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Abstract
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. Let G be a graph with
vertex set V = V(G) = {v1,vy,...,v,} and edge set E = E(G). Write A(G) for the adjacency
matrix of G and let D(G) be the diagonal matrix of the degrees of G. The matrix Q(G) =
D(G) +A(G) is called the signless Laplacian matrix of G. As usual, let 41 (G) > ¢2(G) > -+ - >
q4(G) > 0 denote the eigenvalues of Q(G) and call them the signless Laplacian eigenvalues
of G. Denote by « (G) the least eigenvalue of G.

For a connected graph G, «(G) = 0 if and only if G is bipartite. Desai and Rao [1] suggest
the use of «(G) as a measure of non-bipartiteness of G. Fallat and Fan [2] introduce two
parameters reflecting the graph bipartiteness, and establish a relationship between « (G)
and the two parameters. de Lima, Nikiforov and Oliveira [3] point out that «(G) depends
more on the distribution of the edges of a graph than on their number, so it may become
a useful tool in extremal graph theory. For a connected non-bipartite graph G with given
order, how small can «(G) be? Cardoso et al. [4] propose this problem and show that the
minimum value of k (G) is attained uniquely in the unicyclic graph obtained from the cycle
Cs by attaching a path at one of its end vertices. Motivated by this problem, a good deal of
attention has been devoted to finding all graphs with the minimal least signless Laplacian
eigenvalue among a given class of graphs. For related results, one may refer to [5-14].

A unicyclic graph is a connected graph with a unique cycle. Let A = A(G) be the maxi-
mum degree of a graph G. In this paper, we determine the unique graph whose least sign-
less Laplacian eigenvalue attains the minimum among all non-bipartite unicyclic graphs of
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order n with maximum degree A and among all non-bipartite connected graphs of order
n with maximum degree A, respectively.

The rest of the paper is organized as follows. In Section 2, we recall some notions and
lemmas used further, and prove three new lemmas. In Section 3, we prove two theo-
rems which is our main result. In Section 4, we propose two problems for further re-
search.

2 Preliminaries

Denote by C, the cycle on n vertices. Let G — uv denote the graph which arises from G
by deleting the edge uv € E(G). Similarly, G + uv is the graph that arises from G by adding
an edge uv ¢ E(G), where u,v € V(G). For v € V(G), N(v) denotes the neighborhood of v
in G and d(v) = [N(v)| denotes the degree of vertex v. A pendant vertex of G is a vertex of
degree 1. |x| denotes the absolute value of a real number x. The terminology not defined
here can be found in [15].

Lemma 2.1 ([16]) Let G be a graph on n vertices, e be an edge of G. Then
1(G) Zq(G-€) 2 42(G) 2 q2(G-€) = - - = 4u(G) Z 4u(G —¢) 2 0.

Given x = (x1,%2,...,%,). € R", we can define a function on V(G), that is, each vertex v;
is mapped to x; = x(v;). If x is an eigenvector of Q(G), then it is defined on G naturally, i.e.
x(v) is the entry of x corresponding to v. Clearly, for x € R”,

xTQ(G)x = Z (x(u) + x(v))z.

uveE(G)

Let x € R” be an arbitrary unit vector. One can find in [10, 15] that
x(G) < x" Q(G)x, o))

with equality if and only if x is an eigenvector corresponding to «(G).

Let G; and G, be two vertex-disjoint connected graphs, and let v; € V(G;) for i = 1,2.
Identifying the v; with v, and forming a new vertex u (see [10] for details), the resulting
graph is called coalescence of G; and G, and denoted by G;(v;) ¢ Ga(v2) or G (1) © Ga(us).
If a connected graph G can be expressed in the form G;(«) ¢ G,(u), where G; and G, are
both nontrivial and connected, then G is called a branch of G with root u. Clearly G, is
also a branch of G with root u. Let x € R” be a vector defined on V(G). A branch G; of G
is called a zero branch with respect to x if x(v) = 0 for all v € V(G,); otherwise it is called a
nonzero branch with respect to x.

Lemma 2.2 ([10]) Let G be a connected graph which contains a bipartite branch B with
root u, and x be an eigenvector corresponding to k(G).

(i) Ifx(u) =0, then B is a zero branch of G with respect to x.

(il) Ifx(u) #0, then x(v) # 0 for every vertex v € V(B).

Lemma 2.3 ([10]) Let G be a non-bipartite connected graph, and let x be an eigenvector
corresponding to k(G). Let T be a tree, which is a nonzero branch of G with respect to x
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Figure 1 C(vo) o B(vo).
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Figure2 UX(g) and U%(3, A).

and with root u. Then |x(q)| < |x(p)| whenever p, q are vertices of T such that q lies on the
unique path from u to p.

Lemma 2.4 ([12]) Let G = C(vy) © B(vo) (see Figure 1), where C = vovivy -« Viliplip_1
--ugvg is a cycle of length 2k + 1 and B is a nontrivial connected bipartite graph. Let
x = (x(vo), (1), x(a), ..., x(Vi), x(u1), x(2), . . ., x(ux), ...) T be an eigenvector corresponding
to k(G). Then

(i) [x(vo)l = max{|x(w)||w € V(C)} > 0;

(i) »(v;) =) fori=1,2,...,k.

Lemma 2.5 ([12]) Let G = Gi1(v,) © T(u) and G* = G1(v1) © T(u), where Gy is a non-
bipartite connected graph containing two distinct vertices vi, vo, and T is a nontrivial tree.
If there exists an eigenvector x = (x(v),x(v2), ..., x(vg),...)T corresponding to k (G) such that
lx(v1)| > [x(v2)| or [x(v1)] = x(v2)| > O, then k(G*) < k (G).

For k > 1, let G’ denote the graph obtained from G by deleting the edge uv, inserting
k new vertices vy, Vy,..., v and adding edges uvy,vivs, ..., Vi1V, vkv. Then G’ is called a
k-subdivision graph of G by k-subdividing the edge uv.

Lemma 2.6 ([17]) Let G’ be a k-subdivision graph of a graph G. If k is even, then x(G') <
k(G).

U*(g), showed in Figure 2, denotes the unicyclic graph on n vertices with odd girth g and
k pendant vertices, where g + [+ k = n. U(3, A), showed in Figure 2, denotes the unicyclic
graph on n vertices obtained from the cycle C; = v;v,v31; by attaching A —3 pendant edges
and one pendant path at the vertex vs.

Lemma 2.7 ([5, 9]) Among all non-bipartite connected graphs on n vertices with k pen-
dant vertices, UX(3) is the unique graph whose signless Laplacian eigenvalue attains the

minimum.
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Lemma 2.8 ([5]) Let k > 2, and g > 3 be an odd integer. Then K(L[L“l(g)) < K(L[}’j(g)).

Lemma 2.9 Let G = G1(v) ¢ B(v) be a connected graph, where G, is a graph of order n,
and B is a bipartite graph of order s. Then «(G) < x(Gy). Moreover, if s > 1, G, is non-
bipartite and there exists an eigenvector x corresponding to k(Gy) such that x(v) # 0, then
k(G) < k(Gy).

Proof Let V(G) = {v1,va,...,Vn}, and x = (x(v1), 2(v2), ...,%(v,))T be a unit eigenvector cor-

responding to x(Gj). Then

k(Gy) = Z (x(vi)+x(v/))2.

ViV/‘GE(Gl)

Without loss generality, we may assume v = v,. Let V(B) = {v, Vy11,---, Vuss-1}, and let
(U, W) be the two parts of the bipartite graph B, where v e U. Let y = (y(v1), y(v2), ..., y(V),
YVii1)s o os YVps-1))T € R™71 defined on V(G) satisfy that y(v;) = x(v;) for i = 1,2,...,n,
y(u) =x(v) if u € U, and y(u) = —x(v) if u € W. Then

n+s—1 n n
Iyl> = >~y =Y i) + (s = D) = > a(vy)* = |lx])> =1,
i=1 i=1 i=1
(@)= — 3 () = —— 3 (xm) +x0) = (6.
”y” ViV €E(G*) ”x” viv;€E(G)

Clearly, if s > 1, G, is non-bipartite and x(v) # 0, we have |y[|?> > ||x||2. This implies that
k(G) < k(Gy). O

Lemma2.10 Letn > 9 ands > 0 be integer. Gy and G, shown in Figure 3, are two unicyclic
graphs of order n. Then k(G3) < k(Gy).

Proof Let k = k(Gy), and x = (x1,%,...,%,)7 be a unit eigenvector corresponding to k.

Then « = thvieE(Gl)(xi +x;)* and 0 < k < 1. By Lemmas 2.2 and 2.4, we have x, # 0. From

U1 U1
U3 Us44 Un—4 Un—3Un—2 Un—1 Up U3 Us44 Up—4 Un—3Un—2 Un—1
Un—6 \ Un—6 \\
o . 5 e
S Un—5 S Up—5 Un
G1 Go

Vg V10
U1 U1
l>j3 Uﬁ/@% Vg U7 Us ‘>§ U4 U%ﬁ vz Vg U
U2 U2
G Gy

Figure3 G; -Gg4.
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the eigenvalue equation Q(G)x = kx, we have

Xp-1 = (K - l)xm
Xy_o = (Kz -3k + l)xn,

k2 —5k% + 6K — l)x,,,

Xn-3 = (
Xpea = (K" = 76 +156% — 10k + 1)y,
Xn-5 (

= (k3 - 6K2% + 9 — l)xn.
Lety=(y1,%2,...,¥,)7 € R" defined on V(G,) satisfy that

V-5 = —(Xp-3 + Xua + Xu_s),

Y= =% + X1 + Xp2),

and y; =x; fori=1,2,...,n—6,n—4,n-3,n—2,n—1. Then

Z (Yi+)’j)2= Z (xi+xj)2=K,

viv;€E(Gy) viv;€E(G1)

and

n n
2 2 2 2
Iyl =l = Y "7 =Y " ?
i=1 i=1

=k (k7 = 10k® + 32> —18k* — 89k> + 156K — 70k + 4)x]..
Let f(¢) = t” —10t° + 32¢° — 18¢* — 89¢3 + 156¢% — 70¢ + 4. By a computation, f(¢) = 0 has five

real roots which are approximately equal to —1.7787, 0.0667, 0.6606, 2, 2.0890, respec-

tively. By Lemma 2.9, we have
kK =k(G1) <k(G1—va—-+ = Vy3).

Note that G; —v4 — - - - — Vg3 is a 2¢-subdividing graph of G3 or G4 (shown in Figure 3). By
Lemma 2.6, we have

i =1(Gy) <k(Gy— vy — -+ = vey3) < min{k(Gs), k(Ga)}.
By a computation, we have «(Gs) ~ 0.0588025 and «(Gs) &~ 0.0426304. It follows that

Kk < 0.0667. Noting that f(0) = 4, we have f(«) > 0. It follows that ||y||? > ||x|.
Combining the above arguments, we have

k(Gy) < ”y% Z (yi +y].)2 < ﬁ Z (x; +x].)2 =«k(Gy).

V['V,'€E(G2) VW,EE(GI)

This completes the proof. O
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Lemma 2.11 Let n > 9, and U'~>(3), U"*(3), U}(3,n - 4), U}(3,n — 3) be shown in Fig-
ure 2. Then

k(U°B3) < (U(B,n-4)),  «(U*Q3) <k (U;(3,n-3)).

Proof Letk = k(U}(3,n—4)),and x = (x1,%y,...,%,)" be a unit eigenvector corresponding
to k. By Corollary 1.3 of [18], it is easy to see k(G) < 1/2. From the eigenvalue equation
Q(U(3,m—4))x = kx, we have x) = X9, X4 = - - - = X4,

(K = 2)x1 = %1 + X3,

(k =1 +4)x3 =2x1 + (1 —7)X4 + X3,

(ke = D)xg = x3,

(k= 2)xp-3 = X3 + X2,

(kK = 2)%u-2 = Xp_3 + Xn-1,

(k= 2)%p-1 = X2 + %X,

(K - 1)xn =Xp-1-

Since x = (x1,%2,...,%,)T is an eigenvector, x # 0. It follows that

k-3 -1 0 0 0 0 0
-2 «k-n+4 7-n -1 0 0 0
0 -1 k-1 0 0 0 0
0 -1 0 k-2 -1 0 0 [=0.
0 0 0 -1 k-2 -1 0
0 0 0 0 -1 k-2 -1
0 0 0 0 0 -1 k-1

This implies that « is the least root of the following equation:

fx) 227 — (n+7)x° + (101 + 6)x° — (361 — 48)x* + (551 — 99)x>

- (3ln-15)x* + (31 + 40)x — 4 = 0.
Similarly, we can see that « (U"~°(3)) is the least root of the following equation:
glx) = 2 —(n+5)xt + (8n—6)x — (181 — 42)x* + (11ln - 28)x — 4 = 0.
Noting that g(0) = -4 < 0 and
fx) — (x —1)%g(x) = x(x — 1)(9c3 —nx? —(n—19)x + 81 — 60) <0
for 0 < x < 1/2, we have g(«) > 0, and so

k(U)5(3)) <k =k (U5(3,n—4)).
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By a similar reasoning to above, we can see that « (U (3,7 — 3)) and « (U"*(3)) are the
least root of the following equations respectively:

h(x) 2% — (n+6)x° + (81 + 5)x* — (21n —18)x° + (197 —10)x* — Bn + 24)x + 4 =0,

) 2 xt—(m+4)® +(6n -5 - (Tn-12)x+4 =0.
Noting that r(0) =4 > 0 and
h(x) — (x = 1)%r(x) = x(x3 —nx + (n—-15)x + 4n — 28) >0
for 0 < x <1/2, we have r(k (U} (3,n - 3))) < 0, and so
K (UZ_4(3)) < K(LI:(S, n-— 3)).
This completes the proof. O

3 Main results

Let U(n, A) be the set of non-bipartite unicyclic graphs of order » with maximum degree
A, and G(n, A) be the set of non-bipartite connected graphs of order n with maximum
degree A.In this section, we firstly determine the unicyclic graph whose signless Laplacian
eigenvalue attains the minimum among all graphs in U(n, A).

Theorem 3.1 Let4 < A < n-3. Amongall graphs inU(n, A), U>71(3) is the unique graph
whose signless Laplacian eigenvalue attains the minimum.

Proof Let G e U(n, A),and C; = v1v;... v, be the unique cycle of G. Then g is odd, and G
can be obtained by attaching trees T3, T5, ..., T, to the vertices vi,v,...,V, of Cg, respec-
tively, where T; contains the root vertex v; fori = 1,2,...,¢. |V(T;)| = 1 means V(T;) = {v;}.
Suppose that G has k pendant vertices. It is easy to see A < k + 2. Let x = (x1,%3,... %) T
be a unit eigenvector corresponding to « (G).

Case 1. A < k + 1. By Lemma 2.7, we have K(U,’j(3)) < k(G) with equality if and only
if G = UX(3). By Lemma 2.8, we have «x (U271(3)) < «(U*(3)) with equality if and only if
A =k + 1. It follows that « (L271(3)) < x(G) with equality if and only if G = U27(3).

Case 2. A = k +2. Then G must be the graph obtained from the cycle C, with k pendant
paths P;,..., P; attached at the same vertex v; of Cg, and k > 2.

If g > 5, by Lemma 2.4, we have X(,_3)/2 = X(g+3)2 and [x;| < |%1]. Let

G' = G = v(g_1)2V(g-3)12 + V(g-1)/2V(g+3)/2-
Then A(G') = A, G’ has k + 1 pendant vertices, and from (1) we have

k(G) <2"Q(G)x =x" Q(G)x = k(G).
If k(G') = k(G), then x = (x1,%,...,x,)T is also an eigenvector corresponding to « (G'). By
Lemmas 2.4 and 2.3, we have |x| > |x1| > 0, a contradiction. Therefore x(G’) < x(G). By

Lemma 2.7, we have «(U**1(3)) < «(G). It follows that

k(ULT3)) =k (U (3)) <k (G).
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Now we assume that g = 3. If G # U(3,A), then there are two paths attached at
the vertex v; with length more than 1. Without loss of generality, we may assume that
ip >3 and iy > 3. Let P;; = v;...vpv, and P;, = v;...vgv.. Without loss of generality, we
may assume that |x;| > |x4] > 0. Let G’ = G — vyv, + V.. Then A(G') = A, G’ has k + 1

pendant vertices. By Lemma 2.5, we have «(G’) < k(G). It follows from Lemma 2.7 that
k(ULS3)) =k (U (3)) < k(G <«(G).
If G=U}(3,A)and A <n-5,by Lemma 2.3, we have |x,_4| > |¥3|. Let
G1=U;(3,A) —v3va + VyaVa.
Let s = A — 4. Then by Lemma 2.5, we have «(G;) < «(U};(3, A)). Let
Gy = G1 = VyoaVA = Vi1V + Vu3VA + VoV

By Lemma 2.10, we have «(G;) < k(G1). Noting that G, has A — 1 pendant vertices, by

Lemma 2.7, we have
K (ULT1(3)) < k(Ga) < k(G1) < k(G).
If G=U}(3,n-4) or U}(3,n - 3), by Lemma 2.11, we have

K(LI;’_S(S)) < K(UZ(B,H - 4)) =«k(@G),
k(U *3)) <k (U3, n-3)) =«(G).

This completes the proof. O

Secondly, we determine the graph whose least signless Laplacian eigenvalue attains the

minimum among all graphs in G(n, A).

Theorem 3.2 Let4 < A < n—3. Among all graphs in G(n, A), U>7(3) is the unique graph

whose least signless Laplacian eigenvalue attains the minimum.

Proof Let G € G(n, A) such that «(G) as small as possible, and let v € V(G) such that
dg(v) = A. By deleting edges from G, we can get a non-bipartite unicyclic spanning sub-
graph of G, denoted by G/, such that dg (v) = A. By Lemma 2.1, we have «(G') < k(G).
By Theorem 3.1, we have «(U271(3)) < x(G') with equality if and only if G’ = U27}(3).
Therefore

K(LIHA’I(3)) < K(G/) <«(G).

Noting that G is the graph whose least signless Laplacian eigenvalue attains the minimum
among all graphs in G(n, A), we have k (G) < x(U2>71(3)). It follows that k (£ 7(3)) = k(G).
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This implies that G may be obtained from U/21(3) by adding edges. Let x = (x1, %2, ...,%,) T
be a unit eigenvector corresponding to «(G). Then

k(@) = Y () +x()

uveE(G)
2 2
= Z ((w) + x(v))" + Z (%(w) + x(v))
uveEUIA1(3)) uveE(G\E(WUA(3))

v

Z (%) + x(v))2 >k (US(3)).

uveEUA1(3))

Since «(G) = k (U>71(3)), it follows that

Z (x(u) + x(v))2 =0, Z (x(u) + x(v))2 =K (LIHA_I(S)).

uwveE(G)\E(UA1(3)) uveE(UA1(3))

Therefore x = (x1,%2,...,x,)” is also an eigenvector corresponding to «(U27%(3)). By

Lemmas 2.4 and 2.3, we have
ler| = ool < lwz| < [xal < -+ - < [xp_nsal = -+ =[xl

From the eigenvalue equation Q(U>71(3))x = K (UL71(3))x, we have x4 = -+ = x,. If
E(G)\ E(U271(3)) #0, then

Z (x(u) + x(v))2 0,

uveE(GN\EWUR™1(3))
which yields a contradiction. So E(G) \ E(U;7(3)) = #. Therefore, G = U.71(3). O

Remark 3.3 For A =2, we know that G(#n,2) = {C,} with # being odd. For A = 3, from
[4], we know that U}(3) is the unique graph whose least signless Laplacian eigenvalue
attains the minimum among all graphs in G(n,3). For A =n—1,U(n,n — 1) = {S};}, where
S» is obtained by adding one edge to the star Kj,_;. Let G € G(n,n — 1) \ {S}}, then G is
obtained from S} by adding at least one edge. By a similar reasoning to that of Theorem
3.2, we can show that «(S¥) < k(G). For A =n—2,U(n,n - 2) = {S}*},5%2}, where S*1 is
obtained from S*_, by adding one pendant edge to a vertex of degree 1, and S**? is obtained
from S}_; by adding one pendant edge to a vertex of degree 2. From Lemmas 2.5, 2.4 and
2.6, we may obtain k' (S:*]) < k(S:*2). Let G € G(n,n — 2) \ {Si*1,S%*2}, then G is obtained
from S’*] or Si*? by adding at least one edge. By a similar reasoning to that of Theorem
3.2, we can show that «(S}*]) < k(G).
4 Discussion
Recalling that « (G) depends more on the distribution of the edges of a graph than on their
number, we propose the following problems for further research.

(1) Characterize all extremal graphs whose least signless Laplacian eigenvalue attains

the minimum among all non-bipartite unicyclic graphs with a given degree

sequence.
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(2) Characterize all extremal graphs whose least signless Laplacian eigenvalue attains
the minimum among all non-bipartite connected graphs with a given degree

sequence.
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