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Abstract
Let {T (n, k)}0≤n<∞,0≤k≤n be a triangular array of numbers. We say that T (n, k) is skew
log-concave if for any fixed n, the sequence {T (n + k, k)}0≤k<∞ is log-concave. In this
paper, we show that the Boros-Moll sequences are almost skew log-concave.
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1 Introduction and main result
Boros and Moll [, ] explored a special class of Jacobi polynomials in their study of a
quartic integral. They have shown that for any a > – and any nonnegative integer m,

∫ ∞




(x + ax + )m+ dx =

π

m+/(a + )m+/ Pm(a),

where

Pm(a) =
∑

j,k

(
m + 

j

)(
m – j

k

)(
k + j

k + j

)
(a + )j(a – )k

(k+j) . (.)

Using Ramanujan’s master theorem, Boros and Moll [] derived the following formula for
Pm(a):

Pm(a) = –m
∑

k

k
(

m – k
m – k

)(
m + k

k

)
(a + )k , (.)

which implies that the coefficient of ai in Pm(a) is positive for  ≤ i ≤ m. Let di(m) be given
by

Pm(a) =
m∑

i=

di(m)ai. (.)

The polynomial Pm(a) is called the Boros-Moll polynomial, and the sequence {di(m)}≤i≤m

of the coefficients is called a Boros-Moll sequence. From (.), we know that di(m) can be
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given by

di(m) = –m
m∑

k=i

k
(

m – k
m – k

)(
m + k

k

)(
k
i

)
. (.)

Some combinatorial properties of {di(m)}≤i≤m have been proved. Boros and Moll []
proved that the sequence {di(m)}≤i≤m is unimodal, and the maximum element appears
in the middle. Recall that a sequence {ai}≤i≤m of real numbers is said to be unimodal if
there exists an index  ≤ j ≤ m such that

a ≤ a ≤ · · · ≤ aj– ≤ aj ≥ aj+ ≥ · · · ≥ am

and {ai}≤i≤m is said to be log-concave if

a
i – ai+ai– ≥ ,  ≤ i ≤ m, (.)

where a– = am+ = . Moll [] conjectured that the sequence {di(m)}≤i≤m is log-concave.
Kauers and Paule [] proved this conjecture based on recurrence relations found us-
ing a computer algebra approach. Recently, Chen and Xia [] showed that the se-
quence {di(m)}≤i≤m satisfies the strongly ratio monotone property which implies the
log-concavity and the spiral property. They [] also confirmed a conjecture of Moll which
says that {i(i + )(d

i (m) – di–(m)di+(m))}≤i≤m attains its minimum at i = m. Chen et al.
[] proved that the Boros-Moll sequences are interlacing log-concave. Chen and Gu []
showed that the sequence {di(m)}≤i≤m satisfies the reverse ultra log-concavity. Chen and
Xia [] proved that the Boros-Moll sequences are -log-concave, and Xia [] studied the
concavity and convexity of the Boros-Moll sequences.

In this paper, we give a new definition, i.e., skew log-concavity. Let {T(n, k)}≤n<∞,≤k≤n

be a triangular array of numbers. We say that T(n, k) is skew log-concave if for any fixed
n, the sequence {T(n + k, k)}≤k<∞ is log-concave. We will show that the Boros-Moll se-
quences are almost skew log-concave.

The main results of this paper can be stated as follows.

Theorem . Let di(m) be defined by (.). We have, for any fixed m ≥ ,

d
i (m + i) > di–(m + i – )di+(m + i + ), i ≥ , (.)

and

d
i (i) < di–(i – )di+(i + ), i ≥ . (.)

2 Proof of Theorem 1.1
From (.), we see that dm(m) = –m(m

m
)
, which implies that (.) holds.

By (.),

dm(m + ) =
(m + )(m + )

(m + )
–m

(
m
m

)
,
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which yields

d
i (i + ) > di–(i)di+(i + ).

Therefore, (.) holds when m = .
Hence, in the following, we always assume that m ≥  and i ≥ . We first recall the fol-

lowing three recurrence relations derived by Kauers and Paule []:

di(m + ) =
m + i
m + 

di–(m) +
(m + i + )

(m + )
di(m),  ≤ i ≤ m + , (.)

di(m + ) =
(m – i + )(m + i + )

(m + )(m +  – i)
di(m)

–
i(i + )

(m + )(m +  – i)
di+(m),  ≤ i ≤ m, (.)

and

di(m + ) =
–i + m + m + 

(m +  – i)(m + )
di(m + )

–
(m + i + )(m + )(m + )
(m +  – i)(m + )(m + )

di(m),  ≤ i ≤ m + . (.)

Now we represent the difference d
i (m + i) – di–(m + i – )di+(m + i + ) in terms of

di(m + i) and di(m + i + ). Thanks to (.), (.) and (.),

d
i (m + i) – di–(m + i – )di+(m + i + )

= Ad
i (m + i + ) + Bdi(m + i + )di(m + i) + Cd

i (m + i), (.)

where

A =
(m + i + )(m +  + i)(m + i)(m + )(m + i – )
(i + )i(m + i + )(m + i – )(m + i)(m + i – )

, (.)

B = –
(m + )(m + i)D

(i + )i(m + i + )(m + i – )(m + i)(m + i – )
, (.)

C =
E

(m + i – )(m + i)(m + i – )(m + i + )(m +  + i)i(i + )
(.)

with

D = – + mi + i + m + m + i + mi + mi

+ m + i + m + i + mi + mi + mi, (.)

E = –mi – i – m – m + i + ,mi + ,mi + m + ,i

+ ,m + ,i + ,mi + ,mi + ,mi + ,i + ,m

+ ,i + ,mi + ,im + ,mi + ,mi + ,mi

+ ,mi + ,im + ,mi + ,mi + ,mi + ,mi

+ ,im + ,mi + ,mi + ,mi + ,m + m. (.)
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It is easy to check that

� = B – AC =
(m + )(m + i)F

i(i + )(i + m + )(i + m – )(i + m)(i + m – ) ,

where

F = ,i + ,im + ,im + ,im + ,im + ,im

+ ,i + ,im + im – ,im – ,im – ,im

– ,im – ,m + ,i + ,im + ,im – ,im

– ,im – ,im – ,m + ,i + ,im + ,im

+ ,im + ,im + ,m + ,i + ,im + ,im

+ ,im + ,m – ,i – ,im – ,im – m

– i – im – m + i + m.

Note that A is positive. Hence, in order to prove that the right-hand side of (.) is positive,
it suffices to prove that when � is nonnegative,

di(m + i + )
di(m + i)

>
–B +

√
�

A
. (.)

Therefore, in the following, we assume that � ≥ .
Recall that Kauers and Paule [] proved the following inequality:

di(m + )
di(m)

≥ m + m + i + 
(m + )(m +  – i)

,  ≤ i ≤ m.

Replacing m by m + i, we see that

di(m + i + )
di(m + i)

≥ i + im + m + i + m + 
(m +  + i)(m + )

, i ≥ . (.)

It is a routine to verify that

(
A

i + im + m + i + m + 
(m +  + i)(m + )

+ B
)

– �

=
(i + m)(m + )(i + m + )(i + m – )G

i(i + )(i + m + )(i + m – )(i + m)(i + m – ) , (.)

where

G = im + im + im + im + m – i – im

– im – im – i – im – im – m + i + im + i + m.
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Note that when m ≥  and i ≥ , G is positive. Thus the right-hand side of (.) is positive.
On the other hand,

A
i + im + m + i + m + 

(m +  + i)(m + )
+ B

=
(i + m)(m + )(– – i + im + i + i + im + im)

(i + )(i + m + )(i + m – )(i + m)(i + m – )
,

which is positive. Therefore, from (.), we have

A
i + im + m + i + m + 

(m +  + i)(m + )
+ B > �,

which can be rewritten as

i + im + m + i + m + 
(m +  + i)(m + )

>
–B +

√
�

A
. (.)

From (.) and (.), we obtain (.) and this completes the proof.
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