:10.1186/1687–1812–2011–78

    Google Scholar 

  9. Ansari QH: Vectorial form of Ekeland-type variational principle with applications to vector equilibrium problems and fixed point theory. J. Math. Anal. Appl. 2007, 334: 561–575. 10.1016/j.jmaa.2006.12.076

    Article  MathSciNet  Google Scholar 

  10. Park S: On generalizations of the Ekeland-type variational principle. Nonlinear Anal. 2000, 39: 881–889. 10.1016/S0362-546X(98)00253-3

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Thailand Research Fund (TRF) for supporting by permit money of investment under of The Royal Golden Jubilee Ph.D. Program (RGJ-Ph.D.), Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somyot Plubtieng.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Plubtieng, S., Seangwattana, T. Generalizations of the strong Ekeland variational principle with a generalized distance in complete metric spaces. J Inequal Appl 2013, 120 (2013). https://doi.org/10.1186/1029-242X-2013-120

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2013-120

Keywords