Skip to main content

Table 1 The order components of simple groups G with t(G)=2

From: Recognizing L 2 (p) by its order and one special conjugacy class size

G

Restrictions on G

m 1

m 2

A n

6<n = p, p + 1, p + 2 and one of n, n − 2 is not a prime

n ! 2 p

p

A p 1 (q)

(p,q)≠(3,2),(3,4)

q p ( p 1 ) 2 i = 1 p 1 ( q i 1)

q p 1 ( q 1 ) ( p , q 1 )

A p (q)

(q − 1)|(p + 1)

q p ( p + 1 ) 2 ( q p + 1 1) i = 1 p 1 ( q i 1)

q p 1 q 1

A p 1 2 (q)

q p ( p 1 ) 2 i = 1 p 1 ( q i ( 1 ) i )

q p + 1 ( q + 1 ) ( p , q + 1 )

A p 2 (q)

(q + 1)|(p + 1) and (p,q)≠(3,3),(5,2)

q p ( p + 1 ) 2 ( q p 1) i = 1 p 1 ( q i 1)

q p + 1 q + 1

B n (q)

n= 2 m 4 and q is odd

q n 2 ( q n 1) i = 1 n 1 ( q 2 i 1)

q n + 1 2

B p (3)

3 p 2 ( 3 p +1) i = 1 p 1 ( 3 2 i 1)

3 p 1 2

C n (q)

n= 2 m 2

q n 2 ( q n 1) i = 1 n 1 ( q 2 i 1)

q n + 1 ( 2 , q 1 )

C p (q)

q = 2,3

q p 2 ( q p +1) i = 1 p 1 ( q 2 i 1)

q p 1 ( 2 , q 1 )

D p (q)

p ≥ 5 and q = 2,3,5

q p ( p 1 ) i = 1 p 1 ( q 2 i 1)

q p 1 q 1

D p + 1 (q)

q = 2,3

1 ( 2 , q 1 ) q p ( p + 1 ) ( q p +1)( q p + 1 1) i = 1 p 1 ( q 2 i 1)

q p 1 ( 2 , q 1 )

D n 2 (q)

n= 2 m 4

q n ( n 1 ) i = 1 n 1 ( q 2 i 1)

q n + 1 ( 2 , q + 1 )

D n 2 (q)

n= 2 m +15 if q = 2 and n= 2 m +19 if q = 3

1 ( 2 , q 1 ) q n ( n 1 ) ( q n +1)( q n 1) i = 1 n 2 ( q 2 i 1)

q n 1 + 1 ( 2 , q 1 )

D p 2 (3)

p 2 m +1 and p ≥ 5

3 p ( p 1 ) i = 1 p 1 ( 3 2 i 1)

3 p + 1 4

G 2 (q)

qϵ(mod3) and q>2

q 6 ( q 3 ϵ)( q 2 1)(q+ϵ)

q 2 ϵq+1

D 4 3 (q)

q 12 ( q 6 1)( q 2 1)( q 4 + q 2 +1)

q 4 q 2 +1

F 4 (q)

q is odd

q 24 ( q 8 1) ( q 6 1 ) 2 ( q 4 1)

q 4 q 2 +1

E 6 (q)

q 36 ( q 12 1)( q 8 1)( q 6 1)( q 5 1)( q 3 1)( q 2 1)

q 6 + q 3 + 1 ( 3 , q 1 )

E 6 2 (q)

q>2

q 36 ( q 12 1)( q 8 1)( q 6 1)( q 5 +1)( q 3 +1)( q 2 1)

q 6 q 3 + 1 ( 3 , q 1 )

A 3 2 (2)

 

2634

5

F 4 2 ( 2 )

 

2113352

13

M 12

 

26335

11

J 2

 

273352

7

Ru

 

2143353713

29

He

 

210335273

17

M c L

 

2736537

11

Co 1

 

2213954721113

23

Co 3

 

2103753711

23

F 22

 

2173952711

13

HN

 

2143656711

19