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1 Introduction
Let R(C) be the real (complex) field, p, q, m, n be positive integers, l = p + q, m, n ≥  and
N = {, , . . . , n}. We callA = (ai···ipj···jq ) a real (p, q)th order m×n dimensional rectangular
tensor, or simply a real rectangular tensor, denoted by A ∈R

[p,q;m,n], if

ai···ipj···jq ∈R,  ≤ i, . . . , ip ≤ m,  ≤ j, . . . , jq ≤ n.

When p = q = ,A is simply a real m×n rectangular matrix. This justifies the word ‘rectan-
gular’. We call A nonnegative, denoted by A ∈R

[p,q;m,n]
+ , if each of its entries ai···ipj···jq ≥ .

For any vectors x = (x, x, . . . , xm)T, y = (y, y, . . . , yn)T and any real number α, denote
x[α] = (xα

 , xα
 , . . . , xα

m)T and y[α] = (yα
 , yα

 , . . . , yα
n)T. Let Axp–yq be a vector in R

m such that

(
Axp–yq)

i =
m∑

i,...,ip=

n∑

j,...,jq=

aii···ipj···jq xi · · ·xip yj · · · yjq ,

where i = , . . . , m. Similarly, let Axpyq– be a vector in R
n such that

(
Axpyq–)

j =
m∑

i,...,ip=

n∑

j,...,jq=

ai···ipjj···jq xi · · ·xip yj · · · yjq ,

where j = , . . . , n. If there are a number λ ∈ C, vectors x ∈ C
m\{}, and y ∈ C

n\{} such
that

⎧
⎨

⎩
Axp–yq = λx[l–],

Axpyq– = λy[l–],
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then λ is called the singular value of A, and (x, y) is a pair of left and right eigenvectors of
A, associated with λ, respectively. If λ ∈ R, x ∈ R

m, and y ∈ R
n, then we say that λ is an

H-singular value of A, and (x, y) is a pair of left and right H-eigenvectors associated with
λ, respectively. If a singular value is not an H-singular value, we call it an N-singular value
of A []. We call

λ = max
{|λ| : λ is a singular value of A

}

the largest singular value [].
Note here that the definition of singular values for tensors was first proposed by Lim

in []. When l is even, the definition in [] is the same as in []. When l is odd, the definition
in [] is slightly different from that in [], but parallel to the definition of eigenvalues of
square matrices []; see [] for details.

When m = n, such real rectangular tensors have a sound application background. For
example, the elasticity tensor is a tensor with p = q =  and m = n =  or ; for details,
see []. Due to the fact that singular values of rectangular tensors have a wide range of
practical applications in the strong ellipticity condition problem in solid mechanics [, ]
and the entanglement problem in quantum physics [, ], very recently, it has attracted
attention of researchers [–]. Chang et al. [] studied some properties of singular val-
ues of rectangular tensors, which include the Perron-Frobenius theorem of nonnegative
irreducible tensors. Yang et al. [] extended the Perron-Frobenius theorem of nonnegative
irreducible tensors to nonnegative tensors, and gave the upper and lower bounds of the
largest singular value of nonnegative rectangular tensors.

Our goal in this paper is to propose a singular value inclusion set for rectangular tensors
and use the set to obtain new upper and lower bounds for the largest singular value of
nonnegative rectangular tensors.

2 Main results
In this section, we begin with some notation. Let A ∈R

[p,q;n,n]. For ∀i, j ∈ N , i �= j, denote

Ri(A) =
∑

i,...,ip ,j,...,jq∈N

|aii···ipj···jq |,

rj
i(A) =

∑

δji ···ipj···jq =

|aii···ipj···jq | = Ri(A) – |aij···jj···j|,

Cj(A) =
∑

i,...,ip ,j,...,jq∈N

|ai···ipjj···jq |,

ci
j(A) =

∑

δi ···ipij ···jq =

|ai···ipjj···jq | = Cj(A) – |ai···iji···i|,

where

δi···ipj···jq =

⎧
⎨

⎩
 if i = · · · = ip = j = · · · = jq,

 otherwise.
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Theorem  Let A ∈ R
[p,q;n,n], S be a nonempty proper subset of N , S̄ be the complement of

S in N. Then

σ (A) ⊆ ϒS(A) =
( ⋃

i∈S,j∈S̄

(
ϒ̂i,j(A) ∪ ϒ̃i,j(A)

)
)

∪
( ⋃

i∈S̄,j∈S

(
ϒ̂i,j(A) ∪ ϒ̃i,j(A)

)
)

,

where

ϒ̂i,j(A) =
{

z ∈C :
(|z| – rj

i(A)
)|z| ≤ |aij···jj···j|max

{
Rj(A), Cj(A)

}}
,

ϒ̃i,j(A) =
{

z ∈C :
(|z| – cj

i(A)
)|z| ≤ |aj···jij···j|max

{
Rj(A), Cj(A)

}}
.

Proof For any λ ∈ σ (A), let x = (x, x, . . . , xn)T ∈ C
n\{} and y = (y, y, . . . , yn)T ∈ C

n\{}
be the associated left and right eigenvectors, that is,

{
Axp–yq = λx[l–], ()

Axpyq– = λy[l–]. ()

Let

|xs| = max
i∈S

{|xi|
}

, |xt| = max
i∈S̄

{|xi|
}

, |yg | = max
i∈S

{|yi|
}

, |yh| = max
i∈S̄

{|yi|
}

,

wi = max
i∈N

{|xi|, |yi|
}

, wS = max
i∈S

{wi}, wS̄ = max
i∈S̄

{wi}.

Then, at least one of |xs| and |xt| is nonzero, and at least one of |yg | and |yh| is nonzero.
We divide the proof into four parts.

Case I: Suppose that wS = |xs|, wS̄ = |xt|, then |xs| ≥ |ys|, |xt| ≥ |yt|.
(i) If |xs| ≥ |xt|, then |xs| = maxi∈N {wi}. The sth equality in () is

λxl–
s =

∑

δti ···ipj ···jq =

asi···ipj···jq xi · · ·xip yj · · · yjq + ast···tt···tx
p–
t yq

t .

Taking modulus in the above equation and using the triangle inequality give

|λ||xs|l– ≤
∑

δti ···ipj ···jq =

|asi···ipj···jq ||xi | · · · |xip ||yj | · · · yjq |

+ |ast···tt···t||xt|p–|yt|q

≤
∑

δti ···ipj ···jq =

|asi···ipj···jq ||xs|l– + |ast···tt···t||xt|l–

= rt
s(A)|xs|l– + |ast···tt···t||xt|l–,

i.e.,

(|λ| – rt
s(A)

)|xs|l– ≤ |ast···tt···t||xt|l–. ()
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If |xt| = , then |λ| – rt
s(A) ≤  as |xs| > , and it is obvious that

(|λ| – rt
s(A)

)|λ| ≤  ≤ |ast···tt···t|Rt(A),

which implies that λ ∈ ϒ̂s,t(A). Otherwise, |xt| > . Moreover, from the tth equality in (),
we can get

|λ||xt|l– ≤
∑

i,...ip ,j,...,jq∈N

|ati···ipj···jq ||xi | · · · |xip ||yj | · · · |yjq |

≤ Rt(A)|xs|l–. ()

Multiplying () by () and noting that |xs|l–|xt|l– > , we have

(|λ| – rt
s(A)

)|λ| ≤ |ast···tt···t|Rt(A),

which also implies that λ ∈ ϒ̂s,t(A) ⊆ ⋃
i∈S,j∈S̄ ϒ̂i,j(A).

(ii) If |xt| ≥ |xs|, then |xt| = maxi∈N {wi}. Similarly, we can get

(|λ| – rs
t (A)

)|λ| ≤ |ats···ss···s|Rs(A),

and λ ∈ ϒ̂t,s(A) ⊆ ⋃
i∈S̄,j∈S ϒ̂i,j(A).

Case II: Suppose that wS = |yg |, wS̄ = |yh|, then |yg | ≥ |xg |, |yh| ≥ |xh|.
(i) If |yg | ≥ |yh|, then |yg | = maxi∈N {wi}. The gth equality in () is

λyl–
g =

∑

δi ···iphj ···jq =

ai···ipgj···jq xi · · ·xip yj · · · yjq + ah···hgh···hxp
hyq–

h .

Taking modulus in the above equation and using the triangle inequality give

|λ||yg |l– ≤
∑

δi ···iphj ···jq =

|ai···ipgj···jq ||xi | · · · |xip ||yj | · · · |yjq |

+ |ah···hgh···h||xh|p|yh|q–

≤
∑

δi ···iphj ···jq =

|ai···ipgj···jq ||yg |l– + |ah···hgh···h||yh|l–

= ch
g (A)|yg |l– + |ah···hgh···h||yh|l–,

i.e.,

(|λ| – ch
g (A)

)|yg |l– ≤ |ah···hgh···h||yh|l–. ()

If |yh| = , then |λ| – ch
g (A) ≤  as |yg | > , and furthermore

(|λ| – ch
g (A)

)|λ| ≤  ≤ |ah···hgh···h|Ch(A),
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which implies that λ ∈ ϒ̃g,h(A). Otherwise, |yh| > . Moreover, from the hth equality in (),
we can get

|λ||yh|l– ≤
∑

i,...,ip ,j,...,jq∈N

|ai···iphj···jq ||xi | · · · |xip ||yj | · · · |yjq |

≤ Ch(A)|yg |l–. ()

Multiplying () by () and noting that |yg |l–|yh|l– > , we have

(|λ| – ch
g (A)

)|λ| ≤ |ah···hgh···h|Ch(A),

which also implies that λ ∈ ϒ̃g,h(A) ⊆ ⋃
i∈S,j∈S̄ ϒ̃i,j(A).

(ii) If |yh| ≥ |yg |, then |yh| = maxi∈N {wi}. Similarly, we can get

(|λ| – cg
h(A)

)|λ| ≤ |ag···ghg···g |Cg(A),

and λ ∈ ϒ̃h,g(A) ⊆ ⋃
i∈S̄,j∈S ϒ̃i,j(A).

Case III: Suppose that wS = |xs|, wS̄ = |yh|, then |xs| ≥ |ys|, |yh| ≥ |xh|. If |xs| ≥ |yh|, then
|xs| = maxi∈N {wi}. Similar to the proof of () and (), we have

(|λ| – rh
s (A)

)|xs|l– ≤ |ash···hh···h||yh|l–

and

|λ||yh|l– ≤ Ch(A)|xs|l–.

Furthermore, we have

(|λ| – rh
s (A)

)|λ| ≤ |ash···hh···h|Ch(A),

which implies that λ ∈ ϒ̂s,h(A) ⊆ ⋃
i∈S,j∈S̄ ϒ̂i,j(A). And if |yh| ≥ |xs|, then |yh| = maxi∈N {wi}.

Similarly, we can get

(|λ| – cs
h(A)

)|λ| ≤ |as···shs···s|Rs(A),

which implies that λ ∈ ϒ̃h,s(A) ⊆ ⋃
i∈S̄,j∈S ϒ̃i,j(A).

Case IV: Suppose that wS = |yg |, wS̄ = |xt|, then |yg | ≥ |xg |, |xt| ≥ |yt|. If |yg | ≥ |xt|, then
|yg | = maxi∈N {wi}. Similar to the proof of () and (), we have

(|λ| – ct
g(A)

)|yg |l– ≤ |at···tgt···t||xt|l–

and

|λ||xt|l– ≤ Rt(A)|yg |l–.
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Furthermore, we have

(|λ| – ct
g(A)

)|λ| ≤ |at···tgt···t|Rt(A),

which implies that λ ∈ ϒ̃g,t(A) ⊆ ⋃
i∈S̄,j∈S ϒ̃i,j(A). And if |xt| ≥ |yg |, then |xt| = maxi∈N {wi}.

Similarly, we can get

(|λ| – rg
t (A)

)|λ| ≤ |atg···gg···g |Cg(A),

which implies that λ ∈ ϒ̂t,g(A) ⊆ ⋃
i∈S̄,j∈S ϒ̂i,j(A). The proof is completed. �

Based on Theorem , bounds for the largest singular value of nonnegative rectangular
tensors are given.

Theorem  Let A = (ai···im ) ∈R
[p,q;n,n]
+ , S be a nonempty proper subset of N , S̄ be the com-

plement of S in N. Then

LS(A) ≤ λ ≤ US(A), ()

where

LS(A) = min
{

L̂S(A), L̂S̄(A), L̃S(A), L̃S̄(A)
}

,

US(A) = max
{

ÛS(A), ÛS̄(A), ŨS(A), ŨS̄(A)
}

and

L̂S(A) = min
i∈S,j∈S̄



{

rj
i(A) +

[(
rj

i(A)
) + aij···jj···j min

{
Rj(A), Cj(A)

}] 

}

,

L̃S(A) = min
i∈S,j∈S̄



{

cj
i(A) +

[(
cj

i(A)
) + aj···jij···j min

{
Rj(A), Cj(A)

}] 

}

,

ÛS(A) = max
i∈S,j∈S̄



{

rj
i(A) +

[(
rj

i(A)
) + aij···jj···j max

{
Rj(A), Cj(A)

}] 

}

,

ŨS(A) = max
i∈S,j∈S̄



{

cj
i(A) +

[(
cj

i(A)
) + aj···jij···j max

{
Rj(A), Cj(A)

}] 

}

.

Proof First, we prove that the second inequality in () holds. By Theorem  in [], we know
that λ is a singular value of A. Hence, by Theorem , λ ∈ ϒS(A), that is,

λ ∈
⋃

i∈S,j∈S̄

(
ϒ̂i,j(A) ∪ ϒ̃i,j(A)

)
or

λ ∈
⋃

i∈S̄,j∈S

(
ϒ̂i,j(A) ∪ ϒ̃i,j(A)

)
.

If λ ∈ ⋃
i∈S,j∈S̄(ϒ̂i,j(A) ∪ ϒ̃i,j(A)), then there are i ∈ S, j ∈ S̄ such that λ ∈ ϒ̂i,j(A) or λ ∈

ϒ̃i,j(A). When λ ∈ ϒ̂i,j(A), i.e., (λ – rj
i(A))λ ≤ aij···jj···j max{Rj(A), Cj(A)}, then solving λ
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gives

λ ≤ 

{

rj
i(A) +

[(
rj

i(A)
) + aij···jj···j max

{
Rj(A), Cj(A)

}] 

}

≤ max
i∈S,j∈S̄



{

rj
i(A) +

[(
rj

i(A)
) + aij···jj···j max

{
Rj(A), Cj(A)

}] 

}

= ÛS(A).

When λ ∈ ϒ̃i,j(A), i.e., (λ – cj
i(A))λ ≤ aj···jij···j max{Rj(A), Cj(A)}, then solving λ gives

λ ≤ 

{

cj
i(A) +

[(
cj

i(A)
) + aj···jij···j max

{
Rj(A), Cj(A)

}] 

}

≤ max
i∈S,j∈S̄



{

cj
i(A) +

[(
cj

i(A)
) + aj···jij···j max

{
Rj(A), Cj(A)

}] 

}

= ŨS(A).

And if λ ∈ ⋃
i∈S̄,j∈S(ϒ̂i,j(A) ∪ ϒ̃i,j(A)), similarly, we can obtain that λ ≤ ÛS̄(A) and λ ≤

ŨS̄(A).
Second, we prove that the first inequality in () holds. Assume that A is an irreducible

nonnegative rectangular tensor, by Theorem  of [], then λ >  with two positive left and
right associated eigenvectors x = (x, x, . . . , xn)T and y = (y, y, . . . , yn)T. Let

xs = min
i∈S

{xi}, xt = min
i∈S̄

{xi}, yg = min
i∈S

{yi}, yh = min
i∈S̄

{yi},

wi = min
i∈N

{xi, yi}, wS = min
i∈S

{wi}, wS̄ = min
i∈S̄

{wi}.

We divide the proof into four parts.
Case I: Suppose that wS = xs, wS̄ = xt , then ys ≥ xs, yt ≥ xt .
(i) If xt ≥ xs, then xs = mini∈N {wi}. From the sth equality in (), we have

λxl–
s =

∑

δti ···ipj ···jq =

asi···ipj···jq xi · · ·xip yj · · · yjq + ast···tt···tx
p–
t yq

t

≥
∑

δti ···ipj ···jq =

asi···ipj···jq xl–
s + ast···tt···txl–

t

= rt
s(A)xl–

s + ast···tt···txl–
t ,

i.e.,

(
λ – rt

s(A)
)
xl–

s ≥ ast···tt···txl–
t . ()

Moreover, from the tth equality in (), we can get

λxl–
t =

∑

i,...ip ,j,...,jq∈N

ati···ipj···jq xi · · ·xip yj · · · yjq ≥ Rt(A)xl–
s . ()
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Multiplying () by () and noting that xl–
s xl–

t > , we have

(
λ – rt

s(A)
)
λ ≥ ast···tt···tRt(A).

Then solving for λ gives

λ(A) ≥ 

{

rt
s(A) +

[(
rt

s(A)
) + ast···tt···tRt(A)

] 

}

≥ min
i∈S,j∈S̄



{

rj
i(A) +

[(
rj

i(A)
) + aij···jj···jRj(A)

] 

} ≥ L̂S(A).

(ii) If xs ≥ xt , then xt = mini∈N {wi}. Similarly, we can get

λ(A) ≥ 

{

rs
t (A) +

[(
rs

t (A)
) + ats···ss···sRs(A)

] 

}

≥ min
i∈S̄,j∈S



{

rj
i(A) +

[(
rj

i(A)
) + aij···jj···jRj(A)

] 

} ≥ L̂S̄(A).

Case II: Suppose that wS = yg , wS̄ = yh, then xg ≥ yg , xh ≥ yh.
(i) If yh ≥ yg , then yg = mini∈N {wi}. From the gth equality in (), we have

λyl–
g =

∑

δi ···iphj ···jq =

ai···ipgj···jq xi · · ·xip yj · · · yjq + ah···hgh···hxp
hyq–

h

≥
∑

δi ···iphj ···jq =

ai···ipgj···jq yl–
g + ah···hgh···hyl–

h

= ch
g (A)yl–

g + ah···hgh···hyl–
h ,

i.e.,

(
λ – ch

g (A)
)
yl–

g ≥ ah···hgh···hyl–
h . ()

Moreover, from the hth equality in (), we can get

λyl–
h =

∑

i,...,ip ,j,...,jq∈N

ai···iphj···jq xi · · ·xip yj · · · yjq ≥ Ch(A)yl–
g . ()

Multiplying () by () and noting that yl–
g yl–

h > , we have

(
λ – ch

g (A)
)
λ ≥ ah···hgh···hCh(A),

which gives

λ ≥ 

{

ch
g (A) +

[(
ch

g (A)
) + ah···hgh···hCh(A)

] 

}

≥ min
i∈S,j∈S̄



{

cj
i(A) +

[(
cj

i(A)
) + aj···jij···jCj(A)

] 

}

≥ L̃S(A).
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(ii) If yg ≥ yh, then yh = mini∈N {wi}. Similarly, we can get

λ ≥ 

{

cg
h(A) +

[(
cg

h(A)
) + ag···ghg···gCg(A)

] 

}

≥ min
i∈S̄,j∈S



{

cj
i(A) +

[(
cj

i(A)
) + aj···jij···jCj(A)

] 

}

≥ L̃S̄(A).

Case III: Suppose that wS = xs, wS̄ = yh, then ys ≥ xs, xh ≥ yh. If yh ≥ xs, then xs =
mini∈N {wi}. Similar to the proof of () and (), we have

(
λ – rh

s (A)
)
xl–

s ≥ ash···hh···hyl–
h

and

λyl–
h ≥ Ch(A)xl–

s .

Furthermore, we have

(
λ – rh

s (A)
)
λ ≥ ash···hh···hCh(A)

and

λ ≥ 

{

rh
s (A) +

[(
rh

s (A)
) + ash···hh···hCh(A)

] 

}

≥ min
i∈S,j∈S̄



{

rj
i(A) +

[(
rj

i(A)
) + aij···jj···jCj(A)

] 

}

≥ L̂S(A).

And if xs ≥ yh, then yh = mini∈N {wi}. Similarly, we have

λ ≥ 

{

cs
h(A) +

[(
cs

h(A)
) + as···shs···sRs(A)

] 

}

≥ min
i∈S̄,j∈S



{

cj
i(A) +

[(
cj

i(A)
) + aj···jij···jRj(A)

] 

}

≥ L̃S̄(A).

Case IV: Suppose that wS = yg , wS̄ = xt , then xg ≥ yg , yt ≥ xt . If xt ≥ yg , then yg =
mini∈N {wi}. Similar to the proof of () and (), we have

(
λ – ct

g(A)
)
yl–

g ≥ at···tgt···txl–
t

and

λxl–
t ≥ Rt(A)yl–

g .
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Furthermore, we have

(
λ – ct

g(A)
)
λ ≥ at···tgt···tRt(A)

and

λ ≥ 

{

ct
g(A) +

[(
ct

g(A)
) + at···tgt···tRt(A)

] 

}

≥ min
i∈S,j∈S̄



{

cj
i(A) +

[(
cj

i(A)
) + aj···jij···tRj(A)

] 

} ≥ L̃S(A).

And if yg ≥ xt , then xt = mini∈N {wi}. Similarly, we have

λ ≥ 

{

rg
t (A) +

[(
rg

t (A)
) + atg···gg···gCg(A)

] 

}

≥ min
i∈S̄,j∈S



{

rj
i(A) +

[(
rj

i(A)
) + aij···jj···jCj(A)

] 

} ≥ L̂S̄(A).

Assume that A is a nonnegative rectangular tensor, then by Lemma  of [] and similar
to the proof of Theorem  of [], we can prove that the first inequality in () holds. The
conclusion follows from what we have proved. �

Next, a comparison theorem for these bounds in Theorem  and Theorem  of [] is
given.

Theorem  Let A = (ai···im ) ∈ R
[p,q;n,n]
+ , S be a nonempty proper subset of N . Then the

bounds in Theorem  are better than those in Theorem  of [], that is,

min
≤i,j≤n

{
Ri(A), Cj(A)

} ≤ LS(A) ≤ US(A) ≤ max
≤i,j≤n

{
Ri(A), Cj(A)

}
.

Proof Here, only LS(A) = min{L̂S(A), L̂S̄(A), L̃S(A), L̃S̄(A)} ≥ min≤i,j≤n{Ri(A), Cj(A)} is
proved. Similarly, we can also prove that US(A) ≤ max≤i,j≤n{Ri(A), Cj(A)}. Without loss
of generality, assume that LS(A) = L̂S(A), that is, there are two indexes i ∈ S, j ∈ S̄ such that

LS(A) =


{

rj
i(A) +

[(
rj

i(A)
) + aij···jj···j min

{
Rj(A), Cj(A)

}] 

}

(we can prove it similarly if LS(A) = L̂S̄(A), L̃S(A), L̃S̄(A), respectively). Now, we divide the
proof into two cases as follows.

Case I: Assume that

LS(A) =


{

rj
i(A) +

[(
rj

i(A)
) + aij···jj···jRj(A)

] 

}

.

(i) If Ri(A) ≥ Rj(A), then aij···jj···j ≥ Rj(A) – rj
i(A). When Rj(A) – rj

i(A) > , we have

LS(A) ≥ 

{

rj
i(A) +

[(
rj

i(A)
) + 

(
Rj(A) – rj

i(A)
)
Rj(A)

] 

}

=


{

rj
i(A) +

[(
Rj(A) – rj

i(A)
)] 


}
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=


{

rj
i(A) + Rj(A) – rj

i(A)
}

= Rj(A)

≥ min
j∈S̄

Rj(A)

≥ min
≤i,j≤n

{
Ri(A), Cj(A)

}
.

And when Rj(A) – rj
i(A) ≤ , i.e., rj

i(A) ≥ Rj(A), we have

LS(A) ≥ 

{

rj
i(A) +

[(
rj

i(A)
)] 


}

= rj
i(A) ≥ Rj(A) ≥ min

j∈S̄
Rj(A)

≥ min
≤i,j≤n

{
Ri(A), Cj(A)

}
.

(ii) If Ri(A) < Rj(A), then

LS(A) ≥ 

{

rj
i(A) +

[(
rj

i(A)
) + aij···jj···jRi(A)

] 

}

=


{

rj
i(A) +

[(
rj

i(A)
) + aij···jj···j

(
rj

i(A) + aij···jj···j
)] 


}

=


{

rj
i(A) +

[(
rj

i(A) + aij···jj···j
)] 


}

= rj
i(A) + aij···jj···j

= Ri(A)

≥ min
i∈S

Ri(A)

≥ min
≤i,j≤n

{
Ri(A), Cj(A)

}
.

Case II: Assume that

LS(A) =


{

rj
i(A) +

[(
rj

i(A)
) + aij···jj···jCj(A)

] 

}

.

Similar to the proof of Case I, we have LS(A) ≥ min≤i,j≤n{Ri(A), Cj(A)}. The conclusion
follows from what we have proved. �

3 Numerical examples
In the following, two numerical examples are given to verify the theoretical results.

Example  Let A ∈R
[,;,]
+ with entries defined as follows:

A(:, :, , ) =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ , A(:, :, , ) =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ ,

A(:, :, , )

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ , A(:, :, , ) =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ ,
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Figure 1 The singular value inclusion set ϒS(A) and the exact singular values.

A(:, :, , ) =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ , A(:, :, , ) =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ ,

A(:, :, , ) =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ , A(:, :, , ) =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ ,

A(:, :, , )

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ .

By computation, we get that all different singular values of A are –., –.,
–., –., , ., ., ., ., ., ., ., ., .,
., . and ..

(i) An S-type singular value inclusion set.
Let S = {}. Obviously, S̄ = {, }. By Theorem , the S-type singular inclusion set is

ϒS(A) =
{

z ∈ C : |z| ≤ .
}

.

The singular value inclusion set ϒS(A) and the exact singular values are drawn in Figure ,
where ϒS(A) is represented by black solid boundary and the exact singular values are
plotted by red ‘+’. It is easy to see that ϒS(A) can capture all singular values of A from
Figure .

(ii) The bounds of the largest singular value.
By Theorem  of [], we have

 ≤ λ ≤ .
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Figure 2 The singular value inclusion set ϒS(A) and the exact singular values.

Let S = {}, S̄ = {, }. By Theorem , we have

. ≤ λ ≤ ..

In fact, λ = .. This example shows that the bounds in Theorem  are better than
those in Theorem  of [].

Example  Let A ∈R
[,;,]
+ with entries defined as follows:

a = a = a = a = a = a = ,

other aijkl = . By computation, we get that all different singular values of A are , .,
, .

(i) An S-type singular value inclusion set.
Let S = {}. Obviously, S̄ = {, }. By Theorem , the S-type singular inclusion set is

ϒS(A) =
{

z ∈ C : |z| ≤ 
}

.

The singular value inclusion set ϒS(A) and the exact singular values are drawn in Figure ,
where ϒS(A) is represented by black solid boundary and the exact singular values are
plotted by red ‘+’. It is easy to see that ϒS(A) captures exactly all singular values of A from
Figure .

(ii) The bounds of the largest singular value.
By Theorem , we have

 ≤ λ ≤ .

In fact, λ = . This example shows that the bounds in Theorem  are sharp.
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4 Conclusions
In this paper, we give an S-type singular value inclusion set ϒS(A) for rectangular tensors.
As an application of this set, an S-type upper bound US(A) and an S-type lower bound
LS(A) for the largest singular value λ of a nonnegative rectangular tensor A are obtained
and proved to be sharper than those in []. Then, an interesting problem is how to pick S
to make ϒS(A) as tight as possible. But it is difficult when the dimension of the tensor A
is large. We will continue to study this problem in the future.
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