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Abstract

In this paper, we introduce and study iterative algorithms for solving split mixed
equilibrium problems and fixed point problems of A-hybrid multivalued mappings in
real Hilbert spaces and prove that the proposed iterative algorithm converges weakly
to a common solution of the considered problems. We also provide an example to
illustrate the convergence behavior of the proposed iteration process.
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1 Introduction
Let H be a real Hilbert space with inner product (-,-) and induced norm || - ||. Let C be a
nonempty closed convex subset of H, ¢ : C — R be a function, and F: C x C— R be a
bifunction. The mixed equilibrium problem is to find x € C such that

F(x,y) +9() —9x) >0, VyeC. 1.1)
The solution set of mixed equilibrium problem is denoted by MEP(F, ¢). In particular, if
¢ =0, this problem reduces to the equilibrium problem, which is to find x € C such that
F(x,y) > 0,Vy € C. The solution set of equilibrium problem is denoted by EP(F).

The mixed equilibrium problem is very general in the sense that it includes, as special
cases, optimization problems, variational inequality problems, minimization problems,
fixed point problems, Nash equilibrium problems in noncooperative games, and others;
see, e.g., [1-4].

In 1994, Censor and Elfving [5] firstly introduced the following split feasibility prob-
lem in finite-dimensional Hilbert spaces: Let H;, H, be two Hilbert spaces and C, Q be
nonempty closed convex subsets of H; and H,, respectively, and let A : H; — H, be a
bounded linear operator. The split feasibility problem is formulated as finding a point x*
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with the property
x*eC and Ax"e€Q.

The split feasibility problem can extensively be applied in fields such as intensity-
modulated radiation therapy, signal processing and image reconstruction, then the split
feasibility problem has received so much attention by so many scholars; see [6-9].

In 2013, Kazmi and Rizvi [10] introduced and studied the following split equilibrium
problem: let C € Hy and Q C Hj. Let F; : C x C — Rand F; : Q X Q — R be nonlinear bi-
functions and let A : H; — H, be abounded linear operator. The split equilibrium problem
is to find x* € C such that

Fi(x*,x) >0, Vxe Cand such that y* = Ax* € Q solves F>(y*,y) > 0,Vy € Q. (1.2)
The solution set of the split equilibrium problem is denoted by
SEP(Fy,F) = {x* € C:x* € EP(F)) and Ax* € EP(F,)}.

The authors gave an iterative algorithm to find the common element of sets of solution of
the split equilibrium problem and hierarchical fixed point problem; for more details refer
to [11, 12].

In 2016, Suantai et al. [13] proposed the iterative algorithm to solve the problems for
finding a common elements the set of solution of the split equilibrium problem and the
fixed point of a nonspreading multivalued mapping in Hilbert space, given sequence {x,}
by

x1 € C arbitrarily,
U = TN = y A*( = T2)A)x,, (1.3)

Xpi1 € 0pxy + (1 —a,)Su,, VmeN,

where {«,} C (0,1), r, C (0,00) and y € (0, %) such that L is the spectral radius of A*A and
A* is the adjoint of A, CC H;, QC H, S:C— K(C) is a %—nonspreading multivalued
mapping, F; : C x C — R and F,: Q x Q — R are two bifunctions. The authors showed
that under certain conditions, the sequence {x,} converges weakly to an element of F(S) N
SEP(F,, F»).

Several iterative algorithms have been developed for solving split feasibility problems
and related split equilibrium problems; see, e.g., [14-16].

Motivated and inspired by the above results and related literature, we propose an itera-
tive algorithm for finding a common element of the set of solutions of split mixed equilib-
rium problems and the set of fixed points of A-hybrid multivalued mappings in real Hilbert
spaces. Then we prove some weak convergence theorems which extend and improve the
corresponding results of Kazmi and Rizvi [10] and Suantai et al. [13] and many others. We

finally provide numerical examples for supporting our main result.
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2 Preliminaries

Let C be a nonempty closed convex subset of a real Hilbert space H. We denote the strong
convergence and the weak convergence of the sequence {x,} to a point x € H by x,, — «x
and x,, — x, respectively. It is also well known [17] that a Hilbert space H satisfies Opial’s

condition, that is, for any sequence {x,} with x,, — x, the inequality

limsup ||x, — x| < limsup ||x, — ||
n— 00 n— 00

holds for every y € H with y # x.
The following two lemmas are useful for our main results.

Lemma 2.1 In a real Hilbert space H, the following inequalities hold:
@ Nl =ylI* < 1%lI* = Iyl1* = 2(x ~ y,9), Vx,y € H;
2) llx+ 1% < Ixll* + 2y, % + 9), Y,y € H;
(3) litx+ @ =t)yl* = tlxll* + A = )|lyl1* - e = D) |x - yI|*, V£ € [0,1], YV, y € H;
(4) If {x,} is a sequence in H which converges weakly to z € H, then

limsup ||z, — y||? = limsup ||x, —z||> + |z - y|>, VyeH.

n—00 n—00

Lemma 2.2 ([18]) Let H be a Hilbert space and {x,} be a sequence in H. Let u,v € H be
such that lim,,_, o %, — u| and lim,,_,  ||x, — v|| exist. If {x,, } and {x,,,} are subsequences

of {x,,} which converge weakly to u and v, respectively, then u = v.

A single-valued mapping T : C — H is called §-inverse strongly monotone [19] if there

exists a positive real number § such that
(x—y, Tx—Ty) = 8| Tx - Ty||>, Vx,y€C.

For each y € (0,28], we see that [ — y T is a nonexpansive single-valued mapping, that is,
|G-y T)x-U-yDy| <lx-yl, VxyeC.

We denote by CB(C) and K(C) the collection of all nonempty closed bounded subsets
and nonempty compact subsets of C, respectively. The Hausdorff metric H on CB(C) is
defined by

H(A,B) = max{sup dist(x, B), sup dist(y,A)}, VA,B e CB(C),
x€A y€EB

where dist(x, B) = inf{d(x, y) : y € B} is the distance from a point x to a subset B. Let S: C —
CB(C) be a multivalued mapping. An element x € C is called a fixed point of S if x € Sx.
The set of all fixed points of S is denoted by F(S), that is, F(S) = {x € C: x € Sx}. Recall that
a multivalued mapping S: C — CB(C) is called

(i) nomexpansive if

H(Sx,Sy) < llx=yll, xyeC;
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(i) quasi-nonexpansive if F(S) # @ and
H(Sx,Sp) < llx—pl, Vxe€C,VpeF(S)
(ili) nonspreading [13] if
2H(Sx, Sy)* < dist(y, Sx)? + dist(x, Sy)*, Vx,y € C;
(iv) A-hybrid [20] if there exists A € R such that
1+ M)H(Sx,Sp)* < (1= A)|lx — y|I* + Adist(y, Sx)? + Adist(x, Sy)%, Vax,y € C.

We note that 0-hybrid is nonexpansive, 1-hybrid is nonspreading, and if S is A-hybrid with
F(S) # 9, then S is quasi-nonexpansive. It is well known [20] that if S is A-hybrid, then F(S)
is closed. In addition, if S satisfies the condition: Sp = {p} for all p € F(S), then F(S) is also
convex.

The following result is a demiclosedness principle for A-hybrid multivalued mapping in

a real Hilbert space.

Lemma 2.3 ([20]) Let C be a nonempty closed convex subset of a real Hilbert space H
and S : C — K(C) be a A-hybrid multivalued mapping. If {x,} is a sequence in C such that
X, — x and y, € Sx, with x, — y, — 0, then x € Sx.

For solving the mixed equilibrium problem, we assume that the bifunction F; : C x C —
R satisfies the following assumption:

Assumption 2.4 Let C be a nonempty closed and convex subset of a Hilbert space H;. Let
F; : C x C — R be the bifunction, ¢ : C — R U {+00} is convex and lower semicontinuous
satisfies the following conditions:

(A1) Fi(x,x)=0forallx e C;

(A2) F; is monotone, i.e., Fi(x,y) + Fi(y,x) <0,VYx,y € C;

(A3) foreachx,y,ze€ C,limgyo Fi(tz+ (1-t)x,y) < Fi(x,9);

(A4) for each x € C, y — Fi(x,y) is convex and lower semicontinuous;

(B1) for each x € H; and fixed r > 0, there exist a bounded subset D, € C and y, € C

such that, for any z € C \ Dy,

1
Fi(z,9x) + 9(x) — 9(2) + S —zz-x) <0;
(B2) Cisabounded set.

Lemma 2.5 ([21]) Let C be a nonempty closed and convex subset of a Hilbert space H,. Let
F,: C x C — R be a bifunction satisfies Assumption 2.4 and let ¢ : C — R U {+oc} be a
proper lower semicontinuous and convex function such that C N\dome # . For r > 0 and
x € Hy. Define a mapping TH:H — C as follows:

Tfl(x)z [ze C:F(zy)+9(y) —e2) + }lj(y—z,z—x) >0,Vye C},
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for all x € Hy. Assume that either (Bl) or (B2) holds. Then the following conclusions hold:
(1) foreach x € Hy, TH +
Q) TH s single-valued;
@) Th is firmly nonexpansive, i.e., for any x,y € Hy,

” Tflx— Tflyn2 < (Tflx_ Tf1y,x_y);

(4) F(T7") = MEP(F;, ¢);

(5) MEP(F,, ) is closed and convex.
Further, assume that F, : Q x Q — R satisfying Assumption 2.4 and ¢ : Q — R U {+o0} is
a proper lower semicontinuous and convex function such that QN dome # 3, where Q is a
nonempty closed and convex subset of a Hilbert space Hy. For each s > 0 and w € H», define
a mapping TE* : Hy — Q as follows:

Tst(v) = {w €Q:F(w,d) +¢(d) — p(w) + %(d— w,w—v)>0,Yd € Q}.
Then we have the following:
(6) foreachve H,, T2 49
(7) T is single-valued,;
®) T2 is firmly nonexpansive;
(9) F(T}*) = MEP(Fy, ¢);
(10) MEP(F,, ¢) is closed and convex.

3 Main results
In this section, we prove the weak convergence theorems for finding a common element
of the set of solutions of split mixed equilibrium problems and the set of fixed points of
A-hybrid multivalued mappings in real Hilbert spaces and give a numerical example to
support our main result.

We introduce the definition of split mixed equilibrium problems in real Hilbert spaces
as follows.

Definition 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H; and
Q be a nonempty closed convex subset of a real Hilbert space H,. Let F; : C x C — R and
F> : Q x Q — R be nonlinear bifunctions, let ¢ : C - RU {+o0} and ¢ : Q - R U {+00}
be proper lower semicontinuous and convex functions such that CNdome¢ # ¥ and QN
dom ¢ # @, and let A : Hy — H, be a bounded linear operator. The split mixed equilibrium
problem is to find x* € C such that

F (x*,x) +@(x) - go(x*) >0, VxeC(C, (3.1)
and such that

Y =Ax"€Q solves F(y%y)+¢(») -¢(y)=0, VyeQ (3.2)
The solution set of the split mixed equilibrium problem (3.1) and (3.2) is denoted by

SMEP(Fy, ¢, F»,¢) := {x* € C:x* € MEP(F}, ¢) and Ax* € MEP(F,,¢)}.
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We now get our main result.

Theorem 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H, and
Q be a nonempty closed convex subset of a real Hilbert space Hy. Let A : HH — H, be a
bounded linear operator and S : C — K(C) a A-hybrid multivalued mapping. Let F; : C x
C— R, F:Q x Q— R be bifunctions satisfying Assumption 2.4, let ¢ : C — R U {+00}
and ¢ : Q — R U {+00} be a proper lower semicontinuous and convex functions such that
CNdome # ¥ and QN dom ¢ # ¥, respectively, and F, is upper semicontinuous in the first
argument. Assume that © = F(S) N SMEP(Fy, ¢, F>, ¢) # 0 and Sp = {p} for all p € F(S). Let
{x,} be a sequence generated by x; € C and

ty = Ty (I =y A*(I = T;2)A),
Yn =0pXy + (1 - Oln)Wn, Wy € Sun; (33)

Xn+l = ﬂnwn + (1 - lgn)zn; Zy € S_yn; VneN,

where {a,} C (0,1), {B.} € (0,1), {r,} C (0,00), and y € (0, %) such that L is the spectral
radius of A*A and A* is the adjoint of A. Assume that the following conditions hold:

(Cl) 0<liminf, ., B, <limsup,_, . Bu<1;

(C2) 0<liminf, o o, <limsup,_, ., o, <1;

(C3) 0<liminf,_, o 7,.
Then the sequence {x,} generated by (3.3) converges weakly to p € ©.

Proof First, we show that A*(I — T,F,f)A isa %—inverse strongly monotone mapping. Since

Fy . . Fy . 1.
T, is firmly nonexpansive and / — T;.? is 1-inverse strongly monotone, we see that

|A*(1 - TE2)Ax - A* (1 - T22) Ay||* = (A" (I - TE2 ) (Ax — Ay), A*(I - T2 (Ax - Ay))

(
(

<L{(I-T2)(Ax - Ay), (I - T}?)(Ax - Ay))

(I-T2)(Ax - Ay), AA*(I - T}?) (Ax - Ay))

2
=L|(1-T2)(Ax - 4
<L{Ax- Ay, (I - T[?)(Ax - Ay))
=L{x—y,A*(I - T}2)Ax — A*(I - T?) Ay)
for all x,y € H. This implies that A*(I - T} 2)A is a 1-inverse strongly monotone mapping.
Since y € (0, %), it follows that 7 — y A*(I - Tfjf )A is a nonexpansive mapping.
Now, we divide the proof into five steps as follows:
Step 1. Show that {x,} is bounded.
Let g € ©. Then we have g = T,Fnlq andg=(-yA*I- Tf:,z )A)q. By nonexpansiveness of
I—yA*(I - Tf*)A, it implies that
s = qll = | T3 (1 = y A (1 = T;2)A) = TN (I = y A" (1= T;2) A
= [T -yA" (- T2)A)x, — (1 -y A (I - T;2)A)d]

< llxn — - (3.4)
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This implies that
lw, — gll = dist(w,,, Sq) < H(Su, Sq) < lun — qll < llxn — 4l (3.5)
and so

ly. —qll = ”anxn + (1= a)wy —6]”
< anllxn =gl + (1 —an)llwn —ql

= |lx, —qll. (3.6)
It follows that
1z — qll = dist(zn, Sq) < H(Syu, Sq) < lyn —qll < llxu — 4. (3.7)

By (3.5) and (3.7), we have

%01 = gll = | Buwn + A = Bu)zu - q
< ﬂn”wn - q” + (1 - ﬂn)”zn - 61||
= [len — gl (3.8)
This implies that {||x, — ||} is decreasing and bounded below, thus lim,_, » ||*,, — g/ exists
forallg e ®.
Step 2. Show that lim,,_, o [|w),, — 2| = 0.
From Lemma 2.1(3), (3.5), (3.7), and Sq = {g}, we have
(%641 — ¢Z||2 = ”ﬁnwn + (1= Bu)zn - qH2
< Bullwn =gl + (1= B)llzw = qlI* = Bu(L = Bu)llws — 2>
< “xn _qllz _ﬁn(l_lgn)nwn_zn”z- (3‘9)

This implies that
B = Ba)llWn = 2all* < [15 = qI* = llms1 — .

From Condition (C1) and lim,,_,  ||x, — ¢|| exists, we have
lim ||wy, —z,| = 0. (3.10)
n—>o00

Step 3. Show that lim,,_, o, ||u,, — %, || = 0 and lim,,_, ¢ ||W;, — 18] = 0.
For g € ©, we see that

it — qlI? = | TE (I = yA* (1 = TE2) A)x, — T g
< |(1-yA*(1-TE)A)x, - 4|

< s — qlI? + V2| A* (I - TE2) A, || + 27 g — %0, A* (I - T2) Ax,)
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< % — qlI* + y*(Ax, — T2 Ax,, AA* (I - T}2) Ax,,)
+2y(A(g — %), Axy — T}2 Ax,)
< llxn — qll* + Ly *(Axy — T2 Ay, Axy — T2 Axiy)
+2y(A(q — %) + (Ax, — T}?Ax,)
— (A%, — T2 Axy), Ax, — TE2Ax,)
< Il — ql1* + Ly?|| Ax, — T22 Ax, |
+2y ([Ap - T2 Ax,, Ax, — T2 Ax,) - | Ax, — T2 Ax, ||%)
< Nl — ql* + Ly? | A, — T2 A%, |
+2y G |Ax, - TR Ax, |* - | Ax, - TE2Ax, ||2>
= % =gl + v (Ly 1) |Ax, - T2 Ax, .

Thus, by (3.5) and (3.7), we have

%041 = ql1* < Bullwn — qll* + (L= Bu)llzn — ql?
f ﬁn”un - qllz + (1 - ,Bn)Hxn - 61||2
2
< Bulllxn —ql* + y Ly —=1)|Ax, = T2 Axu ) + A = B) s — g1

< % = gl + ¥ Ly = DB Axy — T2 Ax, . (3.11)
Therefore, we have
—y(Ly - DB, |Ax, - T2 A%, | < lxu - 1> = It - 4l
Since y(Ly —1) < 0, it follows by Condition (C1) and the existence of lim,,_, » ||, — g|| that
lim [|Ax, - T;2Ax, | = 0. (312)
Since Ti} is firmly nonexpansive and I — yA*(I - Tﬁf )A is nonexpansive, we have

lun = qll® = | 51 (1 - yA*(1 = T}2)A), - Tiq]”
<(TH(I-yA*(I-T2)A)x, - Tfiq, (I - yA*(I - T:2)A)x, - q)
=(un —q, (I - yA*(I- T2)A)x, — q)
= 5 (o=l + [ (1= yA° (1 - TE)A)5, - g
= otn =0 =y A% (1 = T2) A )

=

(ot = 11 + 1 = 11 = (1t = 201 + Y2 |A* (I = TE2) Ax, |*

N =

=2y (ty — %, A*(I - T2)Ax,))),
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which implies that

ot = ql® < N = qU> = Nty = 1% + 29 (s = 0, A* (I = TI2) A,

< llotn = q11* = Nt = 21> + 29 st — 20l |A* (I = T/2) A |- (3.13)
This implies by (3.5) and (3.7) that

a1 = qI* < Bullwa = qII* + A = B)llzn — q1I°
< Bulln = qll* + (1= Bo) 2 - ql*
= Bull6n = 1% = Nt = 2al® + 2y 1t = | | A* (1 = T2) A )

+(1- ,Bn)”xn - 61||2
Therefore, we have

Bulltn = %ull* < 160 — ql1> = 1%ne1 — g1 + 2y Bull st — 2| | A* (I = T12) Asxs

’

<1194 = qlI* = lotmi1 — qlI* + 2y BuM|A*(I - T2) Ax,

where M = sup{||u,, —x,|| : n € N}. This implies by Condition (C1), (3.12), and the existence

of lim,,_, « ||, — ¢l| that
lim ||u, —x,|| = 0. (3.14)
n—0o0

From (3.5), (3.7), and the definition of {y,}, we obtain

%01 = ql* < Bullwa — qll* + @ = Bu)llzu — ql”
< Bullxn—qll* + A= B)llya —ql®
= Bullxn — qlI> + (1 = Bu) (nlln — qll* + 1= o) [lwy — g1
= (1= &) %, = wil|?)

< Bullxn - 6]||2 +(1- ,Bn)(”xn - 61||2 —a,(1 - o), — Wn”z)

= (1% = 11 = ot (1 = ) (X = Bl — wall*.
This implies that
(1= ) (1= Bl = Wall* < 120 = qII? = 11 — q1I*.
From Conditions (C1), (C2), and the existence of lim,,_, » ||%, — g||, we have
limf[w, — x| = 0. (3.15)

By (3.14) and (3.15), we get

[Wn = tnll < [lWn = Xull + 1% — nl| = 0 as n— oo. (3.16)
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Step 4. Show that w,,(x,) C ©, where w,,(x,) = {x € H) : x,, = x, {x,,,} C {x,}}. Since {x,}
is bounded and H; is reflexive, w, (x,) is nonempty. Let p € w,(x,,) be an arbitrary element.
Then there exists a subsequence {x,,} C {x,} converging weakly to p. From (3.14), it implies
that u,, — p as i — oo. By (3.16) and Lemma 2.3, we have p € F(S).

Next, we show that p € MEP(F}, ¢). Since u,, = TH(I - yA*(I - Triz )A)x,,, we have

n

Fy(un, y) + 9(y) = (o) + Vl(y — Uty — %y — YA (I = T;?)Ax,) 2 0, VyeC,

n

which implies that

1 1
Fl(umy) +<P()’)—§0(Mn) + —()’—Mm Uy _xn> - _(y_un: )’A*(I_ TZZ)AJC,,) = 0, Vy eC.
r r

n n

From Assumption 2.4(A2), we have

1 (y =, yA*(I - Tﬁf)Ax,,)

n

1
90()’) —o(u,) + r-()/ — Up, Uy — Xp)

E_Fl(un!y)zFl(yrun); Vye C:
and hence

1 1
‘/’0’) - ‘p(”ni) + r_(y_ Uni» Un; _xni> - r_<y_ Un;» VA*(I - TfZ)Ax"t) z Fl(y’ u”i)’
n n;

i i

VyeC.

This implies by u,, — p, Condition (C3), (3.12), (3.14), Assumption 2.4(A2), and the
proper lower semicontinuity of ¢ that

F(y,p)+9p)-9() <0, VyeC.

Puty; =ty + (1 —t)p for all ¢t € (0,1] and y € C. Consequently, we get y, € C and hence
Fi(yup) + ¢(p) — ¢(y:) <0. So, by Assumption 2.4(A1)-(A4), we have

0= Fl(yt:yt) - o) + <P()’t)
<tFi(yy) + 1= )Fi(yp) + to() + A - e (p) — ()
<t(Fiyuy) + 0() — 0(n)).

Hence, we have

Fi(yuy) + o) —e@:) =0, VyeC.

Letting ¢t — 0, by Assumption 2.4(A3) and the proper lower semicontinuity of ¢, we have

Fpy) +90)-¢p) >0, VyeC.

This implies that p € MEP(Fy, ¢).
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Since A is a bounded linear operator, we have Ax,, — Ap. Then it follows from (3.12)
that

TfZAx,,l. —Ap asi— oo. (3.17)

By the definition of TfZAx,,i, we have

Ey (T2 Axy,y) + 9(0) — (T2 Axy,) + ri(y — T2 Ax,, T? A%y, — Axy) > 0, ¥y e Q.
i i N i i

i

Since F, is upper semicontinuous in the first argument, it implies by (3.17) that

F(Ap,y) + ¢(y) — p(Ap) =0, VYyeQ.

This shows that Ap € MEP(F,, ¢). Therefore, p € SMEP(F, ¢, F>,¢) and hence p € ©.
Step 5. Show that {x,} converges weakly to an element of ®. It is sufficient to show that
wy(x,) is a singleton set. Let p, g € w,,(x,) and {x,, }, {*,,, } be two subsequences of {x, } such
that x,, — p and x,,,, — g. From (3.14), we also have u,, — p and u,,, — . By (3.16) and
Lemma 2.3, we see that p,q € F(S). Applying Lemma 2.2, we obtain p = g. This completes
the proof. O

If p = ¢ =0in (3.1) and (3.2), then the split mixed equilibrium problem reduces to split
equilibrium problem. So, the following result can be obtained from Theorem 3.2 imme-

diately.

Theorem 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H, and Q be
a nonempty closed convex subset of a real Hilbert space Hy. Let A : Hy — H, be a bounded
linear operator and S : C — K(C) a A-hybrid multivalued mapping. Let F, : C x C — R,
F, : Q x Q — R be bifunctions satisfying Assumption 2.4, and F, is upper semicontinuous
in the first argument. Assume that ® = F(S) N SEP(F, F,) # ) and Sp = {p} for all p € F(S).
Let {x,} be a sequence generated by x, € C and

Uy = Tr (1= yA*(I = T2 A)x,,
Yn =0pXy + (1 - Oln)Wn, Wy € Sun; (318)

X1 = BuWn + (1= Bu)zw, 20 € Sy, VR EN,

where {a,} C (0,1), {8,} C (0,1), {r,} C (0,00), and y € (0, %) such that L is the spectral
radius of A*A and A* is the adjoint of A. Assume that the following conditions hold:

(C1) 0<liminf, o By <limsup,_, ., Bn<1;

(C2) 0<liminf, oo, <limsup,_, o, <1

(C3) 0 <liminf,_, o 7y.
Then the sequence {x,} generated by (3.18) converges weakly to p € ©.

Remark 3.4
(i) Theorems 3.2 and 3.3 extend the corresponding one of Suantai et al. [13] and Kazmi
and Rizvi [10] to A-hybrid multivalued mapping and to a split mixed equilibrium
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problem. In fact, we present a new iterative algorithm for finding a common
element of the set of solutions of split mixed equilibrium problems and the set of
fixed points of A-hybrid multivalued mappings in a real Hilbert space.

(ii) Itis well known that the class of A-hybrid multivalued mappings contains the classes
of nonexpansive multivalued mappings, nonspreading multivalued mappings. Thus,

Theorems 3.2 and 3.3 can be applied to these classes of mappings.
We give an example to illustrate Theorem 3.2 as follows.

Example 3.5 Let H; =R, H, =R, C = [-3,0], and Q = (-00,0]. Let A : H; — H; defined
by Ax = 5 for each x € H. Then A*y = % for each y € H,. So, L = % is the spectral radius of
A*A. Define a multivalued mapping S : C — K(C) by

Sx _ [_%’ O], X € [_31 _2);

{0}, x e [=2,0].

It easy to see that S is 1-hybrid multivalued mapping with F(S) = {0} and S(0) = {0}. For
each x,y € C, define the bifunction F; : C x C — R by Fi(x,y) = xy + y — x — x> and de-
fine p(x) = 0 for each x € C. For each u,v € Q, define the bifunction F; : Q x Q — R by
Fy(u,v) = uv + 10v — 10 — u? and define ¢ () = 0 for each u € Q.

ﬁ ﬁ, andy = % It is easy to check that Fy, Fy, {a,}, {81}

{r,} satisfy all conditions in Theorem 3.2.

Choose o, = £, By = y Ty =

For each x € C, we compute Tf 2 Ax. Find z such that

1
0 <F(zy) +9») - o(2) + ;(y -2z,z2— Ax)

s 1 X
=zy+10y —10z — z° + - y—z,z—i
r

= +10)(y—2) + 1(y—z)<z_f)
r 2

:(y—z)((z+10)+ %(z—g))

for all y € Q. Thus, by Lemma 2.5(2), it follows that z = ’2“(‘11% That is, T/ 2Ax = ’26(‘1—23; for

each x € C. Furthermore, we get
* F. 1 * F:
(I-yA (I-T>)A)x=x- =4 (Ax - T[> Ax)

1 . (x x-20r

=X — —A [
15 2 20 +7r)
1 /x x-20r

=X——| — —
15\4 41+7r)

( V) y (x — 20r)
=x{l-—)-—".
60 60(1 +7)
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Table 1 Numerical results of Example 3.5 for the algorithm (3.19)

n  Xxp [[%n = Xn-1 |l

1 -3.0000000e+00 -

2 -6.8786127e-02 2.9312139e+00
3 0.0000000e+00 6.8786127e-02
4 0.0000000e+00 0.0000000e+00

Next, we find u € C such that Fy (i, v) + ¢(y) — ¢(2) + %(v —u,u—s) >0 forall ve C, where
s=(I-yA*(I - T2)A)x. Note that

1 1
O0<Fu,V)+90)-0@)+-(v-—su—s)=uv+v—u—-u’+-(v—u,u—s)
r r

=(u+1)(v—u)+ 1(V—u)(u—s)

r
1
=(v- u)((u +1)+ —(u—s)).
r
Thus, by Lemma 2.5(2), it follows that
s—r 59%—-60r x-20r
u=—rss —_ .
1+r 60(1+r) 60(1+r)?
Then the algorithm (3.3) becomes
59%,-60ry _ xn—=20ry _
Un = 6’(;(1+Vn; - 6xO(1+r:)2’ Tn = %’
Yn = oy + (1= 225wy, (3.19)

_n_

X1 = gugWn+ (L= 5,7)z0, VnEN,

where

[l 0], wu,e[-3,-2); L. -2 0], y,e[-3,-2);

Jy|+1° T ynl+1’

(0}, Uy € [-2,0], " oy, Y € [-2,0].

We choose w,, = —1%L if 4, € [-3,-2) and z, = Ly if y, € [-3,-2). By using SciLab,

T Tunl+1 _b/n‘*l
we compute the iterates of (3.19) for the initial point x; = —3. The numerical experiment’s

results of our iteration for approximating the point 0 are given in Table 1.

4 Conclusions

The results presented in this paper extend and generalize the work of Suantai et al. [13]
and Kazmi and Rizvi [10]. The main aim of this paper is to propose an iterative algorithm
to find an element for solving a class of split mixed equilibrium problems and fixed point
problems for A-hybrid multivalued mappings under weaker conditions. Some sufficient
conditions for the weak convergence of such proposed algorithm are given. Also, in or-
der to show the significance of the considered problem, some important applications are

discussed.
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