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1 Introduction
For a real-valued bounded function f on [0,1], Bernstein [2] defined a sequence of poly-

nomials given by

B,(f;x) = Zf(%) (:l)x'(l -x)"7, Vxel0,1]andneN,
r=0

to provide a very simple and elegant proof of the Weierstrass approximation theorem.
For f € C[0, 00), Szész [3] generalized the Bernstein polynomials to the infinite interval as

follows:

o0 k
Su(f;x) =e™™ Z (1) f(lﬁ>, Vx € [0,00) and n € N,

k! n
k=0

provided the infinite series on the right-hand side converges. Recently, the Szdsz operators,
their quantum and post quantum analogues, Szasz-Durrmeyer operators and mixed type
operators have been intensively studied. We refer the readers to the related papers (cf.
[4-9] etc.).
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In [1], Sucu et al. introduced the Szész operators involving Boas-Buck type polynomials

as follows:
B,(f;x) := 1 3 k >0 N 1.1
u(f5%) = ADGoHD) ;pk(”x)f<;>’ x>0,neN, (L1)

where a generating function of the Boas-Buck type polynomials is given by
A(t)G(xH (D) Z )k, 1.2)
and A(t), G(¢t) and H(¢) are analytic functions described as

H=Y at" (a#0),  G(t)= ng (& #0),

k=0

H(t) =Y " (h #0).

Motivated by the above work, in the present paper we define Szisz-Durrmeyer type
operators based on Boas-Buck type polynomials as follows.

For y > 0, let C,[0,00) := {f € C[0,00) : |[f(t)] < M( + t”) for some M > 0} endowed
with the norm

[F @I

sup .
tefo,00) (L +£7)

Iy =

Then, for a function f € C, [0, 00), we define

1 pr(nx) A
M, (fx) = t)dt
3% = Gt D) Z Blon+d) )y @ropi O
ﬂobo
—f(0), 1.3
* AnGeHD) O 13)
where B(k, n + 1) is the beta function and x > 0, n € N.
Alternatively, we may write operator (1.3) as
oo
M, (f;x) = / W (n,x, t)f (t) dt, (1.4)
0
where
1 pi(nx) A
Wn,x,t) :=
(r,%2) AQ)G(nxH(1)) Z B(k,n +1) (1 + t)r+k+1
ﬂobo

+———6(2),

AQ)G(nxH(1)) @
and §(¢) is the Dirac-delta function.

We study the approximation properties of the operators M, for functions belonging to
different function spaces.
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2 Preliminaries

Lemma 1 ([1]) For the operators B, one has

(i) Bu(Lix)=1,

CGxHQ) A
T GuxHO)) T nAQ)

B (32. ) - G'(nxH(1)) , (AQ)+(1+H"(1)AQ)) G (nxH(1))

(ii)  Bu(s;)

(iii)

= GxH()) nA(1) GnxH(1) ™
A'(1) + A1)
n2AQ)
) By(sha) - G(nxH (L) ,  (BA) +34'(1) + BAWH' (M) G'(nxH() ,
G(nxH(1)) nA(1) G(nxH(1))
(6A/(1) + A1) + BA)H"(1) + 347(1) + 34’ ()H" (1) + A)H" (1))
" 2AQ)

GnxH(1)  4A"(1) + A'(1)
GxHD) " T BAQ)

V) Balstin) - GY(nxH()) , <4A’(1)+6A(1)H”(1)+6A(1)>G”’(an(l)) 5
" T G(nxH(@)) nA(1) G(nxH(1))

6A"(1) + 124')H" (1) + 4AQ)H" (1) + 3AQ)H"(1))? + TAQ) + 184'(1) + 18A)H" (1)
" < A1) )
G'(nxH(1))
G(nxH (1)) *

44" (1) + 6A" (DH" (1) + 4A'(DH" (1) + AQH(1) + 364'(1)
* < BAL)

AQL) + 7AQ)H" (1) + 18A”(1) + 184’ ()H" (1) + 6A1)H" (1) — 224’ (1)
* BAL) )

G'(nxH(1)) 1347(1) + A’(1) + AV
GlxH(D) ™ ( A(D) >

Proof Since identities (i)-(iii) are proved in [1], we give below the proof of only (iv). Identity
(v) follows similarly.

It is easily seen that

[e¢]

Z kgpk(nx)

k=0
= (44"(1) + A'(1))G(nxH(1))
+(64'(1) + AQ) + BAH"(1) + 3A"(1) + 3A’(1)H" (1)
+A(H"(1))G (nxH(1))nx + (3AQ1) + 34'(1) + BA)H" (1)) G (nxH(1)) x>
+A(1)G" (nxH(1))n*x*,

and

[ee]

> K pi(nx)

k=0

= A()G" (nxH(1))n*x* + (44'(1) + 6A()H" (1) + 6A(1))G" (nxH(1))n’x®



Sidharth et al. Journal of Inequalities and Applications (2017) 2017:122 Page 4 of 20

+(64"(1) +12A'(1)H" (1) + 4A(H" (1) + 3A(1)(H”(1))2 +7A(1) +184'(1)
+18A()H"(1))G" (nxH(1))n*x* + (44" (1) + 6A"(1)H" (1) + 44’ V)H" (1)
+ A(DH" (1) + 364'(1) + A(1) + 7A(1)H" (1)
+18A”7(1) + 184’ (1)H"(1) + 6A1)H"' (1)
-22A'(1))G (nxH(1))nx + (13A"(1) + A'(1) + AV (1)) G(nxH(1)). O
Now, by simple calculations, we obtain identities (iii) and (iv). Hence the details are omit-
ted.

In the following lemma, we obtain the moments for the operators defined by (1.3) uti-
lizing Lemma 1.

Lemma 2

(1) Mn(lrx) =1,
o 1(GxH) A
(i) M,(tx) = p ( GUHD) nx + A0) ),

oy 1 [GmHW) ,, [ A()
() M, (£5) = n(n—l)[ GlmxH () " (2A(1)

G'(nxH (1))
GuxH)

+H'(1) + 2)

A1) A"Q)
At A(l)]’

1 [G/”(an(l))nng

. 3, —
W) Mu(55) = e | G oA )

A1) . G'(nxH(1)) , ,
+ <3 A0 +6+3H (1)) 7G(an(1)) nx

A, A'(1)
+ (IZA(I) +H (1)+3A(1)
A"(1) 6A/(1)
AD A ]
~ 1 GV(nxH()) 4 4
T -1 -2)n-3) [ GxHQ) " "

A1) " G"(nxH(Q1)) 5 4
+ <4A(1) +6H"(1) + 12) 7G(an(1)) nx

. (6A”(1) A'(1) A1) BH”(l)

G (nxH (1))
G(nxH(1)) "

H')+H"Q) + 4>

+7

V) M,(t%x)

A0 +12A(1)H”(1)+21A(1) + A0

G (nxH(1)) 22
G(nxH(1))

A"y A1), A1), A'(D)
+ <4A(1) +6A(1) H'(1)+ 36 A0 H (1)+42A(1)

+4H"(1) +18H" (1) + 3(H" (1)) + 21)

A, A"(1)
+4A(1)H 1) +36 20

G (nxH(1)) AV(1) A(1) A’(1)+H]'

+HY(Q) +12H" (1) + 36 H"(1) + 24)

GoHD) ™ 2 "B An TBan
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Hence, as a consequence of Lemma 2, we find the following.

Lemma 3 For operator (1.3), we have the following results:

(i) Mu((t-x)x) = (M - l)x AL

G(nxH(1)) T AQ)

ii 2. (1 G'(mxHQ) G (nxH(1)) )
(ii) M, ((t—x)*x) = (n—l GlmHD) 2 Gl D) +1>

. ( 1 <2A/(1) D) 4 2) G(nxH() 2 A’(l))x

n—1\"AQ) GnxHQ) n AQ1)
1 (A A
’ n(n—l)( A T AQ) )
n® GY(nxH(1))

n-1)(n-2)(n-3) G(nxH(1))
4n? G" (nxH(1)) 6n G'(nxH(1))
T i—1)(n-2) GxHQ) ' (n1—1) GnxH())
GxHD) | .
Y GlmHm) 1}
n? G"(nxHQ)) [ A'(1)
: { 111 —2)(n—3) GlaxH (1) (4 AQ)
_ 4n G'(msHQ) (3A/(1)
(n-1)(n-2) G(nxH(1)) A1)
6 GxH() [ A1) 4A0))
T i=1) GiaxH (D) <2 A T 1 AQ) }x
n G (nxH(1 A"(1 A1
{ 1D -2 —3) G((an((n))) (6 A<(1>) e A<(1)) HW
A1) H'()
A A

4 G (nxH (1)) 2A’(l)
(=D -2) GnxH(1) (

(i) M, ((t-x)"x) = {

+6H"(1) + 12)

+3H"(1) + 6)

+H"(1) + 2)

+21

+4H"(1) +18H"(1) + 3(H"(1))” + 21)

+H"(1) + 3A/(1)

AQ) a1 ‘o

, , 1 GnxH () [ A"(1)
W 4) }x ' {(n—n(n )01 =3) GlisH () (4 AQ)
A A, AL A
A) H"(1) + 36 A) H"(1) +42A(1) +4A(1)
A//(l)
A0)

4 AW A
- n(n—l)(n—2>< A " A(1>>}"
1 A1) A’(1) A1)
+ (n—l)(n—2)(n—3)< 48 +13 +11>.

+6

H///(l)

+36 +HY(1) + 12H”(1) + 36 H"(1) + 24)

A0 A A

Now, in order to study the approximation properties of the considered operators (1.3),
we make the following assumptions on the analytic functions A(¢), H(z) and G(¢). It is to
be noted that the following assumptions are valid pointwise. These assumptions will be

Page 5 of 20
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needed to prove Theorems 3, 7 and 8 of this paper which are pointwise results.

li n{—G/(an(l)) - 1} =h(x),

i’ | GlaxH())
i n G'(mxHQ1) G (nxH(1) A
nL“So”{n_l GorxH() ~~ GorxH(D) }_ o

2{ n? G" (nxH(1)) <4A/(1)
n-1)(n-2)(n-3) G(nxH(1)) A1)
4n  G'(nxH(1) <3A’(1)
C m-1D)m-2) GnxHQ)) \" A1)
6 GnxHQ) [ AQ)
T =1 GluxH() ( AQD)
lim 2 n® GV (nxH(1)) 4n? G"(nxH(1))
nbo ! { 1-D(n-2)(n-3) GuxH(1) (n-1)n-2) GnxH())
6n G'(nxH(1)) G'(nxH(1))
T =1) GxHQ)) - GlxH()

+6H"(1) + 12)

+3H"(1) + 6)

4 A'(1)
T AQ)

+H"(1) + 2) } = I3(x),

+ 1} = (x).

As a result of the above assumptions, applying Lemma 3, we reach the following impor-
tant result.

Lemma 4 For operator (1.3), we have

(i) nlirgo nM,, ((t — x);x) =h(x)x + IZ/((ll)),

(iii) nlingo nM,((t - x)%%) = Lx)x® + x(H'Q) +2) = nx)  (say),
(iif)  lim M, (( - 2)";x)
=Ly ()at + I (x)x>

(6AN(1) AW H) 14H"(1) +3(H"(1))* + 5)

A TTAQL T AQ)

=v(x) (say).

3 Results and discussion
Throughout the paper, we assume 8, (x) = M, ((t — x)%;x).

In the following theorem, we show that the operators defined by (1.3) are an approxima-
tion process for f € C, [0,00), using the Bohman-Korovkin theorem.

Theorem 1 Let f € C,[0,00). Then

lim M, (f;x) =f(x)

holds uniformly in x € [0,a], a > 0.

Proof From Lemma 2, it follows that

lim M, (t5x) =«', i=0,1,2,

n—00
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uniformly in x € [0,a]. Hence, by the Bohman-Korovkin theorem, the required result is
immediate. O

First, we consider the Lipschitz type space [3] considered by Otto Szdsz to establish
the uniform convergence of the Szdsz operators for functions in this space. For 0 < £ <1,
x € (0,00), t € [0,00), we define

_ x|
Lipy,(§) := {fe C[0,00) : |[f(8) - f ()] SMf%;
(t+x)?2

where M; is a constant which depends on f }

In the following theorem, we find the rate of convergence of the operators M,, for func-
tions in Lip}, &£. We observe that due to the presence of , in the denominator on the right-
hand side, we get only pointwise approximation. In the case of Szasz operators [3], this x
gets canceled leading to the uniform convergence.

Theorem 2 Let f € Lip;,(§) and & € (0,1]. Then, for all x € (0,00), we have

£
|M,,(f;x) —f(x)| §M(8"T(x)) .

Proof By the linearity and positivity of the operators M, from (1.4) we obtain
oo
M (f%) £ )| < / W5, 0| (6) — £ ()] d.
0

Applying Holder’s inequality with p = § and g = ﬁ and Lemma 2, we have

) 2 % *© 2%5
o[ st ) ([ )
A 0
00 2 %
< (/ W (n,x,0)|f () - f(x)|F dt)
0
. ;
< M(/ W(n,x, t)M dt)
0

(t+x)
%
X

Thus, we reach the desired result. g
In our next result, we establish a Voronovskaja type approximation theorem.

Theorem 3 Letf € C,[0,00), admitting a derivative of second order at a point x € [0,00),
then there holds

A'(1)
AQ)

Tim (M, (f3%) - f(x)) = {h(m + }f’(x) {0 + (') +2) ;x) (3.1)



Sidharth et al. Journal of Inequalities and Applications (2017) 2017:122 Page 8 of 20

Iff" is continuous on [0, 00), then the limit in (3.1) holds uniformly in x € [0,a] C [0, 00),
a>0.

Proof By Taylor’s theorem

&) =f(x) +f (@)t - x) + %f”(x)(t - %) + &t 2)(¢ - %), (3.2)

where ¢(t,x) € C,[0,00) and lim,_, . (t,x) = 0
Applying the operator M, (-,x) on both sides of (3.2), we have

nlgrgo n(M,,(f;x) —f(x)) = nli)lgonM,,(t—x;x)f’(x)

+ lim nM,, ((t—x)z;x)f//;x)

n—00

+ nlirglo nM,(e(t,x)(t — %)% x). (3.3)

Using the Cauchy-Schwarz inequality in the last term of the right-hand side of (3.3), we
get

(a(t x)(t - x)2 \/M 2(t, x); x \/nQMn((t—x)“;x).

Since &(t,x) — 0, as ¢t — x, applying Theorem 1, for every x € [0,00), we obtain
lim,,_, oo M,,(€2(t,%); %) = £2(x,x) = 0. Next applying Lemma 4, for sufficiently large # and
every x € [0,00), we have

M, ((t - x)%x) = OQ1). (3.4)
Hence,

HIEEO nM,(e(t,%)(t — x)*x) = 0. (3.5)

Now, from (3.3), (3.5) and Lemma 4, the required result follows. O

The uniformity assertion follows from the uniform continuity of f” on [0, a] and the fact
that all the other estimates hold uniformly in x € [0, 4].

In our next theorem, we obtain the degree of approximation of the M, operators for
functions in the space C;[0, 00) in terms of the classical modulus of continuity.

Theorem 4 For f € C,[0,00), we have the following inequality:

|Myu(f5 %) = f(x)| < AMp(1+27)8,(x) + 20p41 (f5 v/ (%)), (3.6)
where w(f;8,(x)) is the modulus of continuity of f on [0,D +1].

Proof From [10], for ¢ € (b +1,00) and x € [0, b], we have

|t — x|

[f(t) —f(x)| < 4Mf(t—x)2(1 +x2) + <1 + )w;,+1(f,8), §>0.
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Hence, by applying the Cauchy-Schwarz inequality, we obtain

|M,u(f; %) = f(x)| < 4Mp(1+ %)M, (( - %)% %)

+ wopa(fs 5)(1+1( (£ - %)% %) “2)

= Mf(l +x2)8n(x) + wpi1(f,6) (1 + =/8,(x) >

Choosing § = v/3,(x), we get the desired result. O

The next section is devoted to the weighted approximation properties of the opera-
tors M,,.

3.1 Weighted approximation
Let

x—o00 1 + x2

CS[O, 0) := {f € [0, 00); lim /)l exists and is ﬁnite}.

Next, we study the approximation of functions in the subspace C[0,00) of C,[0, 00).
Such type of function spaces has been considered by several researchers (cf. [11, 12]).

It is well known that the classical modulus of continuity of first order w(f;§), > 0 does
not tend to zero, as § — 0, on an infinite interval. A weighted modulus of continuity
Q(f;8) which tends to zero as § — 0 on [0,00) was defined in [13]. For f € CJ[0,00),
the weighted modulus of continuity defined by Yiiksel and Ispir [13] is given as fol-
lows:

[f (x + h) —f )]

Q(f;68) = su _— (3.7)
(f xe[O,oo),I()kth 1+ (x + h)2

Some properties of Q(f; ) are collected in the following lemma.

Lemma 5 ([13]) Letf € C2[0,00). Then the following results hold:
(1) QAf;9) is a monotonically increasing function of §;
(2) lims_o+ Q(f;8)=0
(3) Foreach m e N, Q(f; ms) < mQ(f;6);
(4) Foreach h € (0,00), 2(f;18) < (1 + 1)Q(f; ).

Firstly, we establish the following basic approximation theorem for functions in the

weighted space of continuous functions C3[0, 0o) by the operators M,,.
Theorem 5 For f € C3[0,00) and a > 0, we have

lim  sup |M,,(f;%) — f(%)]

=0.
"m0 ef000)  (1+ %)
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Proof Let x( € [0,00) be an arbitrary but fixed point. Then

|M,u(f; %) - f (%)
celoney  (L+a2)
|M,,(f;%) — f (%) |M,(f;%) — f (%)
= jgxo (1 + x2)lra illxo (1 + x2)L+a
M, (1 + £%x) If (x)]
(1 + x2)1+u e (1 + x2)l+a :

< [ M5 ) = £ o,y + I 112 SUP (3.8)
xX>X0

Since |f(x)| < ||f]l2(1 + x?), we have

F@L _ Iflb

wsxg (L+a2)17 = (L4 ad)’

Let € > 0 be arbitrary. We choose x, to be so large that

Ifll € )l € (3.9)

< — sothat sup ——— < —.
Q+x3)* 6 x>x€ (1+x2)+2 " 6

From Theorem 1, there exists 7; € N such that

M,(1+ %
n( + x) < ”f||2 (1+x2+

1 +a2)+a = (14x2)2

€
, VYn>m
3|lf||2)
£ 112 €

+ =, Vm>mn and x> xp.
“ (1442 3 ! 0

112

Hence,

M, 1+t %)
Ifll2 sup ——————

<
x>%0 (1+x2)1+a -

€
X Vn>ny. (3.10)

Applying Theorem 3, we can find #, € N such that
€
IMF5) = Flepoun <5 Y1 (3.11)

Let 1y = max(ny, n;). Combining (3.8)-(3.11), we obtain

|M,u(f5%) — f (%)

xes[ggo) W <€, Vm>ng.

Hence the required result is obtained. d

In our next theorem, we determine the order of approximation for functions in a
weighted space of continuous functions on [0, 00) by M,, operators.

Theorem 6 Let f € C2[0,00). Then, for sufficiently large n, we have

|M,(f5%) - f (%)] < C(x)Q(f; %) (3.12)
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where C(x) = 2(1 + 2%)(1 + CiIn()| + VCiIn(®)|"*1 + /Co|v(%)[V2)), C1, Cy are constants
independent of x and n and n(x), v(x) are as given in Lemma 4.

Proof For x € (0,00) and § > 0, using (3.7) and Lemma 5, we have

[f(t) —f(x)| < (1 + (x+ lx — tl)z)Q(f; |t—x|)

|t — x|
8

<2(1+#)(1+ (t_x)2)(1+ )sz(f;s).

Applying M, (-;x) on both sides, we can write

|M,i(f;) ()|

<21+ xz)sz(f;a)<1 + M (£ - %)% ) + Mn((l (t-n?) ~ . x)) (3.13)

From Lemma 4, for sufficiently large #, it follows
nM,((t-x)%x) < G nx)| and  #*M,((t-x)*%x) < C|v)|. (3.14)

Now, applying the Cauchy-Schwarz inequality in the last term of (3.13), we obtain

M,,((l + (t—x)z) |t;x|;x>

(M (6= 275)) " 5 (0 (6 20"5) "™ (0, (6 2) ™ (3.15)

=

S| =

Combining the estimates (3.13)-(3.15) and taking

5o 1
= 7
we reach the required result. O

3.2 Unified modulus theorem

We investigate a direct approximation theorem by utilizing the unified Ditzian-Totik mod-
ulus of smoothness wy: (f,£),0 < 7 < 1. Guo et al. [14] proved the direct, inverse and equiv-
alence approximation theorems with the aid of unified modulus. First, we give the def-
initions of the Ditzian-Totik modulus of smoothness and the Peetre’s K-functional. Let
¢%(x) = x(1 + x) and f € Cg[0, 00), the space of all bounded and continuous functions on
[0, 00) endowed with the norm |[f|| = sup,¢g o) [f (*)|- The modulus wy (f,2), 0 <7 <1,is
defined as

wgr (f,1) = sup sup l/(x + h¢f(x)) —f(x— h¢’(x)>
)

O<hst L’;(’C) €[0,00 2 2

’

and the appropriate K-functional is given by

!

Kyelf,0) = inf {If ~gll + ¢ 67
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where W, = {g: g € ACio[0,00) : ||¢p7¢’|| < o0}, ACjo denotes the space of locally abso-
lutely continuous functions on [0, 00).
From [15], there exists a constant M > 0 such that

M wye (f, ) < Kye (f, 1) < May: (£, t). (3.16)

Theorem 7 Let f € Cg[0,00), then for sufficiently large n

¢1"(x)>

’M,,(f;x) —f(x)| < Ca)¢r (f; \/ﬁ

where C is independent of f and n.

Proof By the definition of Ky:(f,t), for fixed n, x, T, we can choose g = g, € W; such

that
Py . ¢ (x)
If —gll + 7’“||¢> ¢ < 2Ky (f; ﬁ" ) 3.17)

We may write

\M,u(f5%) = f @) | < |Mu(f — g5 %)| + |Mu(g %) — g)| + |g(x) —f ()]
<2|f - gll + | Mu(g; %) — g(x)|. (3.18)

Since g € W7, we have
t
g0)-¢)+ [
X

and so

Ltg’(u)du

By applying Holder’s inequality, we get

t t d
‘/ g (w)du f “ ‘Sﬂqﬁfg’ﬂlt—xl“

o7 (u)
we may write

[ 5

Hence, on using the inequality |a + b|" < |a|" + |b|", 0 <r <1.

/xtg'(u) du

|M,i(g; %) — g(x)| < Mn( x) (3.19)

T

’

[ 5

=|e¢|

/tdu
< _
x N

(7 o)

=

27|lpTg|l|t — x| ( 1 1 )f
+
X712 V1+x 1+t

52fll¢’g’lllt—x|< 1 1 ) (3.20)

+
xT/Z (1 + x)r/Z (1 + t)t/2




Sidharth et al. Journal of Inequalities and Applications (2017) 2017:122 Page 13 of 20

Thus, from (3.19), (3.20) and the Cauchy-Schwarz inequality, using Theorem 1, we ob-

= t”(f/rzg “ < <1+xr/z 1+1t)f’2>;x>
3 zf!fﬂg ||((1+ m/W
b M6 = 20%52) /M (¢ t)ﬁx))
<2°[¢7¢ “\/mwﬂ(x) +x‘”2\/m}

fﬁ—) {¢ ( ) —1’/2(1 +x)7‘r/2}

_ el ()
- N

tain

’Mn(g;x) -

=

=2°Cle7¢

(3.21)

for sufficiently large ».
Hence, combining (3.17)-(3.19) and (3.21), we find

1-t
3 _ _ T+l T,/
[Mulfi) = @] = 20f gl + 27 Cllee | =

gc{w—gn+¢“ loe'l}

< 2C[<¢r (f; %)

< Ca)¢r (f, %)

This completes the proof of the theorem. d

3.3 Rate of convergence of Szasz-Durrmeyer operators based on Boas-Buck
polynomials

In this section, we discuss the approximation of functions with a derivative of bounded
variation. We show that the points x where f'(x+) and f’(x—) exist, the operators M,(f; x)
converge to the function f(x), as # — c0. In the recent years, several researchers have
studied different sequences of linear positive operators. We refer the reader to some of the
related papers (cf. [8, 9, 16—20] and [21] etc.). Let DBV'[0, 00) be the class of all functions
in C,[0, 00) having a derivative which is locally of bounded variation on [0, 00). A function

f € DBV[0,00) can be represented as

f) = /0 2(0) +£(0),

where g is a function of bounded variation on each finite subinterval of [0, 00).
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Lemma 6 Leta =a(n) — 0, as n — 00 and lim,_, o, na(n) = [ € R. For all x € (0,00) and

sufficiently large n, we have

M &0 = / t W (n,x,£) du < fllf(t’;y,
(i) 1- En(X,t)_f W (1, %, £) du < 2|r](9;)2|’

where 1(x) is as given in Lemma 4.

Proof Using Lemma 2 and (3.14), we have

(£ /an,

2
5/ (x_) W(n,x,t)(x, u)du
0 xX—1

1
S t)zMn((u - x)%x)

Ciln(x)|
(x—1)?’

=

when # is large enough. Similarly, we can prove (ii). d
Theorem 8 Letf € DBV[0,00). Then, for every x € (0, 00) and sufficiently large n, we have
|M,i(f;%) - f (%)
- [(G/(an(l)) ~ l)x . A'(1) :|
- G(nxH(1)) nA(1)
@) =) Gl R\
e
My +
(Vv f) (a3 + L) o+ ol o)

2

f'4) + 17 (%) ‘

x

-~

clm(x Nl O
[f(Z)f(x) xf(x+)+7 \/f . kZ \V %)
=1 X

where C) is a positive constant and \/z f denotes the total variation of f on [a,b] and f] is
defined by

f @) -f(x-), 0<t<x,
£B =10, t=x, (3.22)

() —f'(x+), x<t<oo.
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Proof For any f € DBV[0, 00), from (3.22), we may write
f'(u) = %(f/(x+) +f (x=)) +fi(u) + %(f’(x+) —f'(x-)) sgn(u — x)
+5,() (f’(u) ) +f’<x—>)), (323)

where

1, u=x
8c(u) =
0, u#x.

Since M, (ep;x) =1, using (3.23) for every x € (0, 00), we get

Mo(fs) —fx) = /0 W3 0) (f(0) - f () dit

- [ wono( [ P )
- [([ 7 was) wonsa
R / °°< / ) du) W (n,3,) d. (3.24)
Let
= [( [ roa)wonsoa
o ([ e

Since fxt 8x(u) du = 0, using (3.23), we have
X X 1
L= /0 {/t~ (E(f'(x+) +f(x=)) +fi(u)
+ l(f/(?H) —f'(x-)) sgn(u - x)) du} W (n,x, t) dt
_(f (x+) +f (x— ) / x—t)W(n,x,t dt+/ (/ 1 u)du) W (n,x,t)dt
—— (f’(x+) —f’(x—)) / (x — )W (n,x,t)dt. (3.25)
2 0
Similarly, we have

I~ f m{ / t(%(f/(xﬂ () + L)

+ %(f’(x+) —f'(x-)) sgn(u - x)) du} W (1, %, t) dt
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=L v 1) / (=)W, 0y de + f oo( / tﬂ(u)du) W (n,%,0) dt

2
1 '/ ! *©
+ i(f (x+) —f (x—)) / (t —x)W(n,x,t)dt. (3.26)

Combining relations (3.24)-(3.26), we get
1,, , 00
M (f5x) - f(x) = E(f (x+) +f(x-)) /0 (t —x)W(n,x,t)dt
+ %(f/(“) —f/(x—)) /Ooo |t — x| W (n,x,t)dt

_ /Ox(/tx];’(u)du) W (n,, £) dt + /:o</xtfx/(u)du) W (n,, ¢) dt.

Hence,

|Mou(f;0) — £ ()]
f'(x+) ;f/(x—)MM”(t_x;x)’ .

/Ox(/;xfx’(u)du) W (n,x,t) dt

Now, assume that

Cu(fi %) = /:(/txfx’(u)du) W (n,x, t) dt

S +) = f (%)
2

=<

Mn(|t_x|;x)

/ ) ( / tfx’ () du> W (n,x,1) dt‘. (3.27)

+ +

and

Dy (f,x) = /xw</xtj;’(u)du> W (n,x,t)dt.

Now the problem is reduced to estimate C,(f,x) and D,(f,,x). Using the definition of
&,(x, t) given in Lemma 6 and applying integration by parts, we can write

SN £ t) [,
Cn(fx,x)—/o (/t J;(u)du) . dt—/ofx(t)én(x,t)dt.

Thus,

Calf)| = f £(0) £, )t < f o) g ) de + / 1O )
0 0 x—ﬁ

Since f/(x) = 0 and &,(x,£) <1, we get

[ rolawod= [ ro-fwlsmods [ (\/1;;) dt
= ¥ X

S\t
TN L x (.

(V) [, = (v r)
vn vn
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Using Lemma 6 and assuming ¢ = x — 7, we have

/__lf ’E,,xt)dt<C1|n ’/ (xx/_t)z
<Cl|nx){/_ﬁ<\/ﬂ>(x £)?

Gln@l (V" (\
S ()

_X
u

=S (V)

Therefore,

k=1

, c1|n(x)|m "
Calfi)| = 2AVE) = VA
ﬁ ;
% T n
Using integration by parts in D,(f],x) and applying Lemma 6, we have

2x t
f (/ ﬂ(u)du>3(1—gn(x,t)) dt’
Uk ot
) ( / tfx/ (u) du) W (n,%,t) dt’
2x x

2x %
< / L) du||1 - &, (%, 2%)| +/ 0|1 - &4(x, 1)) dt
[ w-rw) W(n,x,t)dt’

+ [f/(x+)|

[Du(fo%)| <

o0
/ (t—x)W(n,x,t)(x,t) dt‘.
2x
‘We have

Lf(t|(1 £ 1) d f 0] (1 - (a0t de

o [fx’(t)](l—é,,(x,t)) dt
x+ﬁ

=N+ (3.28)

Since f/(x) = 0 and 1 - §,(x, £) <1, we have

X+ -2 X+ 2 +% +%
]1=/ ﬁLﬂ(t)—ﬂ(x)|(1—sn<x,t))dtsf ﬁ(\/ﬁ;) dt = %(\/f)
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Using Lemma 6 and assuming ¢ = x + 7, we obtain

J» < Gi|n(x \f @) - f; x)|dt<C1|nx)|/L s (\/ﬂ)dr

cl|n(x)|/ (\/f> c1|nx)|§/k+l( )

< Gines) o %(\/f)

k=1 x

g

Putting the values of /; and /; in (3.28), we have

2 x &z N\ Gin)l A /
/x 10](1 &) de < - Vo)== 2 VL)

k=1 x

Therefore, applying the Cauchy-Schwarz inequality and Lemma 6, we get

[Du(£>)| <Mf/ (£ +1) W (n,x,8)dt + |f (x)| W(n x,t) dt

2x

+ | ()] Ci ()| + Cllnz(x)l |f (2x) = f(x) = 2f (x+)|

Wl /2%

( Y f> Clln(x)l 3 (\/ f> (3.29)

k=1 x

Since t < 2(¢ —x) and x < ¢t — x when ¢ > 2x, we have

Mf/ (t +1)W(nx, dt+v ‘f W (n,x,t)dt
2x

< (Mf + [f(x)‘)/;x W (n,x,t) dt + 4M; . (t—x)zW(n,x, t)dt

- (4Mf Mf%“’”')q @) (3.30)

= A/[f-;iy(x)'/w(t—x)ZW(n,x,t)dt+4Mf/0m(t—x)2W(n,x’[)dt

Using the above inequality, we have

M
Du(fn)| = (a0 + L) e+ ol o)

+c1n+x I (2%) — (%) — af (x+)|
c1|nx)|m
\/f > \/f (331)
k=1 x

Now from (3.27), (3.29) and (3.31), we reach the required result. O
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4 Conclusion

We introduce Szdsz-Durremeyer type operators involving Boas-Buck type polynomials.
Brenke type polynomials, Sheffer polynomials and Appell polynomials turn out to be the
special cases of Boas-Buck type polynomials. We obtain the rate of convergence for func-
tions belonging to a Lipschitz type space and also establish a Voronovskaja type theorem
for twice continuously differentiable functions. We study the approximation properties of
the considered operators for continuous functions in weighted spaces. Lastly, we discuss
the rate of approximation of functions having derivatives of bounded variations.
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