- Research Article
- Open access
- Published:
Quasi-Nearly Subharmonicity and Separately Quasi-Nearly Subharmonic Functions
Journal of Inequalities and Applications volume 2008, Article number: 149712 (2008)
Abstract
Wiegerinck has shown that a separately subharmonic function need not be subharmonic. Improving previous results of Lelong, Avanissian, Arsove, and of us, Armitage and Gardiner gave an almost sharp integrability condition which ensures a separately subharmonic function to be subharmonic. Completing now our recent counterparts to the cited results of Lelong, Avanissian and Arsove for so-called quasi-nearly subharmonic functions, we present a counterpart to the cited result of Armitage and Gardiner for separately quasinearly subharmonic function. This counterpart enables us to slightly improve Armitage's and Gardiner's original result, too. The method we use is a rather straightforward and technical, but still by no means easy, modification of Armitage's and Gardiner's argument combined with an old argument of Domar.
Publisher note
To access the full article, please see PDF.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Riihentaus, J. Quasi-Nearly Subharmonicity and Separately Quasi-Nearly Subharmonic Functions. J Inequal Appl 2008, 149712 (2008). https://doi.org/10.1155/2008/149712
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2008/149712