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1 Introduction
The theory of modulars on linear spaces and the related theory of modular linear spaces
have been established by Nakano in  []. Since then, these have been thoroughly de-
veloped by several mathematicians, for example, Amemiya [], Koshi and Shimogaki [],
Yamamuro [], Orlicz [], Mazur [], Musielak [], Luxemburg [], Turpin []. Up to now,
the theory of modulars and modular spaces is widely applied in the study of interpolation
theory [, ] and various Orlicz spaces [].

First of all, we introduce to adopt the usual terminologies, notations, definitions and
properties of the theory of modular spaces.

Definition  Let X be a linear space over a field K (R or C). We say that a generalized
functional ρ : X → [,∞] is a modular if for any x, y ∈ X,

(M) ρ(x) =  if and only if x = ,
(M) ρ(αx) = ρ(x) for all scalar α with |α| = ,
(M) ρ(αx + βy) ≤ ρ(x) + ρ(y) for all scalar α,β ≥  with α + β = .

If (M) is replaced by

(M) ρ(αx + βy) ≤ αρ(x) + βρ(y) for all scalar α,β ≥  with α + β = , then the functional
ρ is called a convex modular.

A modular ρ defines the following vector space:

Xρ :=
{

x ∈ X : ρ(λx) →  as λ → 
}

,

and we say that Xρ is a modular space.
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Definition  Let Xρ be a modular space and let {xn} be a sequence in Xρ . Then:
() {xn} is ρ-convergent to a point x ∈ Xρ and write xn

ρ−→ x if ρ(xn – x) →  as n → ∞.
() {xn} is called ρ-Cauchy if for any ε >  one has ρ(xn – xm) < ε for sufficiently large

m, n ∈N.
() A subset K ⊆ Xρ is called ρ-complete if any ρ-Cauchy sequence is ρ-convergent to

a point in K .

It is said that the modular ρ has the Fatou property if and only if ρ(x) ≤ lim infn→∞ ρ(xn)
whenever the sequence {xn} is ρ-convergent to x in modular space Xρ .

Proposition  In modular spaces,
() if xn

ρ−→ x and a is a constant vector, then xn + a ρ−→ x + a, and
() if xn

ρ−→ x and yn
ρ−→ y, then αxn + βyn

ρ−→ αx + βy, where α + β ≤  and α,β ≥ .

It is noticed that the convergence of a sequence {xn} to x does not imply that {cxn} con-
verges to cx if c is chosen from the corresponding scalar field with |c| >  in modular spaces.
Thus, additional conditions on modular spaces were imposed by many mathematicians so
that the multiples of convergent sequence {xn} in the modular spaces converge naturally.
A modular ρ is said to satisfy the �-condition if there exists k >  such that ρ(x) ≤ kρ(x)
for all x ∈ Xρ . Throughout this paper, we say that this constant k is a �-constant related
to �-condition.

Remark  Suppose that ρ is convex and satisfies �-condition with �-constant k > .
If k < , then ρ(x) ≤ kρ( x

 ) ≤ k
ρ(x), which implies ρ = . Therefore, we must have the

�-constant k ≥  if ρ is convex modular.

The study of the stability of functional equations originated with Ulam [], who raised
the stability problem of group homomorphisms. Hyers [] gave the first affirmative an-
swer to Ulam’s question in the case of a Cauchy functional equation in Banach spaces. In
honor of the Hyers answer to the question of Ulam, the stability of functional equations
may be called Hyers-Ulam stability. Hyers’ approach to proving Ulam’s problem, which is
often called the direct method [], has been extensively used for studying the stability of
various functional equations [, ]. Additionally, there are also other methods proving
the Hyers-Ulam stability of some functional equations [], for example, the method using
the property of shadowing [], the method of invariant means [], the method based on
sandwich theorems []. The most popular technique of proving the stability of functional
equations except for direct method is the fixed point method [, –].

On the other hand, many authors have investigated the stability using fixed point the-
orem of quasicontraction mappings in modular spaces without �-condition, which has
been introduced by Khamsi []. Recently, the stability results of additive functional equa-
tions in modular spaces equipped with the Fatou property and �-condition were in-
vestigated by Sadeghi [] who used Khamsi’s fixed point theorem. Also the stability of
quadratic functional equations in modular spaces satisfying the Fatou property without
using the �-condition was proved by Wongkum, Chaipunya and Kumam [].

In this paper, by using the direct method, we present stability results and alternative sta-
bility results of additive functional equations and of quadratic functional equations which
are refined versions of Sadeghi [], and Wongkum, Chaipunya and Kumam [].
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2 Stability of additive functional equations in modular spaces
Throughout this paper, we assume that V is a linear space and Xρ is a ρ-complete convex
modular space. We present a main theorem, which concerns Hyers-Ulam stability of an
additive functional equation in modular spaces without using the Fatou property.

Theorem  Suppose Xρ satisfies the �-condition. If there exists a function ϕ : V  →
[,∞) for which a mapping f : V → Xρ satisfies

ρ
(
f (x + y) – f (x) – f (y)

) ≤ φ(x, y),

lim
n→∞ knφ

(
x
n ,

y
n

)
=  and

∞∑

i=

(
k



)i

φ

(
x
i ,

x
i

)
< ∞

()

for all x, y ∈ V , then there exists a unique additive mapping A : V → Xρ , defined as A(x) =
limn→∞ nf ( x

n ) and

ρ
(
f (x) – A(x)

) ≤ 


∞∑

i=

(
k



)i

φ

(
x
i ,

x
i

)
()

for all x ∈ V .

Proof By letting x, y by x
 in (), respectively, we get

φ

(
f (x) – f

(
x


))
≤ φ

(
x


,
x


)

for all x ∈ V , and then it follows from the �-condition and the convexity of the modular
ρ that

ρ

(
f (x) – nf

(
x
n

))
= ρ

( n∑

i=


i

(
i–f

(
x

i–

)
– if

(
x
i

)))

≤ 
k

n∑

i=

(
k



)i

φ

(
x
i ,

x
i

)

for all x ∈ V . So, for all n, m ∈N with n ≥ m, we have

ρ

(
nf

(
x
n

)
– mf

(
x

m

))
≤ kmρ

(
n–mf

(
x
n

)
– f

(
x

m

))

≤ km–
n–m∑

i=

(
k



)i

φ

(
x

m+i ,
x

m+i

)

=

k

(

k

)m n∑

i=m+

(
k



)i

φ

(
x
i ,

x
i

)

for all x ∈ V . Since the right-hand side of the above inequality tends to zero as m goes to
infinity, the sequence {nf ( x

n )} is a ρ-Cauchy sequence in Xρ and so the sequence {nf ( x
n )}
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is a ρ-convergent sequence on Xρ . Thus, we may define a mapping A : V → Xρ as

A(x) := ρ- lim
n→∞ nf

(
x
n

)
, i.e., lim

n→∞ρ

(
nf

(
x
n

)
– A(x)

)
=  (x ∈ V ).

According to the �-condition without using the Fatou property, we obtain the following
inequality:

ρ
(
f (x) – A(x)

) ≤ 

ρ

(
f (x) – n+f

(
x
n

))
+



ρ

(
n+f

(
x
n

)
– A(x)

)

≤ k

ρ

(
f (x) – nf

(
x
n

))
+

k

ρ

(
nf

(
x
n

)
– A(x)

)

≤ 


n∑

i=

(
k



)i

φ

(
x
i ,

x
i

)
+

k

ρ

(
nf

(
x
n

)
– A(x)

)

for all x ∈ V . Taking n → ∞, we conclude that the estimation () of f by A holds for all
x ∈ V .

Now, we claim that the mapping A is additive. Setting (x, y) := (–nx, –ny) in () and using
the �-condition, we see that

ρ

(
nf

(
x + y

n

)
– nf

(
x
n

)
– nf

(
y

n

))
≤ knφ

(
x
n ,

y
n

)

for all x, y ∈ V . Thus, it follows from the �-condition and ρ(αx) ≤ αρ(x) ( ≤ α ≤ ,
x ∈ V ) that

ρ
(
A(x + y) – A(x) – A(y)

) ≤ 


ρ

(

(

A(x + y) – nf
(

x + y
n

)))

+



ρ

(

(

A(x) – nf
(

x
n

)))

+



ρ

(

(

A(y) – nf
(

y
n

)))

+



ρ

(

(

nf
(

x + y
n

)
– nf

(
x
n

)
– nf

(
y

n

)))

≤ k


ρ

(
A(x + y) – nf

(
x + y

n

))

+
k


ρ

(
A(x) – nf

(
x
n

))

+
k


ρ

(
A(y) – nf

(
y

n

))

+
k


ρ

(
nf

(
x + y

n

)
– nf

(
x
n

)
– nf

(
y

n

))

for all x, y ∈ V and all positive integers n. Taking the limit as n → ∞, one sees that A is
additive.
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To show the uniqueness of A, we assume that there exists an additive mapping A′ : V →
Xρ which satisfies the inequality

ρ
(
f (x) – A′(x)

) ≤ 


∞∑

i=

(
k



)i

φ

(
x
i ,

x
i

)

for all x ∈ V . Then, since A and A′ are additive mappings, we see from the equality
A(–nx) = –nA(x) and A′(–nx) = –nA′(x) that

ρ
(
A(x) – A′(x)

) ≤ 

ρ

(
n+A

(
x
n

)
– n+f

(
x
n

))

+


ρ

(
n+f

(
x
n

)
– n+A′

(
x
n

))

≤ kn+


ρ

(
A

(
x
n

)
– f

(
x
n

))
+

kn+


ρ

(
f
(

x
n

)
– A′

(
x
n

))

≤ kn+



∞∑

i=

(
k



)i

φ

(
x

n+i ,
x

n+i

)

≤
(


k

)n– ∞∑

i=n+

(
k



)i

φ

(
x
i ,

x
i

)

for all x ∈ V and all positive integers n. Hence A is a unique additive mapping near f
satisfying the approximation () in the modular space Xρ . This completes the proof. �

Corollary  Suppose V is a normed space with norm ‖ · ‖ and Xρ satisfies �-condition.
For given real numbers θ >  and p > log

k

 , if f : V → Xρ is a mapping such that

ρ
(
f (x + y) – f (x) – f (y)

) ≤ θ
(‖x‖p + ‖y‖p)

for all x, y ∈ V , then there exists a unique additive mapping A : V → Xρ such that

ρ
(
f (x) – A(x)

) ≤ kθ

p+ – k ‖x‖p

for all x ∈ V .

Next, we are going to prove an alternative stability theorem of additive functional equa-
tions in modular spaces without using the �-condition.

Theorem  Let Xρ satisfy the Fatou property. Suppose that a mapping f : V → Xρ satisfies

ρ
(
f (x + y) – f (x) – f (y)

) ≤ φ(x, y) ()

and φ : V × V → [,∞) is a mapping such that

lim
n→∞

φ(nx, ny)
n = ,

∞∑

i=

φ(ix, ix)
i < ∞
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for all x, y ∈ V . Then there exists a unique additive mapping A : V → Xρ such that

ρ
(
f (x) – A(x)

) ≤ 


∞∑

i=

φ(ix, ix)
i ()

for all x ∈ V .

Proof We let y = x in () and have

ρ
(
f (x) – f (x)

) ≤ φ(x, x),

so we observe without using the �-condition that

ρ

(
f (nx)

n – f (x)
)

= ρ

( n–∑

i=


i+

(
f

(
ix

)
– f

(
i+x

))
)

≤
n–∑

i=


i+ ρ

((
f

(
ix

)
– f

(
i+x

)))

≤ 


n–∑

i=


i φ

(
ix, ix

)

for all x ∈ V and all positive integers n > . This yields

ρ

(
f (nx)

n –
f (mx)

m

)
≤ 

m ρ

(
f (n–m · mx)

n–m – f
(
mx

))

≤ 
m

n–m–∑

i=


i+ φ

(
i · mx, i · mx

)

=



n–∑

i=m


i φ

(
ix, ix

)

for all x ∈ V and all n, m ∈ N with n > m. Thus, we see that the sequence { f (nx)
n } is a ρ-

Cauchy sequence on Xρ . Since Xρ is ρ-complete, there exists a ρ-limit function A : V → Xρ

defined by

ρ- lim
n→∞

f (nx)
n := A(x), i.e., lim

n→∞ρ

(
f (nx)

n – A(x)
)

= 

for all x ∈ V . Then, it follows from the Fatou property that the inequality

ρ
(
A(x) – f (x)

) ≤ lim inf
n→∞ ρ

(
f (nx)

n – f (x)
)

≤ 


∞∑

i=


i φ

(
ix, ix

)

holds for all x ∈ V . Now, we claim that A satisfies the additive functional equation. Note
that

ρ

(
f (n(x + y))

n –
f (nx)

n –
f (ny)

n

)
≤ 

n φ
(
nx, ny

)
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for all x, y ∈ V and all n ∈N. Thus, we observe by convexity of ρ that

ρ

(



A(x + y) –



A(x) –



A(y)
)

≤ 


ρ

(
A(x + y) –

f (n(x + y))
n

)

+



ρ

(
A(x) –

f (nx)
n

)

+



ρ

(
A(y) –

f (ny)
n

)

+



ρ

(
f (n(x + y))

n –
f (nx)

n –
f (ny)

n

)

holds for all x, y ∈ V , and then taking n → ∞, one obtains ρ( 
 (A(x + y) – A(x) – A(y))) = .

This implies that A is additive.
To show the uniqueness of A, we assume that there exists another additive mapping

A′ : V → Xρ near f satisfying the approximation (). Since A and A′ are additive mappings,
we see from the equality A(nx) = nA(x) and A′(nx) = nA′(x) that

ρ

(



A(x) –



A′(x)
)

≤ 

ρ

(
A(nx)

n –
f (nx)

n

)
+



ρ

(
f (nx)

n –
A′(nx)

n

)

≤ 
n+ ρ

(
A

(
nx

)
– f

(
nx

))
+


n+ ρ

(
f
(
nx

)
– A′(nx

))

≤ 
n

∞∑

i=


i+ φ

(
i · nx, i · nx

)

=
∞∑

i=n


i+ φ

(
ix, ix

)

for all x ∈ V . Taking n → ∞, we find that A = A′. Hence A is a unique additive mapping
near f satisfying the approximation (). �

Remark  In particular, if Xρ is a Banach space with norm ρ , then ρ(x) = ρ(x), k = ,
and so Theorem  is equivalent to the result of Gǎvruta [] in this case.

The following corollary, which does not use �-condition of ρ , is a refined version of
Sadeghi’s stability result (Theorem . in []) in modular space Xρ .

Corollary  Let Xρ satisfy the Fatou property. Suppose that a mapping f : V → Xρ satisfies

ρ
(
f (x + y) – f (x) – f (y)

) ≤ φ(x, y)

and φ : V × V → [,∞) is a mapping such that

lim
n→∞

φ(nx, ny)
n = , φ(x, x) ≤ Lφ(x, x)

for all x, y ∈ V . Then there exists a unique additive mapping A : V → Xρ such that

ρ
(
f (x) – A(x)

) ≤ 
( – L)

φ(x, x)

for all x ∈ V .
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Corollary  Let V be a normed space with norm ‖ · ‖ and Xρ satisfy the Fatou property.
For given real numbers θ , ε >  and p ∈ (–∞, ), if f : V → Xρ is a mapping such that

ρ
(
f (x + y) – f (x) – f (y)

) ≤ θ
(‖x‖p + ‖y‖p) + ε

for all x, y ∈ V , then there exists a unique additive mapping A : V → Xρ such that

ρ
(
f (x) – A(x)

) ≤ θ

 – p ‖x‖p + ε

for all x ∈ V , where x �=  if p < .

3 Stability of quadratic functional equations in modular spaces
In this section, we investigate refined stability results of the original quadratic functional
equation in modular space Xρ . We present the Hyers-Ulam stability of a quadratic func-
tional equation in modular spaces without using the Fatou property.

Theorem  Suppose Xρ satisfies the �-condition. If there exists a function ϕ : V  →
[,∞) for which a mapping f : V → Xρ satisfies

ρ
(
f (x + y) + f (x – y) – f (x) – f (y)

) ≤ φ(x, y),

lim
n→∞ knφ

(
x
n ,

y
n

)
=  and

∞∑

i=

(
k



)i

φ

(
x
i ,

x
i

)
< ∞

()

for all x, y ∈ V , then there exists a unique quadratic mapping B : V → Xρ , defined as B(x) =
limn→∞ nf ( x

n ) and

ρ
(
f (x) – B(x)

) ≤ 
k

∞∑

i=

(
k



)i

φ

(
x
i ,

x
i

)
()

for all x ∈ V .

Proof First, we observe that f () =  because of φ(, ) =  by the convergence of
∑∞

i= ( k

 )iφ(, ) < ∞. We take y = x in () to have

ρ
(
f (x) – f (x)

) ≤ φ(x, x)

for all x ∈ V . By the �-condition of ρ and
∑n

i=

i ≤ , one can prove the following func-

tional inequality:

ρ

(
f (x) – nf

(
x
n

))
= ρ

( n∑

i=


i

(
i–f

(
x

i–

)
– if

(
x
i

)))

≤ 
k

n∑

i=

(
k



)i

φ

(
x
i ,

x
i

)
()
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for all x ∈ V . Now, replacing x by –mx in (), we obtain

ρ

(
mf

(
x

m

)
– n+mf

(
x

n+m

))
≤ kmρ

(
f
(

x
m

)
– nf

(
x

n+m

))

≤ km–
n∑

i=

(
k



)i

φ

(
x

i+m ,
x

i+m

)

≤ m

km+

n+m∑

i=m+

(
k



)i

φ

(
x
i ,

x
i

)

for all x ∈ V , which tends to zero as m → ∞ because 
k ≤  and the series of () converges.

Thus, the sequence {nf ( x
n )} is a ρ-Cauchy sequence for all x ∈ V and so it is ρ-convergent

in Xρ since the space Xρ is ρ-complete. Therefore we have a mapping B : V → Xρ as

B(x) := ρ- lim
n→∞ nf

(
x
n

)
, i.e., lim

n→∞ρ

(
nf

(
x
n

)
– B(x)

)
= 

for all x ∈ V . So, without using the Fatou property, we can see from the �-condition that
the inequality

ρ
(
f (x) – B(x)

) ≤ 

ρ

(
f (x) –  · nf

(
x
n

))
+



ρ

(
 · nf

(
x
n

)
– B(x)

)

≤ k

ρ

(
f (x) – nf

(
x
n

))
+

k

ρ

(
nf

(
x
n

)
– B(x)

)

≤ 
k

n∑

i=

(
k



)i

φ

(
x
i ,

x
i

)
+

k

ρ

(
nf

(
x
n

)
– B(x)

)

holds for all x ∈ V and all positive integers n > . Taking n → ∞, one has the estimation
() of f by B. Setting (x, y) := (–nx, –ny) in (), we see that

ρ

(
nf

(
x + y

n

)
+ nf

(
x – y

n

)
–  · nf

(
x
n

)
–  · nf

(
y

n

))
≤ knφ

(
x
n ,

y
n

)
,

which tends to zero as n → ∞ for all x, y ∈ V . Thus, it follows from the convexity of ρ that

ρ

(



B(x + y) +



B(x – y) –



B(x) –



B(y)
)

≤ 

ρ

(
B(x + y) – nf

(
x + y

n

))
+



ρ

(
B(x – y) – nf

(
x – y

n

))

+


ρ

(
B(x) – nf

(
x
n

))
+



ρ

(
B(y) – nf

(
y

n

))

+


ρ

(
nf

(
x + y

n

)
+ nf

(
x – y

n

)
–  · nf

(
x
n

)
–  · nf

(
y

n

))

for all x, y ∈ V and all positive integers n > . Taking the limit as n → ∞, one sees that B is
quadratic.
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To show the uniqueness of B, we assume that there exists a quadratic mapping B′ : V →
Xρ satisfying the approximation

ρ
(
f (x) – B′(x)

) ≤ 
k

∞∑

i=

(
k



)i

φ

(
x
i ,

x
i

)
(x ∈ V ).

Then we see from the equality B(–nx) = –nB(x) and B′(–nx) = –nB′(x) that

ρ
(
B(x) – B′(x)

) ≤ 

ρ

(
 · nB

(
x
n

)
–  · nf

(
x
n

))

+


ρ

(
 · nf

(
x
n

)
–  · nB′

(
x
n

))

≤ kn+


ρ

(
B
(

x
n

)
– f

(
x
n

))
+

kn+


ρ

(
f
(

x
n

)
– B′

(
x
n

))

≤ kn



∞∑

i=

(
k



)i

φ

(
x

n+i ,
x

n+i

)

=
n–

kn

∞∑

i=n+

(
k



)i

φ

(
x
i ,

x
i

)

for all x ∈ V and all sufficiently large positive integers n. Taking n → ∞, we arrive at the
uniqueness of B. This completes the proof. �

Corollary  Suppose V is a normed space with norm ‖ · ‖ and Xρ satisfies �-condition.
For given real numbers θ >  and p > log

k

 , if f : V → Xρ is a mapping such that

ρ
(
f (x + y) + f (x – y) – f (x) – f (y)

) ≤ θ
(‖x‖p + ‖y‖p)

for all x, y ∈ V , then there exists a unique quadratic mapping B : V → Xρ such that

ρ
(
f (x) – B(x)

) ≤ kθ

p+ – k ‖x‖p

for all x ∈ V .

Next, we provide an alternative stability theorem of Theorem  without using both the
�-condition and the Fatou property in modular spaces.

Theorem  Suppose that a mapping f : V → Xρ satisfies

ρ
(
f (x + y) + f (x – y) – f (x) – f (y)

) ≤ φ(x, y) ()

and φ : V × V → [,∞) is a mapping such that

lim
n→∞

φ(nx, ny)
n = ,

∞∑

i=

φ(ix, ix)
i < ∞
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for all x, y ∈ V . Then there exists a unique quadratic mapping B : V → Xρ such that

ρ

(
f (x) –




f () – B(x)
)

≤ 


∞∑

i=

φ(ix, ix)
i ()

for all x ∈ V .

Proof Taking y = x in (), one has

ρ
(
f (x) + f () – f (x)

)
= ρ

(
f̃ (x) – f̃ (x)

) ≤ φ(x, x),

where f̃ (x) = f (x) – f ()
 , and then we obtain from the convexity of ρ and

∑n–
i=


i+ ≤ 

ρ

(
f̃ (x) –

f̃ (nx)
n

)
≤ ρ

( n–∑

i=

(
f̃ (ix) – f̃ (i+x)

i+

))

≤
n–∑

i=

ρ(f̃ (ix) – f̃ (i+x))
i+

≤ 


n–∑

i=

φ(ix, ix)
i

for all x ∈ V and all positive integers n. Then, by applying a similar argument to the proof
of Theorem , one has a ρ-Cauchy sequence { f̃ (nx)

n } and the limit function B : V → Xρ

defined as

ρ- lim
n→∞

f̃ (nx)
n = B(x), i.e., lim

n→∞ρ

(
f̃ (nx)

n – B(x)
)

= 

for all x ∈ V without using the �-condition and the Fatou property. Furthermore, one
can prove that the mapping B satisfies the quadratic functional equation in the same way
as in the proof of Theorem .

Now, we prove the estimation () of f by B without using �-condition and the Fatou
property. By using the convexity of ρ and

∑n–
i=


i+ + 

 ≤ , we obtain the following in-
equality:

ρ
(
f̃ (x) – B(x)

)
= ρ

( n–∑

i=

(
f̃ (ix) – f̃ (i+x)

i+

)
+

f̃ (nx)
n –

B(x)


)

≤
n–∑

i=


i+ ρ

(
f̃

(
ix

)
– f̃

(
i+x

))
+




ρ

(
f̃ (n–x)

n– – B(x)
)

≤ 


n–∑

i=


i φ

(
ix, ix

)
+




ρ

(
f̃ (n–x)

n– – B(x)
)

for all x ∈ V and all positive integers n > . Taking n → ∞, we arrive at the desired con-
clusion. �
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Corollary  Let φ : V × V → [,∞) be a given function such that

lim
n→∞

φ(nx, ny)
n = , φ(x, x) ≤ Lφ(x, x)

for all x, y ∈ X and for some L ∈ (, ). If f : V → Xρ is a mapping such that

ρ
(
f (x + y) + f (x – y) – f (x) – f (y)

) ≤ φ(x, y)

for all x, y ∈ V , then there exists a unique quadratic mapping B : V → Xρ such that

ρ

(
f (x) –




f () – B(x)
)

≤ 
( – L)

φ(x, x)

for all x ∈ V .

Remark  In [], the authors have shown that if the convex modular ρ is lower semi-
continuous and φ : V × V → [,∞), f : V → Xρ with f () =  are given functions such
that

ρ
(
f (x + y) + f (x – y) – f (x) – f (y)

) ≤ φ(x, y),

lim
n→∞

φ(nx, ny)
n =  and φ(x, x) ≤ Lφ(x, x)

for all x, y ∈ V and for some L ∈ (, 
 ), then there exists a unique quadratic mapping B :

V → Xρ such that

ρ
(
f (x) – B(x)

) ≤ 
( – L)

φ(x, x)

for all x ∈ V . In Corollary , we remark that since φ(ix, ix) ≤ (L)iφ(x, x), x ∈ V , the series
∑∞

i=
φ(ix,ix)

i converges for all x ∈ V . Thus, we see that Corollary  is a refined stability
theorem of the result above.

Corollary  Suppose V is a normed space with norm ‖ · ‖. For given real numbers θ , ε > 
and p ∈ (–∞, ), if f : V → Xρ is a mapping such that

ρ
(
f (x + y) + f (x – y) – f (x) – f (y)

) ≤ θ
(‖x‖p + ‖y‖p) + ε

for all x, y ∈ V , then there exists a unique quadratic mapping B : V → Xρ such that

ρ

(
f (x) –




f () – B(x)
)

≤ θ

 – p ‖x‖p +
ε



for all x ∈ V , where x �=  if p < .

4 Conclusion
In this article, we have obtained the stability results and alternative stability results of ad-
ditive functional equation and quadratic functional equation in modular spaces without
using the Fatou property or the �-condition. These generalize the results of Sadeghi []
and Wongkum, Chaipunya and Kumam [].
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