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Abstract
We study new sequence spaces associated to sequences in normed spaces and the
band matrix̂F defined by the Fibonacci sequence. We give some characterizations of
continuous linear operators and weakly unconditionally Cauchy series by means of
completeness of the new sequence spaces. Also, we characterize the barreledness of
a normed space via weakly∗ unconditionally Cauchy series in X∗.
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1 Introduction
By w, we denote the space of all real sequences x = (xk). Any vector subspace of w is called
a sequence space. We have �∞, c and c for the spaces of all bounded, convergent and
null sequences x = (xk), respectively, normed by ‖x‖∞ = supk |xk|, where k ∈ N, the set of
positive integers.

A sequence space λ with a linear topology is called a K-space provided each of the maps
pi : λ →R defined by pi(x) = xi is continuous for all i ∈N. A K-space λ is called an FK-space
provided λ is a complete linear metric space. We say that an FK space λ ⊃ c has AD if
c is dense in λ, where c = span{en : n ∈N}, the set of all finitely non-zero sequences.

Let A = (ank) be an infinite matrix of real numbers ank , where n, k ∈ N. Then we write
Ax = ((Ax)n), the A-transform of x ∈ w, if (Ax)n =

∑

k ankxk converges for each n ∈ N. For
a sequence space λ, the matrix domain λA of an infinite matrix A is defined by

λA =
{

x = (xk) ∈ w : Ax ∈ λ
}

,

which is a sequence space.
A series

∑

k xk in a real Banach space X is called weakly unconditionally Cauchy series
(wuCs) if

∑

k |f (xk)| < ∞ for every f ∈ X∗ (the dual space of X), and is called uncondition-
ally convergent (ucs) if

∑

k xπ (k) is convergent for every permutation π of N. By ucs(X),
�(X), cs(X), wcs(X) and wuCs(X), we denote the X-valued sequence spaces of uncon-
ditionally convergent, absolutely convergent, convergent, weakly convergent and weakly
unconditionally Cauchy series, respectively.

It is well known that (see [] and []) that x = (xk) ∈ ucs(X) if and only if (akxk) ∈ cs(X)
for every a = (ak) ∈ l∞, and x = (xk) ∈ wuCs(X) if and only if (akxk) ∈ cs(X) for every

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-017-1407-y
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-017-1407-y&domain=pdf
mailto:ra.kama12@gmail.com


Kama and Altay Journal of Inequalities and Applications  (2017) 2017:133 Page 2 of 9

a = (ak) ∈ c. It is also well known (see [] and []) that X has a copy of c if and only
if wuCs(X) \ ucs(X) �= ∅, and if X is a normed space then x = (xk) ∈ wuCs(X) if and only if
the set

E =

{ n
∑

k=

akxk : |ak| ≤ , k = , , . . . , n; n ∈N

}

(.)

is bounded. Another characterization of weakly unconditionally Cauchy series that ap-
pears in [] states that a sequence x = (xk) is in wuCs(X) if and only if there is a bounded
operator T : c → X defined by T(a) =

∑

k akxk with Ten = xn where en (n ∈ N) the se-
quences with en

n =  and en
k =  for k �= n.

In the literature, the Fibonacci numbers are the numbers in the following integer se-
quence:

, , , , , , , , , , , , . . . .

The sequence (fn) of Fibonacci numbers is given by the linear recurrence relations

f = f =  and fn = fn– + fn–, n ≥ .

This sequence has many interesting properties and applications in arts, sciences and ar-
chitecture. For example, the ratio sequence of Fibonacci numbers converges to the golden
ratio which is important in sciences and arts.

In [], the Fibonacci matrix̂F = (̂fnk) obtained using the Fibonacci numbers were defined
as follows:

̂fnk =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

– fn+
fn , if k = n – ,

fn
fn+

, if k = n,

, if  ≤ k < n –  or k > n,

(.)

for all k, n ∈ N, and studied some topological properties of the sequence space �p(̂F) for
 ≤ p < ∞. Later, in [] the sequence spaces �∞(̂F) and c(̂F) were introduced as follows:

�∞(̂F) =
{

x = (xn) ∈ w : sup
n

∣

∣

∣

∣

fn

fn+
xn –

fn+

fn
xn–

∣

∣

∣

∣

< ∞
}

and

c(̂F) =
{

x = (xn) ∈ w : lim
n→∞

(

fn

fn+
xn –

fn+

fn
xn–

)

= 
}

.

Also in [–], many authors have defined and studied some new sequence spaces by using
the matrix domain of a triangle infinite matrix.

In [], for a sequence x = (xk) in a normed space X the spaces S(x) and Sw(x) were
defined by the set of all sequences a = (ai) ∈ �∞ such that (aixi) ∈ cs(X) and (aixi) ∈ wcs(X),
respectively and several types of convergence of a series in a normed space have been
characterized via these spaces. The completeness and barreledness of a normed space can
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also be characterized by means of the sequence spaces obtained by series in a normed
space in [] and [, ]. The characterizations of wucs are studied on locally convex
spaces in [].

In this paper, we introduce the sets ŜF(x), ŜFw(x) and ŜF∗
w(g) by means of sequences in

normed spaces and the Fibonacci matrix ̂F = (̂fnk). We will characterize wucs by means of
completeness of the spaces ŜF(x) and ŜFw(x), and we will obtain necessary and sufficient
conditions for the operator T : ŜF(x)( and ŜFw(x)) → X to be continuous. Finally, we will
give a characterization of the barreledness of a normed space through w∗ucs in X∗.

2 Main results
Let x = xk and g = (gk) be sequences in normed spaces X and X∗, respectively. We introduce
the subspaces of �∞(̂F) which are defined by

ŜF(x) =
{

a = (ak) ∈ �∞(̂F) :
∑

k

̂F(ak)xk exists
}

,

ŜFw(x) =
{

a = (ak) ∈ �∞(̂F) : w –
∑

k

̂F(ak)xk exists
}

,

and

ŜFw∗ (g) =
{

a = (ak) ∈ �∞(̂F) : w∗ –
∑

k

̂F(ak)gk exists
}

,

endowed with sup norm, where w –
∑

k
̂F(ak)xk and w∗ –

∑

k
̂F(ak)gk define the limit in

the weak topology and in the weak∗ topology, respectively.
In the following theorem we obtain a sufficient condition for the space ŜF(x) to be a

Banach space.

Theorem . Let X be a normed space and x = (xk) be a sequence in X. If
(i) X is a Banach space,

(ii) x ∈ wuCs(X),
then ŜF(x) is a Banach space.

Proof Since x ∈ wuCs(X), the set E given in (.), is bounded. Therefore, there exists M > 
such that ‖E‖ ≤ M. Let (am) be a Cauchy sequence in ŜF(x). Since �∞(̂F) is a Banach space,
there exists a = (a

k ) ∈ �∞(̂F) such that limm am = a in �∞(̂F). We will show that a ∈ ŜF(x).
For ε >  there exists m ∈N such that for every m ≥ m and k ∈N

∣

∣̂F
(

am
k
)

–̂F
(

a
k
)∣

∣ <
ε

M
.

Since M
ε

|̂F(am) –̂F(a)| < , then M
ε

∑n
k=(̂F(am

k ) –̂F(a
k ))xi ∈ E and hence for m > m

∥

∥

∥

∥

∥

n
∑

k=

(

̂F
(

am
k
)

–̂F
(

a
k
))

xk

∥

∥

∥

∥

∥

<
ε


.
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Since (am) is a Cauchy sequence in ŜF(x) there exists a sequence (ym) ⊂ X such that for
n ≥ n

∥

∥

∥

∥

∥

n
∑

k=

̂F
(

am
k
)

xk – ym

∥

∥

∥

∥

∥

<
ε



and hence for p > q > m and n ∈N we have

‖yp – yq‖ < ε.

Therefore (ym) is a Cauchy sequence in X. Then for ε >  there exists y ∈ X such that for
m > m

‖ym – y‖ <
ε


.

If we suppose that m = max{m, m}, from the above inequalities, then we have

∥

∥

∥

∥

∥

n
∑

k=

̂F
(

a
k
)

xk – y

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

n
∑

k=

(

̂F
(

a
k
)

–̂F
(

am
k
))

xk

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

n
∑

k=

̂F
(

am
k
)

xk – ym

∥

∥

∥

∥

∥

+ ‖ym – y‖

<
ε


+

ε


+

ε


= ε.

Consequently, a ∈ ŜF(x). �

Remark . Now, we will see that if the space ŜF(x) is complete, then c(̂F) ⊆ ŜF(x). If
we suppose that c(̂F) � ŜF(x), then there exists a sequence a = (a

k ) ∈ c(̂F) such that
∑

k
̂F(a

k )xk is not convergent. Since c(̂F) is a AD-space, there exists a Cauchy sequence
a = (am

k ) in c (also in ŜF(x)) such that

lim
m→∞ am

k = a
k .

Then ŜF(x) is not complete.

The theorem that follows gives us a characterization of wucs.

Theorem . Let X is a normed space and x = (xk) be a sequence in X. If X is a Banach
space, then x ∈ wuCs(X) if and only if ŜF(x) is a Banach space.

Proof We prove that if ŜF(x) is a Banach space, then x ∈ wuCs(X). Let us assume that
x /∈ wuCs(X). Then there exists a g ∈ X∗ such that

∑

k |g(xk)| = ∞. We will construct a
sequence that is a = (ak) ∈ c(̂F) \ ŜF(x). Let us choose m ∈N such that

∑m
k= |g(xk)| > ..

We define

ak =

⎧

⎨

⎩



∑k

i=
f 
k+

fifi+
, if g(xk) ≥ ,

– 

∑k

i=
f 
k+

fifi+
, if g(xk) < ,
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for k ∈ {, , . . . , m}. Analogously, we can choose m > m such that
∑m

k=m+ |g(xk)| > .,
and we can also define

ak =

⎧

⎨

⎩



∑k

i=
f 
k+

fifi+
, if g(xk) ≥ ,

– 

∑k

i=
f 
k+

fifi+
, if g(xk) < ,

for k ∈ {m + , . . . , m}. Following this way, we obtain an increasing sequence (mk) in N

and the sequence a = (ak) ∈ c(̂F) such that

∞
∑

k=

̂F(ak)g(xk) = ∞.

Then a /∈ ŜF(x) and hence c(̂F) � ŜF(x). From Remark ., ŜF(x) is not a Banach space. �

Remark . If X is not Banach space, then the above theorem is not satisfied. Actually,
If X is not Banach space then there exists a sequence x = (xk) ∈ �(X) \ cs(X) such that for
every k ∈N and x∗∗ ∈ X∗∗ \ X

‖xk‖ <


kk and
∑

k

xk = x∗∗.

We define the sequence y = (yk) by

yk =

{

kxk , if k odd,
–kxk , if k even.

It obvious that y = (yk) ∈ wuCs(X). On the other hand, we consider the sequence a = (ak) ∈
c(̂F) such that

ak =

⎧

⎨

⎩



∑k

i=

k

f 
k+

fifi+
, if k odd,

– 

∑k

i=

k

f 
k+

fifi+
, if k even.

Then
∑

k
̂F(ak)yk = 

 x∗∗ ∈ X∗∗ \ X. Therefore a /∈ ŜF(y) and hence c(̂F) � ŜF(y). This
shows that the space ŜF(y) is not complete.

Theorem . Let X be a normed space and x = (xk) be a sequence in X. We also define the
linear operator

T : ŜF(x) → X,

a → T(a) =
∑

k

̂F(ak)xk .

Then T is continuous if and only if x = (xk) ∈ wuCs(X).

Proof If the operator T is continuous, then we prove that x = (xk) ∈ wuCs(X). Since T is
continuous, there exists K >  such that ‖T(ak)‖ ≤ K‖(ak)‖ for a = (ak) ∈ ŜF(x).
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Let b = (bk) ∈ Bc . Then there exists a sequence a = (ak) ∈ c(̂F) such that ̂F(ak) = bk

for every k ∈N. Since c ⊆ ŜF(x), we have

∥

∥

∥

∥

∥

n
∑

k=

bkxk

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

n
∑

k=

̂F(ak)xk

∥

∥

∥

∥

∥

≤ K
∥

∥(ak)
∥

∥.

Therefore the set E, defined in (.), is bounded and hence x = (xk) ∈ wuCs(X).
Conversely, let x ∈ wuCs(X). Since the set E is bounded, there exists K >  such that

‖e‖ < K for every e ∈ E. If we take (ak) ∈ ŜF(x), then

∥

∥

∥

∥

∥

n
∑

k=

̂F(ak)
‖̂F(ak)‖xk

∥

∥

∥

∥

∥

≤ K

for n ∈N. Thus, T is continuous. �

Now, we will extend some of the above results to weak topology. First, let us start with
the following result.

Theorem . Let X be a Banach space and x = (xk) be a sequence in X. If x ∈ wuCs(X),
then ŜFw(x) is a Banach space.

Proof In the first place, as in Theorem ., since x ∈ wuCs(X), we suppose that ‖e‖ ≤ M
for every e ∈ E and (am) be a Cauchy sequence in ŜFw(x) such that am → a ∈ �∞(̂F), as
m → ∞.

Let ε >  and let m ∈N such that for every m ≥ m and k ∈N

∣

∣̂F
(

am
k
)

–̂F
(

a
k
)∣

∣ <
ε

M
.

Since M
ε

|̂F(am) –̂F(a)| < , M
ε

∑n
k=(̂F(am

k ) –̂F(a
k ))xi ∈ E and hence for m > m

∥

∥

∥

∥

∥

n
∑

k=

(

̂F
(

am
k
)

–̂F
(

a
k
))

xk

∥

∥

∥

∥

∥

<
ε


.

Since (am) is a Cauchy sequence in ŜFw(x) there exists a sequence (ym) ⊂ X such that for
n ≥ n and for all f ∈ X∗

∣

∣

∣

∣

∣

n
∑

k=

̂F
(

am
k
)

f (xk) – f (ym)

∣

∣

∣

∣

∣

<
ε


.

From the Hahn-Banach theorem there exists a functional f in X∗ such that

‖yp – yq‖ =
∣

∣f (yp – yq)
∣

∣.

Then we have

‖yp – yq‖ < ε
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for p > q > m and n ∈ N, and hence (ym) is a Cauchy sequence in X. Let us suppose that
y ∈ X such that for m > m

‖ym – y‖ <
ε


.

If we take m = max{m, m}, then we have

∣

∣

∣

∣

∣

n
∑

k=

̂F
(

a
k
)

f (xk) – f (y)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

n
∑

k=

(

̂F
(

a
k
)

–̂F
(

am
k
))

f (xk)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n
∑

k=

̂F
(

am
k
)

f (xk) – f (ym)

∣

∣

∣

∣

∣

+
∣

∣f (ym) – f (y)
∣

∣

<
ε


+

ε


+

ε


= ε.

Therefore, a ∈ ŜFw(x). �

Theorem . Let X be a normed space and x = (xk) be a sequence in X. If X is a Banach
space, then x ∈ wuCs(X) if and only if ŜFw(x) is a Banach space.

Proof By Theorem ., it is enough to show that if ŜFw(x) is a Banach space, then x ∈
wuCs(X). We suppose that there exists a g ∈ X∗ such that

∑

k |g(xk)| = ∞. Similarly as in
the proof of Theorem ., we can construct a sequence a = (ak) ∈ c(̂F) such that

∞
∑

k=

̂F(ak)g(xk) = ∞.

From the definition of ŜFw(x), we have a = (ak) /∈ ŜFw(x). Then ŜFw(x) is not complete. �

Theorem . Let X be a normed space and x = (xk) be a sequence in X. We also define the
linear operator

T : ŜFw(x) → X,

a → T(a) = w –
∑

k

̂F(ak)xk .

Then T is continuous if and only if x = (xk) ∈ wuCs(X).

Proof The proof is similar to that of Theorem .. �

For a normed space X and a sequence g = (gi) in X∗, the set ŜFw∗ (g) was defined by

ŜFw∗ (g) =
{

a = (ak) ∈ �∞(̂F) : w∗ –
∑

k

̂F(ak)gk exists
}

.

The next theorem shows that if the normed space X is barreled, then weakly uncondition-
ally Cauchy series and weakly∗ unconditionally Cauchy series in X∗ are equivalent.
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Theorem . Let X be a normed space and g = (gi) be a sequence in X∗. Consider the
following statements:

(i) g ∈ wuCs(X∗).
(ii) ŜFw∗ (g) = �∞(̂F).

(iii) g ∈ w∗ ucs(X∗); that is,
∑

k |gk(x)| < ∞ for every x ∈ X .
We have (i) ⇒ (ii) ⇒ (iii). Furthermore X is a barreled normed space if and only if the three
conditions are equivalent.

Proof
(i) ⇒ (ii). Since ŜFw∗ (g) ⊂ �∞(̂F), we will show that �∞(̂F) ⊂ ŜFw∗ (g). If a = (ak) ∈ �∞(̂F),

then (̂F(ak)gk) ∈ wuCs(X∗). Thus
∑∞

k=
̂F(ak)gk is weak∗ convergent in X∗ and hence a =

(ak) ∈ ŜFw∗ (g).
(ii) ⇒ (iii). It is obvious.
If X is a barreled space then we will show that (iii) ⇒ (i). We define the set E′ by

E′ =

{ n
∑

k=

akgk : |ak| ≤ , k = , , . . . , n; n ∈N

}

.

It is easily see that the set E′ is pointwise bounded. Since X is barreled, E′ is bounded for
the norm topology of X∗. Therefore (gk) ∈ wuCs(X∗).

Conversely, if (iii) ⇒ (i) are equivalent, then we will prove that X is a barreled space. Let
us suppose that X is not a barreled space. Then there exists a weak∗-bounded set N ⊆ X∗

which is not bounded. Let (gk) ∈ N such that ‖gk‖ > k .k for k ∈ N. If we take hk = 
k gk

for k ∈ N then it is clear that (hk(x)) ∈ � for every x ∈ X. Since ‖hk‖ > k for every k ∈ N,
the series

∑∞
k=


k hk does not convergence. Hence (hk) /∈ wuCs(X∗). �

3 Conclusion
In this paper, we introduced and studied the sets ŜF(x), ŜFw(x) and ŜF∗

w(g) via sequences
in normed spaces and the Fibonacci matrix̂F = (̂fnk). We obtained the characterizations of
continuous linear operator and weakly unconditionally Cauchy series by means of com-
pleteness of the space ŜF(x), and we extended the obtained results to weak topology. Also,
we gave necessary and sufficient conditions for a normed space X to be barreled space.
Furthermore, one can obtain more general conclusion corresponding to the results of this
paper by taking more general matrices instead of the Fibonacci matrix.

Acknowledgements
We would like to express our thanks to the anonymous reviewers for their valuable comments.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details
1 Department of Mathematics, Siirt University, Siirt, Turkey. 2Faculty of Education, Inonu University, Malatya, Turkey.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 29 December 2016 Accepted: 25 May 2017



Kama and Altay Journal of Inequalities and Applications  (2017) 2017:133 Page 9 of 9

References
1. Albiac, F, Kalton, NJ: Topics in Banach Spaces Theory. Springer, New York (2006)
2. Diestel, J: Sequences and Series in Banach Spaces. Springer, New York (1984)
3. Bessaga, C, Pelczynski, A: On bases and unconditional convergence of series in Banach spaces. Stud. Math. 17,

151-164 (1958)
4. McArthur, CW: On relationships amongst certain spaces of sequences in an arbitrary Banach space. Can. J. Math. 8,

192-197 (1956)
5. Kara, EE: Some topological and geometrical properties of new Banach sequence spaces. J. Inequal. Appl. 2013, 38

(2013)
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