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Abstract
The aim of this paper is to introduce the normed binomial sequence spaces br,sp (∇) by
combining the binomial transformation and difference operator, where 1 ≤ p ≤ ∞.
We prove that these spaces are linearly isomorphic to the spaces �p and �∞,
respectively. Furthermore, we compute Schauder bases and the α-, β- and γ -duals of
these sequence spaces.
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1 Introduction and preliminaries
Let w denote the space of all sequences. By �p, �∞, c and c, we denote the spaces of p-
absolutely summable, bounded, convergent and null sequences, respectively, where  ≤
p < ∞. Let Z be a sequence space, then Kizmaz [] introduced the following difference
sequence spaces:

Z(�) =
{

(xk) ∈ w : (�xk) ∈ Z
}

for Z = �∞, c, c, where �xk = xk – xk+ for each k ∈ N = {, , , . . .}, the set of positive
integers. Since then, many authors have studied further generalization of the difference
sequence spaces [–]. Moreover, Altay and Polat [], Başarir and Kara [–], Kara [],
Kara and İlkhan [], Polat and Başar [], and many others have studied new sequence
spaces from a matrix point of view that represent difference operators.

For an infinite matrix A = (an,k) and x = (xk) ∈ w, the A-transform of x is defined by
Ax = {(Ax)n} and is supposed to be convergent for all n ∈ N, where (Ax)n =

∑∞
k= an,kxk .

For two sequence spaces X, Y and an infinite matrix A = (an,k), the sequence space XA is
defined by XA = {x = (xk) ∈ w : Ax ∈ X}, which is called the domain of matrix A in the space
X. By (X : Y ), we denote the class of all matrices such that X ⊆ YA.

The Euler means Er of order r is defined by the matrix Er = (er
n,k), where  < r <  and

er
n,k =

⎧
⎨

⎩

( n
k
)

( – r)n–krk if  ≤ k ≤ n,

 if k > n.
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The Euler sequence spaces er
p and er∞ were defined by Altay, Başar and Mursaleen [] as

follows:

er
p =

{

x = (xk) ∈ w :
∑

n

∣∣∣∣∣

n∑

k=

(
n
k

)

( – r)n–krkxk

∣∣∣∣∣

p

< ∞
}

and

er
∞ =

{

x = (xk) ∈ w : sup
n∈N

∣∣∣∣∣

n∑

k=

(
n
k

)

( – r)n–krkxk

∣∣∣∣∣
< ∞

}

.

Altay and Polat [] defined further generalization of the Euler sequence spaces er
(∇), er

c(∇)
and er∞(∇) by

er
(∇) =

{
x = (xk) ∈ w : (∇xk) ∈ er


}

,

er
c(∇) =

{
x = (xk) ∈ w : (∇xk) ∈ er

c
}

and

er
∞(∇) =

{
x = (xk) ∈ w : (∇xk) ∈ er

∞
}

,

where ∇xk = xk – xk– for each k ∈ N. Here any term with negative subscript is equal
to naught. Many authors have used especially the Euler matrix for defining new se-
quence spaces, for instance, Kara and Başarir [], Karakaya and Polat [] and Polat and
Başar [].

Recently Bişgin [, ] defined another type of generalization of the Euler sequence
spaces and introduced the binomial sequence spaces br,s

 , br,s
c , br,s∞ and br,s

p . Let r, s ∈R and
r + s �= . Then the binomial matrix Br,s = (br,s

n,k) is defined by

br,s
n,k =

⎧
⎨

⎩


(s+r)n

( n
k
)

sn–krk if  ≤ k ≤ n,

 if k > n,

for all k, n ∈N. For sr >  we have
(i) ‖Br,s‖ < ∞,

(ii) limn→∞ br,s
n,k =  for each k ∈N,

(iii) limn→∞
∑

k br,s
n,k = .

Thus, the binomial matrix Br,s is regular for sr > . Unless stated otherwise, we assume
that sr > . If we take s + r = , we obtain the Euler matrix Er . So the binomial matrix gen-
eralizes the Euler matrix. Bişgin [] defined the following spaces of binomial sequences:

br,s
p =

{

x = (xk) ∈ w :
∑

n

∣∣∣∣∣


(s + r)n

n∑

k=

(
n
k

)

sn–krkxk

∣∣∣∣∣

p

< ∞
}

and

br,s
∞ =

{

x = (xk) ∈ w : sup
n∈N

∣∣∣∣∣


(s + r)n

n∑

k=

(
n
k

)

sn–krkxk

∣∣∣∣∣
< ∞

}

.
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The main purpose of the present paper is to study the normed difference spaces br,s
p (∇)

and br,s∞(∇) of the binomial sequence whose Br,s(∇)-transforms are in the spaces �p and �∞,
respectively. These new sequence spaces are the generalization of the sequence spaces de-
fined in [] and []. Also, we compute the bases and α-, β- and γ -duals of these sequence
spaces.

2 The binomial difference sequence spaces
In this section, we introduce the spaces br,s

p (∇) and br,s∞(∇) and prove that these sequence
spaces are linearly isomorphic to the spaces �p and �∞, respectively.

We first define the binomial difference sequence spaces br,s
p (∇) and br,s∞(∇) by

br,s
p (∇) =

{
x = (xk) ∈ w : (∇xk) ∈ br,s

p
}

and

br,s
∞(∇) =

{
x = (xk) ∈ w : (∇xk) ∈ br,s

∞
}

.

Let us define the sequence y = (yn) as the Br,s(∇)-transform of a sequence x = (xk), that
is,

yn =
[
Br,s(∇xk)

]
n =


(s + r)n

n∑

k=

(
n
k

)

sn–krk(∇xk) (.)

for each n ∈ N. Then the binomial difference sequence spaces br,s
p (∇) or br,s∞(∇) can be

redefined by all sequences whose Br,s(∇)-transforms are in the space �p or �∞.

Theorem . The sequence spaces br,s
p (∇) and br,s∞(∇) are complete linear metric spaces

with the norm defined by

fbr,s
p (∇)(x) = ‖y‖p =

( ∞∑

n=

|yn|p
) 

p

and

fbr,s∞(∇)(x) = ‖y‖∞ = sup
n∈N

|yn|,

where  ≤ p < ∞ and the sequence y = (yn) is defined by the Br,s(∇)-transform of x.

Proof The proof of the linearity is a routine verification. It is obvious that fbr,s
p (αx) =

|α|fbr,s
p (x) and fbr,s

p (x) =  if and only if x = θ for all x ∈ br,s
p (∇), where θ is the zero element

in br,s
p and α ∈R. We consider x, z ∈ br,s

p (∇), then we have

fbr,s
p (∇)(x + z) =

(∑

n

∣∣(Br,s[∇(xk + zk)
])

n

∣∣p
) 

p

≤
(∑

n

∣∣[Br,s(∇xk)
]

n

∣∣p
) 

p
+

(∑

n

∣∣[Br,s(∇zk)
]

n

∣∣p
) 

p
= fbr,s

p (∇)(x) + fbr,s
p (∇)(z).
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Hence fbr,s
p (∇) is a norm on the space br,s

p (∇).
Let (xm) be a Cauchy sequence in br,s

p (∇), where xm = (xmk )∞k= ∈ br,s
p (∇) for each m ∈ N.

For every ε > , there is a positive integer m such that fbr,s
p (∇)(xm – xl) < ε for m, l ≥ m.

Then we get

∣∣(Br,s[∇(xmk – xlk )
])

n

∣∣ ≤
(∑

n

∣∣(Br,s[∇(xmk – xlk )
])

n

∣∣p
) 

p
< ε

for m, l ≥ m and each k ∈ N. So (Br,s(∇xmk ))∞m= is a Cauchy sequence in the set of real
numbers R. Since R is complete, we have limm→∞ Br,s(∇xmk ) = Br,s(∇xk) for each k ∈ N.
We compute

i∑

n=

∣∣(Br,s[∇(xmk – xlk )
])

n

∣∣ ≤ fbr,s
p (∇)(xm – xl) < ε (.)

for m > m. We take i and l → ∞, then the inequality (.) implies that

fbr,s
p (∇)(xm – x) → .

We have

fbr,s
p (∇)(x) ≤ fbr,s

p (∇)(xm – x) + fbr,s
p (∇)(xm) < ∞,

that is, x ∈ br,s
p (∇). Thus, the space br,s

p (∇) is complete. For the space br,s∞(∇), the proof can
be completed in a similar way. So, we omit the detail. �

Theorem . The sequence spaces br,s
p (∇) and br,s∞(∇) are linearly isomorphic to the spaces

�p and �∞, respectively, where  ≤ p < ∞.

Proof Similarly, we only prove the theorem for the space br,s
p (∇). To prove br,s

p (∇) ∼= �p, we
must show the existence of a linear bijection between the spaces br,s

p (∇) and �p.
Consider T : br,s

p (∇) → �p by T(x) = Br,s(∇xk). The linearity of T is obvious and x = θ

whenever T(x) = θ . Therefore, T is injective.
Let y = (yn) ∈ �p and define the sequence x = (xk) by

xk =
k∑

i=

(s + r)i
k∑

j=i

(
j
i

)

r–j(–s)j–iyi (.)

for each k ∈N. Then we have

fbr,s
p (∇)(x) =

∥∥[
Br,s(∇xk)

]
n

∥∥
p

=

( ∞∑

n=

∣∣∣∣∣


(s + r)n

n∑

k=

(
n
k

)

sn–krk(∇xk)

∣∣
∣∣∣

p) 
p

=

( ∞∑

n=

|yn|p
) 

p

= ‖y‖p < ∞,
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which implies that x ∈ br,s
p (∇) and T(x) = y. Consequently, T is surjective and is norm

preserving. Thus, br,s
p (∇) ∼= �p. �

3 The Schauder basis and α-, β- and γ -duals
For a normed space (X,‖ · ‖), a sequence {xk : xk ∈ X}k∈N is called a Schauder basis []
if for every x ∈ X, there is a unique scalar sequence (λk) such that ‖x –

∑n
k= λkxk‖ →

 as n → ∞. Next, we shall give a Schauder basis for the sequence space br,s
p (∇).

We define the sequence g(k)(r, s) = {g(k)
i (r, s)}i∈N by

g(k)
i (r, s) =

⎧
⎨

⎩
 if  ≤ i < k,

(s + r)k ∑i
j=k

( j
k

)
r–j(–s)j–k if i ≥ k,

for each k ∈N.

Theorem . The sequence (g(k)(r, s))k∈N is a Schauder basis for the binomial sequence
spaces br,s

p (∇) and every x = (xi) ∈ br,s
p (∇) has a unique representation by

x =
∑

k

λk(r, s)g(k)(r, s), (.)

where  ≤ p < ∞ and λk(r, s) = [Br,s(∇xi)]k for each k ∈N.

Proof Obviously, Br,s(∇g(k)
i (r, s)) = ek ∈ �p, where ek is the sequence with  in the kth place

and zeros elsewhere for each k ∈N. This implies that g(k)(r, s) ∈ br,s
p (∇) for each k ∈N.

For x ∈ br,s
p (∇) and m ∈N, we put

x(m) =
m∑

k=

λk(r, s)g(k)(r, s).

By the linearity of Br,s(∇), we have

Br,s(∇x(m)
i

)
=

m∑

k=

λk(r, s)Br,s(∇g(k)
i (r, s)

)
=

m∑

k=

λk(r, s)ek

and

[
Br,s(∇(

xi – x(m)
i

))]
k =

⎧
⎨

⎩
 if  ≤ k ≤ m,

[Br,s(∇xi)]k if k > m,

for each k ∈N.
For any given ε > , there is a positive integer m such that

∞∑

k=m+

∣∣[Br,s(∇xi)
]

k

∣∣p <
(

ε



)p
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for all k ≥ m. Then we have

fbr,s
p (∇)

(
x – x(m)) =

( ∞∑

k=m+

∣∣[Br,s(∇xi)
]

k

∣∣p
) 

p

≤
( ∞∑

k=m+

∣∣[Br,s(∇xi)
]

k

∣∣p
) 

p

<
ε


< ε,

which implies that x ∈ br,s
p (∇) is represented as (.).

To prove the uniqueness of this representation, we assume that

x =
∑

k

μk(r, s)g(k)(r, s).

Then we have

[
Br,s(∇xi)

]
k =

∑

k

μk(r, s)
[
Br,s(∇g(k)

i (r, s)
)]

k =
∑

k

μk(r, s)(ek)k = μk(r, s),

which is a contradiction with the assumption that λk(r, s) = [Br,s(∇xi)]k for each k ∈ N.
This shows the uniqueness of this representation. �

Corollary . The sequence space br,s
p (∇) is separable, where  ≤ p < ∞.

For the duality theory, the study of sequence spaces is more useful when we investigate
them equipped with linear topologies. Köthe and Toeplitz [] first computed duals whose
elements can be represented as sequences and defined the α-dual (or Köthe-Toeplitz dual).

For the sequence spaces X and Y , define the multiplier space M(X, Y ) by

M(X, Y ) =
{

u = (uk) ∈ w : ux = (ukxk) ∈ Y for all x = (xk) ∈ X
}

.

Then the α-, β- and γ -duals of a sequence space X are defined by

Xα = M(X,�), Xβ = M(X, c) and Xγ = M(X,�∞),

respectively.
We give the following properties:

sup
n∈N

∑

k

|an,k|q < ∞, (.)

sup
k∈N

∑

n
|an,k| < ∞, (.)

sup
n,k∈N

|an,k| < ∞, (.)

lim
n→∞ an,k = ak for each k ∈N, (.)
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sup
K∈


∑

k

∣∣∣∣
∑

n∈K

an,k

∣∣∣∣

q

< ∞, (.)

lim
n→∞

∑

k

|an,k| =
∑

k

∣∣∣ lim
n→∞ an,k

∣∣∣, (.)

where 
 is the collection of all finite subsets of N, 
p + 

q =  and  < p ≤ ∞.

Lemma . ([]) Let A = (an,k) be an infinite matrix. Then the following statements hold:
(i) A ∈ (� : �) if and only if (.) holds.

(ii) A ∈ (� : c) if and only if (.) and (.) hold.
(iii) A ∈ (� : �∞) if and only if (.) holds.
(iv) A ∈ (�p : �) if and only if (.) holds with 

p + 
q =  and  < p ≤ ∞.

(v) A ∈ (�p : c) if and only if (.) and (.) hold with 
p + 

q =  and  < p < ∞.
(vi) A ∈ (�p : �∞) if and only if (.) holds with 

p + 
q =  and  < p < ∞.

(vii) A ∈ (�∞ : c) if and only if (.) and (.) hold with 
p + 

q =  and  < p < ∞.
(viii) A ∈ (�∞ : �∞) if and only if (.) holds with q = .

Theorem . We define the set Ur,s
 and Ur,s

 by

Ur,s
 =

⎧
⎨

⎩
u = (uk) ∈ w : sup

i∈N

∑

k

∣∣∣∣∣∣
(s + r)i

k∑

j=i

(
j
i

)

r–j(–s)j–iuk

∣∣∣∣∣∣
< ∞

⎫
⎬

⎭

and

Ur,s
 =

⎧
⎨

⎩
u = (uk) ∈ w : sup

K∈


∑

i

∣∣∣∣∣∣

∑

k∈K

(s + r)i
k∑

j=i

(
j
i

)

r–j(–s)j–iuk

∣∣∣∣∣∣

q

< ∞
⎫
⎬

⎭
.

Then [br,s
 (∇)]α = Ur,s

 and [br,s
p (∇)]α = Ur,s

 , where  < p ≤ ∞.

Proof Let u = (uk) ∈ w and x = (xk) be defined by (.), then we have

ukxk =
k∑

i=

(s + r)i
k∑

j=i

(
j
i

)

r–j(–s)j–iukyi =
(
Gr,sy

)
k

for each k ∈N, where Gr,s = (gr,s
k,i) is defined by

gr,s
k,i =

⎧
⎨

⎩
(s + r)i ∑k

j=i
( j

i

)
r–j(–s)j–iuk if  ≤ i ≤ k,

 if i > k.

Therefore, we deduce that ux = (ukxk) ∈ � whenever x ∈ br,s
 (∇) or br,s

p (∇) if and only if
Gr,sy ∈ � whenever y ∈ � or �p, which implies that u = (uk) ∈ [br,s

 (∇)]α or [br,s
p (∇)]α if

and only if Gr,s ∈ (� : �) and Gr,s ∈ (�p : �) by parts (i) and (iv) of Lemma ., we obtain
u = (uk) ∈ [br,s

 (∇)]α if and only if

sup
i∈N

∑

k

∣∣∣∣∣∣
(s + r)i

k∑

j=i

(
j
i

)

r–j(–s)j–iuk

∣∣∣∣∣∣
< ∞
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and u = (uk) ∈ [br,s
p (∇)]α if and only if

sup
K∈


∑

i

∣∣∣∣∣∣

∑

k∈K

(s + r)i
k∑

j=i

(
j
i

)

r–j(–s)j–iuk

∣∣∣∣∣∣

q

< ∞.

Thus, we have [br,s
 (∇)]α = Ur,s

 and [br,s
p (∇)]α = Ur,s

 , where  < p ≤ ∞. �

Now, we define the sets Ur,s
 , Ur,s

 , Ur,s
 , Ur,s

 and Ur,s
 by

Ur,s
 =

⎧
⎨

⎩
u = (uk) ∈ w : lim

n→∞(s + r)k
n∑

i=k

i∑

j=k

(
j
k

)

r–j(–s)j–kui exists for each k ∈N

⎫
⎬

⎭
,

Ur,s
 =

⎧
⎨

⎩
u = (uk) ∈ w : sup

n,k∈N

∣∣∣∣∣∣
(s + r)k

n∑

i=k

i∑

j=k

(
j
k

)

r–j(–s)j–kui

∣∣∣∣∣∣
< ∞

⎫
⎬

⎭
,

Ur,s
 =

⎧
⎨

⎩
u = (uk) ∈ w : lim

n→∞
∑

k

∣∣∣∣∣∣
(s + r)k

n∑

i=k

i∑

j=k

(
j
k

)

r–j(–s)j–kui

∣∣∣∣∣∣

=
∑

k

∣∣∣∣∣∣
lim

n→∞(s + r)k
n∑

i=k

i∑

j=k

(
j
k

)

r–j(–s)j–kui

∣∣∣∣∣∣

⎫
⎬

⎭
,

Ur,s
 =

⎧
⎨

⎩
u = (uk) ∈ w : sup

n∈N

n∑

k=

∣∣∣∣∣∣
(s + r)k

n∑

i=k

i∑

j=k

(
j
k

)

r–j(–s)j–kui

∣∣∣∣∣∣

q

< ∞
⎫
⎬

⎭
,  < q < ∞,

and

Ur,s
 =

⎧
⎨

⎩
u = (uk) ∈ w : sup

n∈N

n∑

k=

∣∣∣∣∣∣
(s + r)k

n∑

i=k

i∑

j=k

(
j
k

)

r–j(–s)j–kui

∣∣∣∣∣∣
< ∞

⎫
⎬

⎭
.

Theorem . We have the following relations:
(i) [br,s

 (∇)]β = Ur,s
 ∩ Ur,s

 ,
(ii) [br,s

p (∇)]β = Ur,s
 ∩ Ur,s

 , where  < p < ∞,
(iii) [br,s∞(∇)]β = Ur,s

 ∩ Ur,s
 ,

(iv) [br,s
 (∇)]γ = Ur,s

 ,
(v) [br,s

p (∇)]γ = Ur,s
 , where  < p < ∞,

(vi) [br,s∞(∇)]γ = Ur,s
 .

Proof Let u = (uk) ∈ w and x = (xk) be defined by (.), then we consider the following
equation:

n∑

k=

ukxk =
n∑

k=

uk

⎡

⎣
k∑

i=

(s + r)i
k∑

j=i

(
j
i

)

r–j(–s)j–iyi

⎤

⎦

=
n∑

k=

⎡

⎣(s + r)k
n∑

i=k

i∑

j=k

(
j
k

)

r–j(–s)j–kui

⎤

⎦ yk =
(
Ur,sy

)
n,
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where Ur,s = (ur,s
n,k) is defined by

un,k =

⎧
⎨

⎩
(s + r)k ∑n

i=k
∑i

j=k
( j

k

)
r–j(–s)j–kui if  ≤ k ≤ n,

 if k > n.

Therefore, we deduce that ux = (ukxk) ∈ c whenever x ∈ br,s
 (∇) if and only if Ur,sy ∈ c

whenever y ∈ �, which implies that u = (uk) ∈ [br,s
 (∇)]β if and only if Ur,s ∈ (� : c). By

Lemma .(ii), we obtain [br,s
 (∇)]β = Ur,s

 ∩Ur,s
 . Using Lemma .(i) and (iii)-(viii) instead

of (ii), the proof can be completed in a similar way. So, we omit the details. �

4 Conclusion
By considering the definitions of the binomial matrix Br,s = (br,s

n,k) and the difference op-
erator, we introduce the sequence spaces br,s

p (∇) and br,s∞(∇). These spaces are the natural
continuations of [, , ]. Our results are the generalizations of the matrix domain of the
Euler matrix of order r. In order to give fully inform the reader on related topics with ap-
plications and a possible line of further investigation, the e-book [] is added to the list
of references.
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9. Başarir, M, Kara, EE: On some difference sequence spaces of weighted means and compact operators. Ann. Funct.

Anal. 2, 114-129 (2011)
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12. Başarir, M, Kara, EE: On themth order difference sequence space of generalized weighted mean and compact

operators. Acta Math. Sci. 33, 797-813 (2013)
13. Kara, EE: Some topological and geometrical properties of new Banach sequence spaces. J. Inequal. Appl. 2013, 38

(2013)
14. Kara, EE, İlkhan, M: On some Banach sequence spaces derived by a new band matrix. Br. J. Math. Comput. Sci. 9,

141-159 (2015)
15. Polat, H, Başar, F: Some Euler spaces of difference sequences of orderm. Acta Math. Sci. 27, 254-266 (2007)



Song and Meng Journal of Inequalities and Applications  (2017) 2017:128 Page 10 of 10
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