An S-type singular value inclusion set for rectangular tensors

Caili Sang*
"Correspondence: sangcl@126.com College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, P.R. China

Abstract

An S-type singular value inclusion set for rectangular tensors is given. Based on the set, new upper and lower bounds for the largest singular value of nonnegative rectangular tensors are obtained and proved to be sharper than some existing results. Numerical examples are given to verify the theoretical results.

MSC: 15A18; 15A69
Keywords: rectangular tensors; nonnegative tensors; singular value; inclusion set

1 Introduction

Let $\mathbb{R}(\mathbb{C})$ be the real (complex) field, p, q, m, n be positive integers, $l=p+q, m, n \geq 2$ and $N=\{1,2, \ldots, n\}$. We call $\mathcal{A}=\left(a_{i_{1} \cdots i_{p} j_{1} \cdots j_{q}}\right)$ a real (p, q) th order $m \times n$ dimensional rectangular tensor, or simply a real rectangular tensor, denoted by $\mathcal{A} \in \mathbb{R}^{[p, q ; m, n]}$, if

$$
a_{i_{1} \cdots i_{p} j_{1} \cdots j_{q}} \in \mathbb{R}, \quad 1 \leq i_{1}, \ldots, i_{p} \leq m, 1 \leq j_{1}, \ldots, j_{q} \leq n .
$$

When $p=q=1, \mathcal{A}$ is simply a real $m \times n$ rectangular matrix. This justifies the word 'rectangular'. We call \mathcal{A} nonnegative, denoted by $\mathcal{A} \in \mathbb{R}_{+}^{[p, q ; m, n]}$, if each of its entries $a_{i_{1} \cdots i_{p} j_{1} \cdots j_{q}} \geq 0$.

For any vectors $x=\left(x_{1}, x_{2}, \ldots, x_{m}\right)^{\mathrm{T}}, y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{\mathrm{T}}$ and any real number α, denote $x^{[\alpha]}=\left(x_{1}^{\alpha}, x_{2}^{\alpha}, \ldots, x_{m}^{\alpha}\right)^{\mathrm{T}}$ and $y^{[\alpha]}=\left(y_{1}^{\alpha}, y_{2}^{\alpha}, \ldots, y_{n}^{\alpha}\right)^{\mathrm{T}}$. Let $\mathcal{A} x^{p-1} y^{q}$ be a vector in \mathbb{R}^{m} such that

$$
\left(\mathcal{A} x^{p-1} y^{q}\right)_{i}=\sum_{i_{2}, \ldots, i_{p}=1}^{m} \sum_{j_{1}, \ldots, j_{q}=1}^{n} a_{i i_{2} \cdots i_{p} j_{1} \cdots j_{q}} x_{i_{2}} \cdots x_{i_{p}} y_{j_{1}} \cdots y_{j_{q}}
$$

where $i=1, \ldots, m$. Similarly, let $\mathcal{A} x^{p} y^{q-1}$ be a vector in \mathbb{R}^{n} such that

$$
\left(\mathcal{A} x^{p} y^{q-1}\right)_{j}=\sum_{i_{1}, \ldots, i_{p}=1}^{m} \sum_{j_{2}, \ldots, j_{q}=1}^{n} a_{i_{1} \cdots i_{p j} j_{2} \cdots j_{q}} x_{i_{1}} \cdots x_{i_{p}} y_{j_{2}} \cdots y_{j_{q}}
$$

where $j=1, \ldots, n$. If there are a number $\lambda \in \mathbb{C}$, vectors $x \in \mathbb{C}^{m} \backslash\{0\}$, and $y \in \mathbb{C}^{n} \backslash\{0\}$ such that

$$
\left\{\begin{array}{l}
\mathcal{A} x^{p-1} y^{q}=\lambda x^{[l-1]}, \\
\mathcal{A} x^{p} y^{q-1}=\lambda y^{[l-1]}
\end{array}\right.
$$

then λ is called the singular value of \mathcal{A}, and (x, y) is a pair of left and right eigenvectors of \mathcal{A}, associated with λ, respectively. If $\lambda \in \mathbb{R}, x \in \mathbb{R}^{m}$, and $y \in \mathbb{R}^{n}$, then we say that λ is an H -singular value of \mathcal{A}, and (x, y) is a pair of left and right H-eigenvectors associated with λ, respectively. If a singular value is not an H -singular value, we call it an N -singular value of \mathcal{A} [1]. We call

$$
\lambda_{0}=\max \{|\lambda|: \lambda \text { is a singular value of } \mathcal{A}\}
$$

the largest singular value [2].
Note here that the definition of singular values for tensors was first proposed by Lim in [3]. When l is even, the definition in [1] is the same as in [3]. When l is odd, the definition in [1] is slightly different from that in [3], but parallel to the definition of eigenvalues of square matrices [4]; see [1] for details.
When $m=n$, such real rectangular tensors have a sound application background. For example, the elasticity tensor is a tensor with $p=q=2$ and $m=n=2$ or 3 ; for details, see [1]. Due to the fact that singular values of rectangular tensors have a wide range of practical applications in the strong ellipticity condition problem in solid mechanics $[5,6]$ and the entanglement problem in quantum physics [7, 8], very recently, it has attracted attention of researchers [9-17]. Chang et al. [1] studied some properties of singular values of rectangular tensors, which include the Perron-Frobenius theorem of nonnegative irreducible tensors. Yang et al. [2] extended the Perron-Frobenius theorem of nonnegative irreducible tensors to nonnegative tensors, and gave the upper and lower bounds of the largest singular value of nonnegative rectangular tensors.
Our goal in this paper is to propose a singular value inclusion set for rectangular tensors and use the set to obtain new upper and lower bounds for the largest singular value of nonnegative rectangular tensors.

2 Main results

In this section, we begin with some notation. Let $\mathcal{A} \in \mathbb{R}^{[p, q ; n, n]}$. For $\forall i, j \in N, i \neq j$, denote

$$
\begin{aligned}
& R_{i}(\mathcal{A})=\sum_{i_{2}, \ldots, i_{p}, j_{1}, \ldots, j_{q} \in N}\left|a_{i i_{2} \cdots i_{p} j_{1} \ldots j_{q}}\right|, \\
& r_{i}^{j}(\mathcal{A})=\sum_{\delta_{j i_{2} \cdots i j_{1} \cdots j_{q}=0}}\left|a_{i i_{2} \cdots i_{p} j_{1} \cdots j_{q}}\right|=R_{i}(\mathcal{A})-\left|a_{i j \cdots j j \ldots j}\right|, \\
& C_{j}(\mathcal{A})=\sum_{i_{1}, \ldots, i_{p}, j_{2}, \ldots, j_{q} \in N}\left|a_{i_{1} \cdots i_{p} j_{2} \cdots j_{q}}\right|, \\
& c_{j}^{i}(\mathcal{A})=\sum_{\delta_{i_{1} \cdots i_{p} i_{2} \cdots j_{q}=0}}\left|a_{i_{1} \cdots i_{p} j_{2} \cdots j_{q}}\right|=C_{j}(\mathcal{A})-\left|a_{i \cdots i j \cdots i}\right|,
\end{aligned}
$$

where

$$
\delta_{i_{1} \cdots i_{p} j_{1} \cdots j_{q}}= \begin{cases}1 & \text { if } i_{1}=\cdots=i_{p}=j_{1}=\cdots=j_{q} \\ 0 & \text { otherwise }\end{cases}
$$

Theorem 1 Let $\mathcal{A} \in \mathbb{R}^{[p, q ; n, n]}$, S be a nonempty proper subset of N, \bar{S} be the complement of S in N. Then

$$
\sigma(\mathcal{A}) \subseteq \Upsilon^{S}(\mathcal{A})=\left(\bigcup_{i \in S, j \in \bar{S}}\left(\hat{\Upsilon}_{i, j}(\mathcal{A}) \cup \tilde{\Upsilon}_{i, j}(\mathcal{A})\right)\right) \cup\left(\bigcup_{i \in \bar{S}, j \in S}\left(\hat{\Upsilon}_{i, j}(\mathcal{A}) \cup \tilde{\Upsilon}_{i, j}(\mathcal{A})\right)\right)
$$

where

$$
\begin{aligned}
& \hat{\Upsilon}_{i, j}(\mathcal{A})=\left\{z \in \mathbb{C}:\left(|z|-r_{i}^{j}(\mathcal{A})\right)|z| \leq\left|a_{i j \ldots j j \ldots j}\right| \max \left\{R_{j}(\mathcal{A}), C_{j}(\mathcal{A})\right\}\right\}, \\
& \tilde{\Upsilon}_{i, j}(\mathcal{A})=\left\{z \in \mathbb{C}:\left(|z|-c_{i}^{j}(\mathcal{A})\right)|z| \leq\left|a_{j \ldots j i j \ldots j}\right| \max \left\{R_{j}(\mathcal{A}), C_{j}(\mathcal{A})\right\}\right\} .
\end{aligned}
$$

Proof For any $\lambda \in \sigma(\mathcal{A})$, let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}} \in \mathbb{C}^{n} \backslash\{0\}$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{\mathrm{T}} \in \mathbb{C}^{n} \backslash\{0\}$ be the associated left and right eigenvectors, that is,

$$
\left\{\begin{array}{l}
\mathcal{A} x^{p-1} y^{q}=\lambda x^{[l-1]} \tag{1}\\
\mathcal{A} x^{p} y^{q-1}=\lambda y^{[l-1]}
\end{array}\right.
$$

Let

$$
\begin{array}{lll}
\left|x_{s}\right|=\max _{i \in S}\left\{\left|x_{i}\right|\right\}, \quad\left|x_{t}\right|=\max _{i \in \bar{S}}\left\{\left|x_{i}\right|\right\}, & \left|y_{g}\right|=\max _{i \in S}\left\{\left|y_{i}\right|\right\}, \quad\left|y_{h}\right|=\max _{i \in \bar{S}}\left\{\left|y_{i}\right|\right\}, \\
w_{i}=\max _{i \in N}\left\{\left|x_{i}\right|,\left|y_{i}\right|\right\}, \quad w_{S}=\max _{i \in S}\left\{w_{i}\right\}, & w_{\bar{S}}=\max _{i \in \bar{S}}\left\{w_{i}\right\} .
\end{array}
$$

Then, at least one of $\left|x_{s}\right|$ and $\left|x_{t}\right|$ is nonzero, and at least one of $\left|y_{g}\right|$ and $\left|y_{h}\right|$ is nonzero. We divide the proof into four parts.

Case I: Suppose that $w_{S}=\left|x_{s}\right|, w_{\bar{S}}=\left|x_{t}\right|$, then $\left|x_{s}\right| \geq\left|y_{s}\right|,\left|x_{t}\right| \geq\left|y_{t}\right|$.
(i) If $\left|x_{s}\right| \geq\left|x_{t}\right|$, then $\left|x_{s}\right|=\max _{i \in N}\left\{w_{i}\right\}$. The s th equality in (1) is

$$
\lambda x_{s}^{l-1}=\sum_{\delta_{t i_{2} \cdots i_{p} j_{1} \cdots j_{q}=0}} a_{s i_{2} \cdots i_{p} j_{1} \cdots j_{q}} x_{i_{2}} \cdots x_{i_{p}} y_{j_{1}} \cdots y_{j_{q}}+a_{s t \cdots t t \cdots t} x_{t}^{p-1} y_{t}^{q}
$$

Taking modulus in the above equation and using the triangle inequality give

$$
\begin{aligned}
|\lambda|\left|x_{s}\right|^{l-1} \leq & \sum_{\delta_{t i_{2} \cdots i i_{1} \cdots j_{q}=0}}\left|a_{s i_{2} \cdots i_{p} j_{1} \cdots j_{q}}\right|\left|x_{i_{2}}\right| \cdots\left|x_{i_{p}}\right|\left|y_{j_{1}}\right| \cdots y_{j_{q}} \mid \\
& +\left|a_{s t \cdots t \cdots t}\right|\left|x_{t}\right|^{p-1}\left|y_{t}\right|^{q} \\
\leq & \sum_{\delta_{t i_{2} \cdots i i_{p} j_{1} \cdots j_{q}=0}}\left|a_{s i_{2} \cdots i_{p} j_{1} \cdots j_{q}}\right|\left|x_{s}\right|^{l-1}+\left|a_{s t \cdots t t \cdots t}\right|\left|x_{t}\right|^{l-1} \\
= & r_{s}^{t}(\mathcal{A})\left|x_{s}\right|^{l-1}+\left|a_{s t \cdots t t \cdots t}\right|\left|x_{t}\right|^{l-1},
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\left(|\lambda|-r_{s}^{t}(\mathcal{A})\right)\left|x_{s}\right|^{l-1} \leq\left|a_{s t \ldots t \ldots t}\right|\left|x_{t}\right|^{l-1} \tag{3}
\end{equation*}
$$

If $\left|x_{t}\right|=0$, then $|\lambda|-r_{s}^{t}(\mathcal{A}) \leq 0$ as $\left|x_{s}\right|>0$, and it is obvious that

$$
\left(|\lambda|-r_{s}^{t}(\mathcal{A})\right)|\lambda| \leq 0 \leq\left|a_{s t \ldots t t \ldots t}\right| R_{t}(\mathcal{A})
$$

which implies that $\lambda \in \hat{\Upsilon}_{s, t}(\mathcal{A})$. Otherwise, $\left|x_{t}\right|>0$. Moreover, from the t th equality in (1), we can get

$$
\begin{align*}
|\lambda|\left|x_{t}\right|^{l-1} & \leq \sum_{i_{2}, \ldots i_{p}, j_{1}, \ldots, j_{q} \in N}\left|a_{t i_{2} \cdots i_{p} j_{1} \cdots j_{q}}\right|\left|x_{i_{2}}\right| \cdots\left|x_{i_{p}}\right|\left|y_{j_{1}}\right| \cdots\left|y_{j_{q}}\right| \\
& \leq R_{t}(\mathcal{A})\left|x_{s}\right|^{l-1} . \tag{4}
\end{align*}
$$

Multiplying (3) by (4) and noting that $\left|x_{s}\right|^{l-1}\left|x_{t}\right|^{l-1}>0$, we have

$$
\left(|\lambda|-r_{s}^{t}(\mathcal{A})\right)|\lambda| \leq\left|a_{s t \cdots t c \cdots t}\right| R_{t}(\mathcal{A})
$$

which also implies that $\lambda \in \hat{\Upsilon}_{s, t}(\mathcal{A}) \subseteq \bigcup_{i \in S, j \in \bar{S}} \hat{\Upsilon}_{i, j}(\mathcal{A})$.
(ii) If $\left|x_{t}\right| \geq\left|x_{s}\right|$, then $\left|x_{t}\right|=\max _{i \in N}\left\{w_{i}\right\}$. Similarly, we can get

$$
\left(|\lambda|-r_{t}^{s}(\mathcal{A})\right)|\lambda| \leq\left|a_{t s \cdots s s \cdots s}\right| R_{s}(\mathcal{A})
$$

and $\lambda \in \hat{\Upsilon}_{t, s}(\mathcal{A}) \subseteq \bigcup_{i \in \bar{S}, j \in S} \hat{\Upsilon}_{i, j}(\mathcal{A})$.
Case II: Suppose that $w_{S}=\left|y_{g}\right|, w_{\bar{S}}=\left|y_{h}\right|$, then $\left|y_{g}\right| \geq\left|x_{g}\right|,\left|y_{h}\right| \geq\left|x_{h}\right|$.
(i) If $\left|y_{g}\right| \geq\left|y_{h}\right|$, then $\left|y_{g}\right|=\max _{i \in N}\left\{w_{i}\right\}$. The g th equality in (2) is

$$
\lambda y_{g}^{l-1}=\sum_{\delta_{i_{1} \cdots i_{p} j_{2} \cdots j_{q}=0}} a_{i_{1} \cdots i_{p} g_{2} \cdots j_{q}} x_{i_{1}} \cdots x_{i_{p}} y_{j_{2}} \cdots y_{j_{q}}+a_{h \cdots h g h \cdots h} x_{h}^{p} y_{h}^{q-1} .
$$

Taking modulus in the above equation and using the triangle inequality give

$$
\begin{aligned}
|\lambda|\left|y_{g}\right|^{l-1} \leq & \sum_{\delta_{i_{1} \cdots i_{p} h j_{2} \cdots j_{q}=0}}\left|a_{i_{1} \cdots i_{p} g g_{2} \cdots j_{q}}\right|\left|x_{i_{1}}\right| \cdots\left|x_{i_{p}}\right|\left|y_{j_{2}}\right| \cdots\left|y_{j_{q}}\right| \\
& +\left|a_{h \cdots h g h \cdots h}\right|\left|x_{h}\right|^{p}\left|y_{h}\right|^{q-1} \\
\leq & \sum_{\delta_{i_{1} \cdots i_{p} h j_{2} \cdots j_{q}=0}}\left|a_{i_{1} \cdots i_{p} g j_{2} \cdots j_{q}}\right|\left|y_{g}\right|^{l-1}+\left|a_{h \cdots h g h \cdots h}\right|\left|y_{h}\right|^{l-1} \\
= & c_{g}^{h}(\mathcal{A})\left|y_{g}\right|^{l-1}+\left|a_{h \cdots h g h \cdots h}\right|\left|y_{h}\right|^{l-1},
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\left(|\lambda|-c_{g}^{h}(\mathcal{A})\right)\left|y_{g}\right|^{l-1} \leq\left|a_{h \cdots h g h \ldots h}\right|\left|y_{h}\right|^{l-1} . \tag{5}
\end{equation*}
$$

If $\left|y_{h}\right|=0$, then $|\lambda|-c_{g}^{h}(\mathcal{A}) \leq 0$ as $\left|y_{g}\right|>0$, and furthermore

$$
\left(|\lambda|-c_{g}^{h}(\mathcal{A})\right)|\lambda| \leq 0 \leq\left|a_{h \cdots h g h \ldots h}\right| C_{h}(\mathcal{A}),
$$

which implies that $\lambda \in \tilde{\Upsilon}_{g, h}(\mathcal{A})$. Otherwise, $\left|y_{h}\right|>0$. Moreover, from the h th equality in (2), we can get

$$
\begin{align*}
|\lambda|\left|y_{h}\right|^{l-1} & \leq \sum_{i_{1} \ldots, i_{p}, j_{2}, \ldots, j_{q} \in N}\left|a_{i_{1} \cdots i_{p} h j_{2} \cdots j_{q}}\right|\left|x_{i_{1}}\right| \cdots\left|x_{i_{p}}\right|\left|y_{j_{2}}\right| \cdots\left|y_{j_{q}}\right| \\
& \leq C_{h}(\mathcal{A})\left|y_{g}\right|^{l-1} . \tag{6}
\end{align*}
$$

Multiplying (5) by (6) and noting that $\left|y_{g}\right|^{l-1}\left|y_{h}\right|^{l-1}>0$, we have

$$
\left(|\lambda|-c_{g}^{h}(\mathcal{A})\right)|\lambda| \leq\left|a_{h \cdots h g h \cdots h}\right| C_{h}(\mathcal{A}),
$$

which also implies that $\lambda \in \tilde{\Upsilon}_{g, h}(\mathcal{A}) \subseteq \bigcup_{i \in S, j \in \bar{S}} \tilde{\Upsilon}_{i, j}(\mathcal{A})$.
(ii) If $\left|y_{h}\right| \geq\left|y_{g}\right|$, then $\left|y_{h}\right|=\max _{i \in N}\left\{w_{i}\right\}$. Similarly, we can get

$$
\left(|\lambda|-c_{h}^{g}(\mathcal{A})\right)|\lambda| \leq\left|a_{g \cdots g h g . \cdots g}\right| C_{g}(\mathcal{A})
$$

and $\lambda \in \tilde{\Upsilon}_{h, g}(\mathcal{A}) \subseteq \bigcup_{i \in \bar{S}, j \in S} \tilde{\Upsilon}_{i, j}(\mathcal{A})$.
Case III: Suppose that $w_{S}=\left|x_{s}\right|, w_{\bar{S}}=\left|y_{h}\right|$, then $\left|x_{s}\right| \geq\left|y_{s}\right|,\left|y_{h}\right| \geq\left|x_{h}\right|$. If $\left|x_{s}\right| \geq\left|y_{h}\right|$, then $\left|x_{s}\right|=\max _{i \in N}\left\{w_{i}\right\}$. Similar to the proof of (3) and (6), we have

$$
\left(|\lambda|-r_{s}^{h}(\mathcal{A})\right)\left|x_{s}\right|^{l-1} \leq\left|a_{s h \ldots h h \ldots h}\right|\left|y_{h}\right|^{l-1}
$$

and

$$
|\lambda|\left|y_{h}\right|^{l-1} \leq C_{h}(\mathcal{A})\left|x_{s}\right|^{l-1} .
$$

Furthermore, we have

$$
\left(|\lambda|-r_{s}^{h}(\mathcal{A})\right)|\lambda| \leq\left|a_{s h \cdots h h \cdots h}\right| C_{h}(\mathcal{A}),
$$

which implies that $\lambda \in \hat{\Upsilon}_{s, h}(\mathcal{A}) \subseteq \bigcup_{i \in S, j \in \bar{S}} \hat{\Upsilon}_{i, j}(\mathcal{A})$. And if $\left|y_{h}\right| \geq\left|x_{s}\right|$, then $\left|y_{h}\right|=\max _{i \in N}\left\{w_{i}\right\}$. Similarly, we can get

$$
\left(|\lambda|-c_{h}^{s}(\mathcal{A})\right)|\lambda| \leq\left|a_{s \ldots s h s \cdots s}\right| R_{s}(\mathcal{A}),
$$

which implies that $\lambda \in \tilde{\Upsilon}_{h, s}(\mathcal{A}) \subseteq \bigcup_{i \in \bar{S}, j \in S} \tilde{\Upsilon}_{i, j}(\mathcal{A})$.
Case IV: Suppose that $w_{S}=\left|y_{g}\right|, w_{\bar{S}}=\left|x_{t}\right|$, then $\left|y_{g}\right| \geq\left|x_{g}\right|,\left|x_{t}\right| \geq\left|y_{t}\right|$. If $\left|y_{g}\right| \geq\left|x_{t}\right|$, then $\left|y_{g}\right|=\max _{i \in N}\left\{w_{i}\right\}$. Similar to the proof of (5) and (4), we have

$$
\left(|\lambda|-c_{g}^{t}(\mathcal{A})\right)\left|y_{g}\right|^{l-1} \leq\left|a_{t \ldots \operatorname{tg} t \ldots t}\right|\left|x_{t}\right|^{l-1}
$$

and

$$
|\lambda|\left|x_{t}\right|^{l-1} \leq R_{t}(\mathcal{A})\left|y_{g}\right|^{l-1} .
$$

Furthermore, we have

$$
\left(|\lambda|-c_{g}^{t}(\mathcal{A})\right)|\lambda| \leq\left|a_{t \cdots \operatorname{tg} t \cdots t}\right| R_{t}(\mathcal{A})
$$

which implies that $\lambda \in \tilde{\Upsilon}_{g, t}(\mathcal{A}) \subseteq \bigcup_{i \in \bar{S}, j \in S} \tilde{\Upsilon}_{i, j}(\mathcal{A})$. And if $\left|x_{t}\right| \geq\left|y_{g}\right|$, then $\left|x_{t}\right|=\max _{i \in N}\left\{w_{i}\right\}$. Similarly, we can get

$$
\left(|\lambda|-r_{t}^{g}(\mathcal{A})\right)|\lambda| \leq\left|a_{t g \ldots g g \ldots g}\right| C_{g}(\mathcal{A})
$$

which implies that $\lambda \in \hat{\Upsilon}_{t, g}(\mathcal{A}) \subseteq \bigcup_{i \in \bar{S}, j \in S} \hat{\Upsilon}_{i, j}(\mathcal{A})$. The proof is completed.

Based on Theorem 1, bounds for the largest singular value of nonnegative rectangular tensors are given.

Theorem 2 Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in \mathbb{R}_{+}^{[p, q ; n, n]}$, S be a nonempty proper subset of N, \bar{S} be the complement of S in N. Then

$$
\begin{equation*}
L^{S}(\mathcal{A}) \leq \lambda_{0} \leq U^{S}(\mathcal{A}) \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
& L^{S}(\mathcal{A})=\min \left\{\hat{L}^{S}(\mathcal{A}), \hat{L}^{\bar{S}}(\mathcal{A}), \tilde{L}^{S}(\mathcal{A}), \tilde{L}^{\bar{S}}(\mathcal{A})\right\} \\
& U^{S}(\mathcal{A})=\max \left\{\hat{U}^{S}(\mathcal{A}), \hat{U}^{\bar{S}}(\mathcal{A}), \tilde{U}^{S}(\mathcal{A}), \tilde{U}^{\bar{S}}(\mathcal{A})\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \hat{L}^{S}(\mathcal{A})=\min _{i \in S, j \in \bar{S}} \frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(r_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{i j \ldots j j \ldots j} \min \left\{R_{j}(\mathcal{A}), C_{j}(\mathcal{A})\right\}\right]^{\frac{1}{2}}\right\}, \\
& \tilde{L}^{S}(\mathcal{A})=\min _{i \in S, j \in \bar{S}} \frac{1}{2}\left\{c_{i}^{j}(\mathcal{A})+\left[\left(c_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{j \ldots j i \ldots j} \min \left\{R_{j}(\mathcal{A}), C_{j}(\mathcal{A})\right\}\right]^{\frac{1}{2}}\right\}, \\
& \hat{U}^{S}(\mathcal{A})=\max _{i \in S, j \in \bar{S}} \frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(r_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{i j \ldots j j \ldots j} \max \left\{R_{j}(\mathcal{A}), C_{j}(\mathcal{A})\right\}\right]^{\frac{1}{2}}\right\}, \\
& \tilde{U}^{S}(\mathcal{A})=\max _{i \in S, j \in \bar{S}} \frac{1}{2}\left\{c_{i}^{j}(\mathcal{A})+\left[\left(c_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{j \ldots j i j \ldots j} \max \left\{R_{j}(\mathcal{A}), C_{j}(\mathcal{A})\right\}\right]^{\frac{1}{2}}\right\} .
\end{aligned}
$$

Proof First, we prove that the second inequality in (7) holds. By Theorem 2 in [2], we know that λ_{0} is a singular value of \mathcal{A}. Hence, by Theorem $1, \lambda_{0} \in \Upsilon^{S}(\mathcal{A})$, that is,

$$
\begin{aligned}
& \lambda_{0} \in \bigcup_{i \in S, j \in \bar{S}}\left(\hat{\Upsilon}_{i, j}(\mathcal{A}) \cup \tilde{\Upsilon}_{i, j}(\mathcal{A})\right) \text { or } \\
& \lambda_{0} \in \bigcup_{i \in \bar{S}, j \in S}\left(\hat{\Upsilon}_{i, j}(\mathcal{A}) \cup \tilde{\Upsilon}_{i, j}(\mathcal{A})\right) .
\end{aligned}
$$

If $\lambda_{0} \in \bigcup_{i \in S, j \in \bar{S}}\left(\hat{\Upsilon}_{i, j}(\mathcal{A}) \cup \tilde{\Upsilon}_{i, j}(\mathcal{A})\right)$, then there are $i \in S, j \in \bar{S}$ such that $\lambda_{0} \in \hat{\Upsilon}_{i, j}(\mathcal{A})$ or $\lambda_{0} \in$ $\tilde{\Upsilon}_{i, j}(\mathcal{A})$. When $\lambda_{0} \in \hat{\Upsilon}_{i, j}(\mathcal{A})$, i.e., $\left(\lambda_{0}-r_{i}^{j}(\mathcal{A})\right) \lambda_{0} \leq a_{i j \ldots j \ldots \ldots j} \max \left\{R_{j}(\mathcal{A}), C_{j}(\mathcal{A})\right\}$, then solving λ_{0}
gives

$$
\begin{aligned}
\lambda_{0} & \leq \frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(r_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{i j \ldots j j \ldots j} \max \left\{R_{j}(\mathcal{A}), C_{j}(\mathcal{A})\right\}\right]^{\frac{1}{2}}\right\} \\
& \leq \max _{i \in S, j \in \bar{S}} \frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(r_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{i j \ldots j j \ldots j} \max \left\{R_{j}(\mathcal{A}), C_{j}(\mathcal{A})\right\}\right]^{\frac{1}{2}}\right\} \\
& =\hat{U}^{S}(\mathcal{A}) .
\end{aligned}
$$

When $\lambda_{0} \in \tilde{\Upsilon}_{i, j}(\mathcal{A})$, i.e., $\left(\lambda_{0}-c_{i}^{j}(\mathcal{A})\right) \lambda_{0} \leq a_{j \ldots j i j \ldots j} \max \left\{R_{j}(\mathcal{A}), C_{j}(\mathcal{A})\right\}$, then solving λ_{0} gives

$$
\begin{aligned}
\lambda_{0} & \leq \frac{1}{2}\left\{c_{i}^{j}(\mathcal{A})+\left[\left(c_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{j \ldots j i j \ldots j} \max \left\{R_{j}(\mathcal{A}), C_{j}(\mathcal{A})\right\}\right]^{\frac{1}{2}}\right\} \\
& \leq \max _{i \in S, j \in \bar{S}} \frac{1}{2}\left\{c_{i}^{j}(\mathcal{A})+\left[\left(c_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{j \ldots j i j \ldots j} \max \left\{R_{j}(\mathcal{A}), C_{j}(\mathcal{A})\right\}\right]^{\frac{1}{2}}\right\} \\
& =\tilde{U}^{S}(\mathcal{A})
\end{aligned}
$$

And if $\lambda_{0} \in \bigcup_{i \in \bar{S}, j \in S}\left(\hat{\Upsilon}_{i, j}(\mathcal{A}) \cup \tilde{\Upsilon}_{i, j}(\mathcal{A})\right)$, similarly, we can obtain that $\lambda_{0} \leq \hat{U}^{\bar{S}}(\mathcal{A})$ and $\lambda_{0} \leq$ $\tilde{U}^{\bar{S}}(\mathcal{A})$.

Second, we prove that the first inequality in (7) holds. Assume that \mathcal{A} is an irreducible nonnegative rectangular tensor, by Theorem 6 of [1], then $\lambda_{0}>0$ with two positive left and right associated eigenvectors $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{\mathrm{T}}$. Let

$$
\begin{aligned}
& x_{s}=\min _{i \in S}\left\{x_{i}\right\}, \quad x_{t}=\operatorname{minin}_{i \in \bar{S}}\left\{x_{i}\right\}, \quad y_{g}=\operatorname{minin}_{i \in S}\left\{y_{i}\right\}, \quad y_{h}=\min _{i \in \bar{S}}\left\{y_{i}\right\}, \\
& w_{i}=\min _{i \in N}\left\{x_{i}, y_{i}\right\}, \quad w_{S}=\min _{i \in S}\left\{w_{i}\right\}, \quad w_{\bar{S}}=\min _{i \in \bar{S}}\left\{w_{i}\right\} .
\end{aligned}
$$

We divide the proof into four parts.
Case I: Suppose that $w_{S}=x_{s}, w_{\bar{S}}=x_{t}$, then $y_{s} \geq x_{s}, y_{t} \geq x_{t}$.
(i) If $x_{t} \geq x_{s}$, then $x_{s}=\min _{i \in N}\left\{w_{i}\right\}$. From the s th equality in (1), we have

$$
\begin{aligned}
& \lambda_{0} x_{s}^{l-1}=\sum_{\delta_{t i_{2} \cdots p_{j 1} \cdots j_{q}=0}} a_{s i_{2} \cdots i_{p} j_{1} \cdots j_{q}} x_{i_{2}} \cdots x_{i_{p}} y_{j_{1}} \cdots y_{j_{q}}+a_{s t \ldots t+\cdots x_{t}^{p-1} y_{t}^{q}}
\end{aligned}
$$

$$
\begin{aligned}
& =r_{s}^{t}(\mathcal{A}) x_{s}^{l-1}+a_{s t \ldots t \ldots \ldots} x_{t}^{l-1},
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\left(\lambda_{0}-r_{s}^{t}(\mathcal{A})\right) x_{s}^{l-1} \geq a_{s t \cdots t \cdots t} x_{t}^{l-1} \tag{8}
\end{equation*}
$$

Moreover, from the t th equality in (1), we can get

$$
\begin{equation*}
\lambda_{0} x_{t}^{l-1}=\sum_{i_{2}, \ldots i_{p}, j_{1}, \ldots, j_{q} \in N} a_{t i_{2} \cdots i_{p} j_{1} \cdots j_{q}} x_{i_{2}} \cdots x_{i_{p}} y_{j_{1}} \cdots y_{j_{q}} \geq R_{t}(\mathcal{A}) x_{s}^{l-1} . \tag{9}
\end{equation*}
$$

Multiplying (8) by (9) and noting that $x_{s}^{l-1} x_{t}^{l-1}>0$, we have

$$
\left(\lambda_{0}-r_{s}^{t}(\mathcal{A})\right) \lambda_{0} \geq a_{s t \cdots t t \cdots t} R_{t}(\mathcal{A})
$$

Then solving for λ_{0} gives

$$
\begin{aligned}
\lambda_{0}(\mathcal{A}) & \geq \frac{1}{2}\left\{r_{s}^{t}(\mathcal{A})+\left[\left(r_{s}^{t}(\mathcal{A})\right)^{2}+4 a_{s t \ldots t \ldots t} R_{t}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \\
& \geq \min _{i \in S, j \in \bar{S}} \frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(r_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{i j \ldots j \ldots j} R_{j}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \geq \hat{L}^{S}(\mathcal{A}) .
\end{aligned}
$$

(ii) If $x_{s} \geq x_{t}$, then $x_{t}=\min _{i \in N}\left\{w_{i}\right\}$. Similarly, we can get

$$
\begin{aligned}
\lambda_{0}(\mathcal{A}) & \geq \frac{1}{2}\left\{r_{t}^{s}(\mathcal{A})+\left[\left(r_{t}^{s}(\mathcal{A})\right)^{2}+4 a_{t s \ldots s s \ldots s} R_{s}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \\
& \geq \min _{i \in \bar{S}, j \in S} \frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(r_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{i j \ldots j \ldots j} R_{j}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \geq \hat{L}^{\bar{S}}(\mathcal{A}) .
\end{aligned}
$$

Case II: Suppose that $w_{S}=y_{g}, w_{\bar{S}}=y_{h}$, then $x_{g} \geq y_{g}, x_{h} \geq y_{h}$.
(i) If $y_{h} \geq y_{g}$, then $y_{g}=\min _{i \in N}\left\{w_{i}\right\}$. From the g th equality in (2), we have

$$
\begin{aligned}
\lambda_{0} y_{g}^{l-1} & =\sum_{\delta_{i_{1} \cdots i_{p} h j_{2} \cdots j_{q}=0}} a_{i_{1} \cdots i_{p} g j_{2} \cdots j_{q}} x_{i_{1}} \cdots x_{i_{p}} y_{j_{2}} \cdots y_{j_{q}}+a_{h \cdots h g h \cdots h} x_{h}^{p} y_{h}^{q-1} \\
& \geq \sum_{\delta_{i_{1} \cdots i_{p} h j_{2} \cdots j_{q}=0}} a_{i_{1} \cdots i_{p} g j_{2} \cdots j_{q}} y_{g}^{l-1}+a_{h \cdots h g h \cdots h} y_{h}^{l-1} \\
& =c_{g}^{h}(\mathcal{A}) y_{g}^{l-1}+a_{h \cdots h g h \ldots h} y_{h}^{l-1},
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\left(\lambda_{0}-c_{g}^{h}(\mathcal{A})\right) y_{g}^{l-1} \geq a_{h \cdots h g h \cdots h} y_{h}^{l-1} . \tag{10}
\end{equation*}
$$

Moreover, from the h th equality in (2), we can get

$$
\begin{equation*}
\lambda_{0} y_{h}^{l-1}=\sum_{i_{1}, \ldots, i_{p}, j_{2}, \ldots, j_{q} \in N} a_{i_{1} \cdots i_{p} h j_{2} \cdots j_{q}} x_{i_{1}} \cdots x_{i_{p}} y_{j_{2}} \cdots y_{j_{q}} \geq C_{h}(\mathcal{A}) y_{g}^{l-1} . \tag{11}
\end{equation*}
$$

Multiplying (10) by (11) and noting that $y_{g}^{l-1} y_{h}^{l-1}>0$, we have

$$
\left(\lambda_{0}-c_{g}^{h}(\mathcal{A})\right) \lambda_{0} \geq a_{h \cdots h g h \cdots h} C_{h}(\mathcal{A})
$$

which gives

$$
\begin{aligned}
\lambda_{0} & \geq \frac{1}{2}\left\{c_{g}^{h}(\mathcal{A})+\left[\left(c_{g}^{h}(\mathcal{A})\right)^{2}+4 a_{h \ldots h g h \ldots h} C_{h}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \\
& \geq \min _{i \in S, j \in \bar{S}} \frac{1}{2}\left\{c_{i}^{j}(\mathcal{A})+\left[\left(c_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{j \ldots j i j \ldots j} C_{j}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \\
& \geq \tilde{L}^{S}(\mathcal{A})
\end{aligned}
$$

(ii) If $y_{g} \geq y_{h}$, then $y_{h}=\min _{i \in N}\left\{w_{i}\right\}$. Similarly, we can get

$$
\begin{aligned}
\lambda_{0} & \geq \frac{1}{2}\left\{c_{h}^{g}(\mathcal{A})+\left[\left(c_{h}^{g}(\mathcal{A})\right)^{2}+4 a_{g \cdots g h g \ldots g} C_{g}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \\
& \geq \min _{i \in \bar{S}, j \in S} \frac{1}{2}\left\{c_{i}^{j}(\mathcal{A})+\left[\left(c_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{j \ldots j i j \ldots j} C_{j}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \\
& \geq \tilde{L}^{\bar{S}}(\mathcal{A}) .
\end{aligned}
$$

Case III: Suppose that $w_{S}=x_{s}, w_{\bar{S}}=y_{h}$, then $y_{s} \geq x_{s}, x_{h} \geq y_{h}$. If $y_{h} \geq x_{s}$, then $x_{s}=$ $\min _{i \in N}\left\{w_{i}\right\}$. Similar to the proof of (8) and (11), we have

$$
\left(\lambda_{0}-r_{s}^{h}(\mathcal{A})\right) x_{s}^{l-1} \geq a_{s h \ldots h h \ldots h} y_{h}^{l-1}
$$

and

$$
\lambda_{0} y_{h}^{l-1} \geq C_{h}(\mathcal{A}) x_{s}^{l-1}
$$

Furthermore, we have

$$
\left(\lambda_{0}-r_{s}^{h}(\mathcal{A})\right) \lambda_{0} \geq a_{s h \cdots h h \cdots h} C_{h}(\mathcal{A})
$$

and

$$
\begin{aligned}
\lambda_{0} & \geq \frac{1}{2}\left\{r_{s}^{h}(\mathcal{A})+\left[\left(r_{s}^{h}(\mathcal{A})\right)^{2}+4 a_{s h \ldots h h \ldots h} C_{h}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \\
& \geq \min _{i \in S, j \in \bar{S}} \frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(r_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{i j \cdots j \ldots \ldots j} C_{j}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \\
& \geq \hat{L}^{S}(\mathcal{A}) .
\end{aligned}
$$

And if $x_{s} \geq y_{h}$, then $y_{h}=\min _{i \in N}\left\{w_{i}\right\}$. Similarly, we have

$$
\begin{aligned}
\lambda_{0} & \geq \frac{1}{2}\left\{c_{h}^{s}(\mathcal{A})+\left[\left(c_{h}^{s}(\mathcal{A})\right)^{2}+4 a_{s \ldots s h s \ldots s} R_{s}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \\
& \geq \min _{i \in \bar{S}, j \in S} \frac{1}{2}\left\{c_{i}^{j}(\mathcal{A})+\left[\left(c_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{j \ldots j i j \ldots j} R_{j}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \\
& \geq \tilde{L}^{\bar{S}}(\mathcal{A}) .
\end{aligned}
$$

Case IV: Suppose that $w_{S}=y_{g}, w_{\bar{S}}=x_{t}$, then $x_{g} \geq y_{g}, y_{t} \geq x_{t}$. If $x_{t} \geq y_{g}$, then $y_{g}=$ $\min _{i \in N}\left\{w_{i}\right\}$. Similar to the proof of (10) and (9), we have

$$
\left(\lambda_{0}-c_{g}^{t}(\mathcal{A})\right) y_{g}^{l-1} \geq a_{t \cdots \operatorname{tg} \cdots t} x_{t}^{l-1}
$$

and

$$
\lambda_{0} x_{t}^{l-1} \geq R_{t}(\mathcal{A}) y_{g}^{l-1}
$$

Furthermore, we have

$$
\left(\lambda_{0}-c_{g}^{t}(\mathcal{A})\right) \lambda_{0} \geq a_{t \ldots t g t \ldots t} R_{t}(\mathcal{A})
$$

and

$$
\begin{aligned}
\lambda_{0} & \geq \frac{1}{2}\left\{c_{g}^{t}(\mathcal{A})+\left[\left(c_{g}^{t}(\mathcal{A})\right)^{2}+4 a_{t \ldots \operatorname{tg} t \ldots t} R_{t}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \\
& \geq \min _{i \in S, j \in \bar{S}} \frac{1}{2}\left\{c_{i}^{j}(\mathcal{A})+\left[\left(c_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{j \ldots j i j \ldots t} R_{j}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \geq \tilde{L}^{S}(\mathcal{A}) .
\end{aligned}
$$

And if $y_{g} \geq x_{t}$, then $x_{t}=\min _{i \in N}\left\{w_{i}\right\}$. Similarly, we have

$$
\begin{aligned}
\lambda_{0} & \geq \frac{1}{2}\left\{r_{t}^{g}(\mathcal{A})+\left[\left(r_{t}^{g}(\mathcal{A})\right)^{2}+4 a_{t g \ldots g g \cdots g} C_{g}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \\
& \geq \min _{i \in \bar{S}, j \in S} \frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(r_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{i j \ldots j \ldots j} C_{j}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \geq \hat{L}^{\bar{S}}(\mathcal{A}) .
\end{aligned}
$$

Assume that \mathcal{A} is a nonnegative rectangular tensor, then by Lemma 3 of [2] and similar to the proof of Theorem 2 of [2], we can prove that the first inequality in (7) holds. The conclusion follows from what we have proved.

Next, a comparison theorem for these bounds in Theorem 2 and Theorem 4 of [2] is given.

Theorem 3 Let $\mathcal{A}=\left(a_{i_{1} \cdots i_{m}}\right) \in \mathbb{R}_{+}^{[p, q ; n, n]}$, S be a nonempty proper subset of N. Then the bounds in Theorem 2 are better than those in Theorem 4 of [2], that is,

$$
\min _{1 \leq i, j \leq n}\left\{R_{i}(\mathcal{A}), C_{j}(\mathcal{A})\right\} \leq L^{S}(\mathcal{A}) \leq U^{S}(\mathcal{A}) \leq \max _{1 \leq i, j \leq n}\left\{R_{i}(\mathcal{A}), C_{j}(\mathcal{A})\right\} .
$$

Proof Here, only $L^{S}(\mathcal{A})=\min \left\{\hat{L}^{S}(\mathcal{A}), \hat{L}^{\bar{S}}(\mathcal{A}), \tilde{L}^{S}(\mathcal{A}), \tilde{L}^{\bar{S}}(\mathcal{A})\right\} \geq \min _{1 \leq i, j \leq n}\left\{R_{i}(\mathcal{A}), C_{j}(\mathcal{A})\right\}$ is proved. Similarly, we can also prove that $U^{S}(\mathcal{A}) \leq \max _{1 \leq i, j \leq n}\left\{R_{i}(\mathcal{A}), C_{j}(\mathcal{A})\right\}$. Without loss of generality, assume that $L^{S}(\mathcal{A})=\hat{L}^{S}(\mathcal{A})$, that is, there are two indexes $i \in S, j \in \bar{S}$ such that

$$
L^{S}(\mathcal{A})=\frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(r_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{i j \ldots j j \ldots j} \min \left\{R_{j}(\mathcal{A}), C_{j}(\mathcal{A})\right\}\right]^{\frac{1}{2}}\right\}
$$

(we can prove it similarly if $L^{S}(\mathcal{A})=\hat{L}^{\bar{S}}(\mathcal{A}), \tilde{L}^{S}(\mathcal{A}), \tilde{L}^{\bar{S}}(\mathcal{A})$, respectively). Now, we divide the proof into two cases as follows.

Case I: Assume that

$$
L^{S}(\mathcal{A})=\frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(r_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{i j \ldots j j \ldots j} R_{j}(\mathcal{A})\right]^{\frac{1}{2}}\right\} .
$$

(i) If $R_{i}(\mathcal{A}) \geq R_{j}(\mathcal{A})$, then $a_{i j \ldots j \ldots j} \geq R_{j}(\mathcal{A})-r_{i}^{j}(\mathcal{A})$. When $R_{j}(\mathcal{A})-r_{i}^{j}(\mathcal{A})>0$, we have

$$
\begin{aligned}
L^{S}(\mathcal{A}) & \geq \frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(r_{i}^{j}(\mathcal{A})\right)^{2}+4\left(R_{j}(\mathcal{A})-r_{i}^{j}(\mathcal{A})\right) R_{j}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \\
& =\frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(2 R_{j}(\mathcal{A})-r_{i}^{j}(\mathcal{A})\right)^{2}\right]^{\frac{1}{2}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+2 R_{j}(\mathcal{A})-r_{i}^{j}(\mathcal{A})\right\} \\
& =R_{j}(\mathcal{A}) \\
& \geq \min _{j \in \bar{S}} R_{j}(\mathcal{A}) \\
& \geq \min _{1 \leq i, j \leq n}\left\{R_{i}(\mathcal{A}), C_{j}(\mathcal{A})\right\}
\end{aligned}
$$

And when $R_{j}(\mathcal{A})-r_{i}^{j}(\mathcal{A}) \leq 0$, i.e., $r_{i}^{j}(\mathcal{A}) \geq R_{j}(\mathcal{A})$, we have

$$
\begin{aligned}
L^{S}(\mathcal{A}) & \geq \frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(r_{i}^{j}(\mathcal{A})\right)^{2}\right]^{\frac{1}{2}}\right\}=r_{i}^{j}(\mathcal{A}) \geq R_{j}(\mathcal{A}) \geq \min _{j \in \bar{S}} R_{j}(\mathcal{A}) \\
& \geq \min _{1 \leq i, j \leq n}\left\{R_{i}(\mathcal{A}), C_{j}(\mathcal{A})\right\} .
\end{aligned}
$$

(ii) If $R_{i}(\mathcal{A})<R_{j}(\mathcal{A})$, then

$$
\begin{aligned}
L^{S}(\mathcal{A}) & \geq \frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(r_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{i j \ldots j \ldots j} R_{i}(\mathcal{A})\right]^{\frac{1}{2}}\right\} \\
& =\frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(r_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{i j \ldots j \ldots \ldots j}\left(r_{i}^{j}(\mathcal{A})+a_{i j \ldots j \ldots \ldots j}\right)\right]^{\frac{1}{2}}\right\} \\
& =\frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(r_{i}^{j}(\mathcal{A})+2 a_{i j \ldots j \ldots j}\right)^{2}\right]^{\frac{1}{2}}\right\} \\
& =r_{i}^{j}(\mathcal{A})+a_{i j \ldots j \ldots j} \\
& =R_{i}(\mathcal{A}) \\
& \geq \min _{i \in S} R_{i}(\mathcal{A}) \\
& \geq \min _{1 \leq i, j \leq n}\left\{R_{i}(\mathcal{A}), C_{j}(\mathcal{A})\right\} .
\end{aligned}
$$

Case II: Assume that

$$
L^{S}(\mathcal{A})=\frac{1}{2}\left\{r_{i}^{j}(\mathcal{A})+\left[\left(r_{i}^{j}(\mathcal{A})\right)^{2}+4 a_{i j \ldots j j \ldots j} C_{j}(\mathcal{A})\right]^{\frac{1}{2}}\right\} .
$$

Similar to the proof of Case I, we have $L^{S}(\mathcal{A}) \geq \min _{1 \leq i, j \leq n}\left\{R_{i}(\mathcal{A}), C_{j}(\mathcal{A})\right\}$. The conclusion follows from what we have proved.

3 Numerical examples

In the following, two numerical examples are given to verify the theoretical results.
Example 1 Let $\mathcal{A} \in \mathbb{R}_{+}^{[2,2 ; 3,3]}$ with entries defined as follows:

$$
\begin{array}{ll}
\mathcal{A}(:,:, 1,1)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
11 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], & \mathcal{A}(:,:, 2,1)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
4 & 6 & 3 \\
10 & 0 & 3
\end{array}\right], \\
\mathcal{A}(:,:, 3,1)\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 2 \\
7 & 2 & 2
\end{array}\right], & \mathcal{A}(:,:, 1,2)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right],
\end{array}
$$

Figure 1 The singular value inclusion set $\Upsilon^{s}(\mathcal{A})$ and the exact singular values.

$$
\begin{array}{ll}
\mathcal{A}(:,:, 2,2)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 2 & 1 \\
0 & 2 & 3
\end{array}\right], & \mathcal{A}(:,:, 3,2)=\left[\begin{array}{lll}
0 & 0 & 0 \\
2 & 2 & 2 \\
6 & 2 & 1
\end{array}\right], \\
\mathcal{A}(:,:, 1,3)=\left[\begin{array}{lll}
0 & 0 & 0 \\
2 & 1 & 2 \\
0 & 0 & 0
\end{array}\right], & \mathcal{A}(:,:, 2,3)=\left[\begin{array}{lll}
0 & 0 & 0 \\
2 & 3 & 1 \\
1 & 1 & 3
\end{array}\right], \\
\mathcal{A}(:,:, 3,3)\left[\begin{array}{lll}
2 & 1 & 1 \\
3 & 2 & 3 \\
2 & 1 & 1
\end{array}\right] .
\end{array}
$$

By computation, we get that all different singular values of \mathcal{A} are $-4.9395,-0.5833$, $-0.4341,-0.1977,0,0.0094,0.0907,1.0825,1.2405,1.5334,1.8418,2.3125,5.8540,6.1494$, $6.6525,8.0225$ and 31.1680.
(i) An S-type singular value inclusion set.

Let $S=\{1\}$. Obviously, $\bar{S}=\{2,3\}$. By Theorem 1, the S-type singular inclusion set is

$$
\Upsilon^{S}(\mathcal{A})=\{z \in \mathbb{C}:|z| \leq 49.9629\} .
$$

The singular value inclusion set $\Upsilon^{S}(\mathcal{A})$ and the exact singular values are drawn in Figure 1, where $\Upsilon^{S}(\mathcal{A})$ is represented by black solid boundary and the exact singular values are plotted by red ' + '. It is easy to see that $\Upsilon^{S}(\mathcal{A})$ can capture all singular values of \mathcal{A} from Figure 1.
(ii) The bounds of the largest singular value.

By Theorem 4 of [2], we have

$$
5 \leq \lambda_{0} \leq 57 .
$$

Figure 2 The singular value inclusion set $\Upsilon^{s}(\mathcal{A})$ and the exact singular values.

Let $S=\{1\}, \bar{S}=\{2,3\}$. By Theorem 2 , we have

$$
9.0711 \leq \lambda_{0} \leq 49.9629
$$

In fact, $\lambda_{0}=31.1680$. This example shows that the bounds in Theorem 2 are better than those in Theorem 4 of [2].

Example 2 Let $\mathcal{A} \in \mathbb{R}_{+}^{[2,2 ; 2,2]}$ with entries defined as follows:

$$
a_{1111}=a_{1112}=a_{1222}=a_{2112}=a_{2121}=a_{2221}=1,
$$

other $a_{i j k l}=0$. By computation, we get that all different singular values of \mathcal{A} are $0,0.8226$, 1,3.
(i) An S-type singular value inclusion set.

Let $S=\{1\}$. Obviously, $\bar{S}=\{2,3\}$. By Theorem 1, the S-type singular inclusion set is

$$
\Upsilon^{S}(\mathcal{A})=\{z \in \mathbb{C}:|z| \leq 3\} .
$$

The singular value inclusion set $\Upsilon^{S}(\mathcal{A})$ and the exact singular values are drawn in Figure 2, where $\Upsilon^{S}(\mathcal{A})$ is represented by black solid boundary and the exact singular values are plotted by red '+'. It is easy to see that $\Upsilon^{S}(\mathcal{A})$ captures exactly all singular values of \mathcal{A} from Figure 2.
(ii) The bounds of the largest singular value.

By Theorem 2, we have

$$
3 \leq \lambda_{0} \leq 3
$$

In fact, $\lambda_{0}=3$. This example shows that the bounds in Theorem 2 are sharp.

4 Conclusions

In this paper, we give an S-type singular value inclusion set $\Upsilon^{S}(\mathcal{A})$ for rectangular tensors. As an application of this set, an S-type upper bound $U^{S}(\mathcal{A})$ and an S-type lower bound $L^{S}(\mathcal{A})$ for the largest singular value λ_{0} of a nonnegative rectangular tensor \mathcal{A} are obtained and proved to be sharper than those in [2]. Then, an interesting problem is how to pick S to make $\Upsilon^{S}(\mathcal{A})$ as tight as possible. But it is difficult when the dimension of the tensor \mathcal{A} is large. We will continue to study this problem in the future.

Acknowledgements

The author is very indebted to the reviewers for their valuable comments and corrections, which improved the original manuscript of this paper. This work is supported by Foundation of Guizhou Science and Technology Department (Grant No. [2015]2073), National Natural Science Foundation of China (Grant No. 11501141) and Natural Science Programs of Education Department of Guizhou Province (Grant No. [2016]066).

Competing interests

The author declares that they have no competing interests.
Author's contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 18 April 2017 Accepted: 7 June 2017 Published online: 17 June 2017

References

1. Chang, KC, Qi, LQ, Zhou, GL: Singular values of a real rectangular tensor. J. Math. Anal. Appl. 370, 284-294 (2010)
2. Yang, YN, Yang, QZ: Singular values of nonnegative rectangular tensors. Front. Math. China 6(2), 363-378 (2011)
3. Lim, LH: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP '05), pp. 129-132 (2005)
4. Chang, KC, Pearson, K, Zhang, T: On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl. 350, 416-422 (2009)
5. Knowles, JK, Sternberg, E: On the ellipticity of the equations of non-linear elastostatics for a special material. J. Elast. 5, 341-361 (1975)
6. Wang, Y, Aron, M: A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. J. Elast. 44, 89-96 (1996)
7. Dahl, D, Leinass, JM, Myrheim, J, Ovrum, E: A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl. 420, 711-725 (2007)
8. Einstein, A, Podolsky, B, Rosen, N: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777-780 (1935)
9. Li, HB, Huang, TZ, Liu, XP, Li, H: Singularity, Wielandt's lemma and singular values. J. Comput. Appl. Math. 234, 2943-2952 (2010)
10. Zhou, GL, Caccetta, L, Qi, LQ: Convergence of an algorithm for the largest singular value of a nonnegative rectangular tensor. Linear Algebra Appl. 438, 959-968 (2013)
11. Chen, $Z, L u, L Z:$ A tensor singular values and its symmetric embedding eigenvalues. J. Comput. Appl. Math. 250, 217-228 (2013)
12. Chen, ZM, Qi, LQ, Yang, QZ, Yang, YN: The solution methods for the largest eigenvalue (singular value) of nonnegative tensors and convergence analysis. Linear Algebra Appl. 439, 3713-3733 (2013)
13. Li, CQ, Li, YT, Kong, X: New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 21, 39-50 (2014)
14. Li, CQ, Jiao, AQ, Li, YT: An S-type eigenvalue location set for tensors. Linear Algebra Appl. 493, 469-483 (2016)
15. He, J, Liu, YM, Ke, H, Tian, JK, Li, X: Bound for the largest singular value of nonnegative rectangular tensors. Open Math. 14, 761-766 (2016)
16. Zhao, JX, Sang, CL: An S-type upper bound for the largest singular value of nonnegative rectangular tensors. Open Math. 14, 925-933 (2016)
17. He, J, Liu, YM, Tian, JK, Ren, ZR: New inclusion sets for singular values. J. Inequal. Appl. 2017, 64 (2017)
