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1 Introduction

It is well known that the number 7 satisfies the following inequalities:

2 em \?2 1/ @nn \?
2n+1<m) <ﬂ<;(m) ) neN:= {1,2,3,...}, (1'1)

where

@m=2-4.6---(2n)=2"n!,  (2n-1DN=1-3-5.---2n-1).

This result is due to Wallis (see [1]).
Based on a basic theorem in mathematical statistics concerning unbiased estimators

with minimum variance, Gurland [1] yielded a closer approximation to 7 than that af-

forded by (1.1), namely,
dn+3 [ ol \2 4 ! \?
—, N. 1.2
(2n+1)2<(2n—1)!!) <”<4n+1<(2n-1)u e 1.2

By using (1.2), Brutman [2] and Falaleev [3] established estimates of the Landau constants.
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Mortici [4], Theorem 2, improved Gurland’s result (1.2) and obtained the following dou-
ble inequality:

n+l 9 45 e\
+ p—
mylne 2 2,048#5 819216 )\ 2n - 1)

2t 33
1 2
n+ 7 9 2n)!
<m<|— l4i+ = — ) neN. 1.3)
n*+5n+ 5 2,048n 2n-1)!
We see from (1.3) that
2! \*[ nm+i 1
7= 2n) ——+0( = |1, n—> oo (1.4)
2n-1)! n2+ 30+ 55 n°

Based on the Padé approximation method, in this paper we develop the approximation
formula (1.4) to produce a general result. More precisely, we determine the coefficients a;
and b; such that

e \*( ik +ankt + v ay o 1 L5)
T= + , n— 00, .
@n-1I) |+ bk + -+ by n2k+3

where k > 0 is any given integer. Based on the obtained result, we establish a more accurate

formula for approximating 7, which refines some known results.
The numerical values given in this paper have been calculated via the computer program
MAPLE 13.

2 Lemmas
Euler’s gamma function I (x) is one of the most important functions in mathematical anal-
ysis and has applications in diverse areas. The logarithmic derivative of I'(x), denoted by
¥ (x) =TV (x)/T (x), is called the psi (or digamma) function.

The following lemmas are required in the sequel.

Lemma 2.1 ([5]) Letr #0 be a given real number and £ > 0 be a given integer. The follow-
ing asymptotic expansion holds:

Ly

Fx+1) oo[ﬁ :
Foee D) \/§<1+ZW,> , x— 00, (2.1)

j=1

with the coefficients p; = p;(¢,r) (j € N) given by

phtkerly <(22 - 1)Bz)k1 ((24 - 1>B4>k2 . ((221’ - 1>Bz;)kf

- A 2.2
kalho! -kt \ 1122 2.3.24 j(2j —1)2% @2

pj

where B; are the Bernoulli numbers summed over all nonnegative integers k; satisfying the

equation

A+ 0k +B+0ky+---+ (2 +£—1)k; = .
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In particular, setting (¢,7) = (0,-2) in (2.1) yields

I‘(x+%) 2 > ¢
~1 -, , 2.3
x(l’(x+1)) +;M x — 00 (2.3)

where the coefficients ¢; = p;(0,-2) (j € N) are given by

(2.4)

Cj=

(=2)fkrh (22 1B, \ M (28 - 1)By\ (27 - 1)By; |
kiky!- -kt \ 1-1-22 2.3.2¢4 j2j-1)2% )’

summed over all nonnegative integers k; satisfying the equation
ki +3ky + -+ (2j - Dk; = .

Lemma 2.2 ([5]) Let m,n € N. Then, for x > 0,

i 1\ 2By (2j +1-2)! A o - 1 (n-1)!
P e e O R

j=
2m-1 . 1
< Z(l 1 )&M (2.5)

Y Q) aZnl

In particular, we have

1
L[(x)<1//(x+1)—1//<x+ E) <Vx), (2.6)
where
V) 1 1 1 1 17 31 691
xX)=—— — + - + — +
2x  8x2  64x* 128x° 2,048x8 2,048x10  16,384x!2
5,461 929,569

- +
32,768x*  1,048,576x16

and

3,202,291

U(x) = Vi) — 2222227
()= V) - 2 osga

For our later use, we introduce Padé approximant (see [6—11]). Let f be a formal power

series
fO)=co+ct+ct> +---. 2.7)

The Padé approximation of order (p, q) of the function f is the rational function, denoted
by

Zf:o a;t

) 2.8
1+ quzl bjﬂ ( )

lp/q)s(t) =
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where p > 0 and g > 1 are two given integers, the coefficients 4; and b; are given by (see
[6-8, 10, 11])

ap = Co,
a1 = coby + a1,

ay) = C()b2 + Clbl + Co,

(2.9)
ay=coby + -+ cp1by +cp,
0= Cpi1 t Cpbl + e+ Cp,qﬂbq,
0 =Cpig + Cprg-1b1 + - + Cpby,
and the following holds:
(p/qlr(6) - f(&) = O(&*1™). (2.10)

Thus, the first p + g + 1 coefficients of the series expansion of [p/q]; are identical to those
of f. Moreover, we have (see [9])

Ufp-q(®) 197 o gu1(8) - fp(®)

Cp—q+l Cp—q+2 o Cp+l
¢ Cps - Cpa
p/qly(0) = —"—— ", (2.11)

Cp—q+1 Cp—q+2 "~ Cp+l
Cp Cpel v Cpig

with f,,(x) = co + c1x + - - - + ¢,&", the nth partial sum of the series f in (2.7).

3 Main results
Let

1) —x(w)z (3.)
TA\Trx+1) ) '

It follows from (2.3) that, as x — oo,

o0
G 11 1 5 23 53
~ Jd_1-— 4 + - - +
7% ;Xo: v 4x  32x2 12813  2,048x* 8,192x°  65,5364°
593
22 (3.2)
262,14447

with the coefficients ¢; given by (2.4). In what follows, the function f is given in (3.1).
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Based on the Padé approximation method, we now give a derivation of formula (1.4). To
this end, we consider

Z}:o ”J'x_j
[1/2]f(x) = ]2—
1+ ijl bjx
Noting that
. 1 1 1
Co =1, 1= 41 C2—32) c3_128

holds, we have, by (2.9),

ap =1,
ar=b - i,
0= 3—12 — %bl + bg,
0=ﬁ+%b1—ib2,
that is,
1 1 3
= 1’ = b = b = —.
@0 M=y 173 273
We thus obtain that
1
_ 1+ ix
172]f(x) = —5——5—, (3.3)
pria vl
and we have, by (2.10),
Dix+ 1)\2 1+1 1
x( ( 2)) _ - 4x3 :O(_4), X — 00. (3.4)
I'(x+1) L+ 5+ 5 x
Noting that
T(n+3) 2n-1! L
ToreD) - V- o n € N (the Wallis ratio) (3.5)

holds, replacing x by # in (3.4) yields (1.4).

From the Padé approximation method introduced in Section 2 and the asymptotic ex-
pansion (3.2), we obtain a general result given by Theorem 3.1. As a consequence, we
obtain (1.5).

Theorem 3.1 The Padé approximation of order (p,q) of the asymptotic formula of the

‘ Fx+3)
Sunction f (%) = x(F535

)? (at the point x = 00) is the following rational function:

lp/q)y(x) =

1+ Y7 ax Hraxl+ o ta
Z)-l 7 ( 1 p), (36)

=x
q —j -1y ...
L+ bx X1+ bx1 L+ .-+ b,
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where p > 0 and q > 1 are two given integers and q = p + 1 (an empty sum is understood to
be zero), the coefficients a; and b; are given by

a1 :bl + (1,

ay) = bz + Clbl + Co,

ap=by+--+cpibr +cp, 3.7)

0= Cpi1 t Cpbl + e+ Cp,qﬂbq,

0 =Cpigq + Cpig-1b1 + - + Cpby,
and c; is given in (2.4), and the following holds:
/ =0 —1 3.8
fx) = [p/qlr(x) = prrvrel) Bl (3.8)

Moreover, we have

stfo-a® Zthp-gn (@) - S

Cp—q+l Cp—q+2 ©t Cp+l
¢ Cpil .
blalyx) = ——F—F—F7 (3.9)

Cp—q+1 Cp—q+2 *** Cp+l
& Cprl v Opiq
n ¢

with f,(x) = ijo %, the nth partial sum of the asymptotic series (3.2).

Remark 3.1 Using (3.9), we can also derive (3.3). Indeed, we have

o 111
210 ol fi) L
7 32
a o al_l1d & 1+ 5
X
(172]5(x) = 11 = = 1 3
31 N R T
x> * PR 2% " 3242
co €1 ¢ 1 -1 1
4 32
c €3 11 1
4 32 128

Replacing x by # in (3.8) applying (3.5), we obtain the following corollary.

Corollary 3.1 Asn— oo,

e \2 (7 + X an’ 1
T = ((21’1 _ 1)1! n + Z?:l b],nq*]' +0 nP+a+2 ,y N—> 00, (310)

where p > 0 and q > 1 are two given integers and q = p + 1, and the coefficients a; and b;
are given by (3.7).
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Remark 3.2 Setting (p,q) = (k, k + 1) in (3.10) yields (1.5).
Setting
(p' Q) = (41 5) and (p’ Q) = (5!6)

in (3.10), respectively, we find

@) \2 nt e+ 002 Ly 789 1
. 64 128"t 1,096 Lol L (3.11)
= e 5 . 5.4, 1253, 295 2 . L1689 945 1 :
(2n 1)1 W2+ g+ g+ 556+ 4006t 16384 n
and
m)n \?
= ———
Qn—1)!
5.5 4,51 3 133 2 5243 3,867
x{ A g+ g+ g Tt oo™t 16,384 +O( 1 >} (3.12)
6. 3,5, 13,4, 93,3, 7729 2 , 4881 10,395 3 .
o+ i+ 3 I+ 557+ 45961 ¥ 31927 T 131,072 n
as 1 — oo.

Formulas (3.11) and (3.12) motivate us to establish the following theorem.

Theorem 3.2 The following inequality holds:

5 5.4, 5.3, 1332 . 5243 3,867
XA X+ 16X T 60X T 4006% Tt 16,384

%le + %xg + 7,729 x2 + 4,881x+ 10,395

1,096 8,192 T 131,072
I'(x+ %) 2

of 2227
Cx+1)

4, 3,107,291 . 789
XTHXT A+ g X+ g%t 1096
1%

125 295 1,689 945_° (3.13)
64

X0+ 245 +

X3+ 242 4 a2

<
5, 5,4
XA gx+ 256 1096% 1 16,382

The left-hand side inequality holds for x > 4, while the right-hand side inequality is valid
forx > 3.

Proof 1t suffices to show that

Fx)>0 forx>4 and G(x)<0 forx>3,

where
1 5 .5.4, 5.3 13,2, 5243 , 3867
F(x)—21n(r(x+i)>— A 56X T a®  a006* 16384
= 6 . 3.5 . 3.4, 93.3 . 7,729 .2 . 4881, . 10,395
[ +1) XX+ X+ 53X+ 1006%” T 5102% T 131,072
and
Fx+1) at g xd W2y Oy 789
Glx) = 21n 2\ 64 128% * 2,096
= 5. 5.4, 1253 295 2 . 1689 945
[(x+1) KA QX+ X 556X T L096% T 16,382
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Using the following asymptotic expansion (see [12]):

Fx+3)7 1 11 1 17 31
Cx+1) 4x  96x3 320x°  7,168x7 9,216x°
691 5,461 929,569
+ - + -
90,112x1  212,992x'3  7,864,320x1

X

~~), x— 00, (3.14)

we obtain that

lim F(x)=0 and lim G(x)=0.

Fandes) X—> 00

Differentiating F(x) and applying the first inequality in (2.6), we find

1N 1 Py ()
F'(x) = —2|:1p(x+1) - w(x+ 2>:| + Pu)

Ppx)  Pie(x—4)
Pu(x)  524,288x18Py; (x)’

<=2U(x) +
where

Pyo(x) = 4(20,998,323 + 301,244,208 +1,329,622,624«” + 3,532,111,8724°
+6,831,390,720x* + 8,950,906,880x° + 9,510,060,032x°
+6,476,005,376x" + 4,244,635,648x° +1,342,177,280x° + 536,870,912x"°),
Pyi(x) = (16,384 +20,480x" + 52,224x> + 34,048x + 20,972x + 3,867)
x (131,072x° +196,608x> + 462,848x* + 380,928x" + 247,328x

+78,096x +10,395)
and

Pig(x) = 73,399,302,245,132,658,732,474 + 401,687,666,421,636,714,876,048x
+882,663,824,965,187,436,960,169x>
+1,129,813,735,156,766,429,414,420x>
+975,385,167,000,268,446,720,384x*
+611,802,531,654,753,268,270,84.8x°
+290,696,674,545,996,984,221,376x°
+107,149,026,028,490,4.87,475,968x
+31,018,031,026,615,120,693,760x°
+7,080,024,048,117,231,228,928x°
+1,270,066,473,244,063,756,800x"° +177,136,978,237,041,715,200x1

+18,824,726,793,935,462,400x + 1,473,208,721,923,276,800x">
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+ 80,051,720,723,251,200x™ + 2,698,074,228,326,400x"

+42,489,357,926,400x'°.
Hence, F'(x) < 0 for x > 4, and we have
F(x)> lim F(£) =0, x>4.
t—00

Differentiating G(x) and applying the second inequality in (2.6), we find

o 1 4Pg(x) 4Pg(x)
G(x)_—2[1/f(x+1)—1/f<x+ §>:| + o) > -2V (x) + Pot0)

_ Piy(x—3)
524,288x16 Py (x)’

where

Pg(x) = 16,777,216x° + 33,554,432x7 + 72,351,744x° + 79,167,488x° + 75,583,488x*
+45,043,7124% + 18,211,328x% + 4,212,480x + 644,661,
Po(x) = (4,096x" +4,096x” + 6,848x” +2,912x + 789)

x (16,384x° +20,480x" + 32,0004 + 18,880x” + 6,756 + 945)

and

Puy(x) = 427,884,340,806,856,575 + 5,508,337,280,234,438,700x
+16,278,641,070,340,979,232x>
+25,110,186,749,213,013,376x> + 25,009,399,125,661,680,960x*
+17,642,792,222,808,253,696x°
+9,230,356,959,310,493,184x° + 3,661,094,552,739,530,752x"
+1,108,535,832,992,448,000x°
+255,024,028,762,675,200x° + 43,854,087,132,979,200x"°
+5,462,018,666,496,000x"
+465,495,496,704,000x" + 24,287,993,856,000x"

+585,252,864,000x".
Hence, G'(x) > 0 for x > 3, and we have

G(x) < lim G(¢) =0, «x>3.
t—00

The proof is complete. O

Page 9 of 12
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Corollary 3.2 ForneN,

a, <T < by, (3.15)
where
5,5,4, 51,3, 133 2, 5243 3,867 2
g - WA 436" 6™ 006"t 16332 2m)! (3.16)
n - .
6 3,5, U3 4,93 3, 7729 2 , 4881 10,395 —_ 1\
n®+ 5n°+ gont 4 ond + e + grgon + res \(2n -
and
4, .3,107, 2, 91 789 2
b n e+ T+ gt giee (2n)! (3.17)
= . .
5, 5,4, 1253 295 5 , 1689 945 1\
W2+ G+ g 1+ 556+ 4006+ 16384 (2n-1!

Proof Noting that (3.5) holds, we see by (3.13) that the left-hand side of (3.15) holds for
n > 4, while the right-hand side of (3.15) is valid for #» > 3. Elementary calculations show
that the left-hand side of (3.15) is also valid for #» = 1,2 and 3, and the right-hand side of
(3.15) is valid for #» =1 and 2. The proof is complete. d

4 Comparison
Recently, Lin [12] improved Mortici’s result (1.3) and obtained the following inequalities:

Ap <T< [y (4.1)
and
8y < <y, (4.2)
where
1 3 3 3 33 39
=1+ — - + + - -
4n 32m%  128n3  2,048n* 819215  65,5361°
2 2m)1 \2
8 _Gmr N (4.3)
2n+1\ 2n-1)!
R 3 3 3 2 @) \? 4
= + — — + + ) .
Hon 4n  32n%  128n3  2,048n* ) 2n+1\ 2n-1)!
e \*1 1 1 1 17 31
dy=\—=7—""—==) —expl—+ - + - , 4.5
" ((2n ) w P\ T4 T 968 T 32005 T 706807 92161 (45)
e \*1 1 1 1 17 @6
wp=—=7—"—"—=) —exp|l —+ - + . .
"\ en-0n) 7P\ "4 T 96 T 320m5 T 716817

Direct computation yields

ay — Ay

~ 3(7,634,944n° +12,928,0001* + 18,895,616%° + 9,755,072n> + 1,930,008% + 135,135)
32,7681 (2n +1)(131,0721 +196,6081° + 462,848n* + 380,92813 + 247,328n2 + 78,0961 + 10,395)

@ \?
x ((2n—1)!!> >0

Page 10 of 12
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Table 1 Comparison between inequalities (3.15) and (4.2)

n an-0n wp - by

1 6673798 x 107 3789512 x 1073

10 2264856 x 10713 9.947434 x 10712
100 2398663 x 10724 1.051407 x 1072
1,000 2408054 x 107> 1.056218 x 1072
10,000 2408948 x 1070 1.056690 x 10738

and

bn_MVI

~ 3(45,0561* + 62,9761° + 66,4961> + 21,8761 + 945) @1 \2
T 1,024n%*(2m + 1)(16,38475 + 20,480n% + 32,00013 + 18,88072 + 6,7561 + 945) \ (21 — 1)!!

<0.
Hence, (3.15) improves (4.1).
The following numerical computations (see Table 1) would show that §, < a, and b, < w,

for n € N. That is to say, inequalities (3.15) are sharper than inequalities (4.2).
In fact, we have

1 1
An=n+OF, ,u,,=71+O—5,
1
5,,=7T+O<T), w,,:n+0< ),
n
1
an=n+0<ﬁ>, bn=n+O< )
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