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1 Introduction and preliminaries

Convexity theory has played a pivotal role through its numerous applications in different
fields of pure and applied sciences. In the past few years several new generalizations and
extensions of classical convexity have been proposed in the literature, see [1-12]. Shi et al.
[11] introduced the notion of harmonic convex sets as follows.

Definition 1.1 ([11]) A set 2 C R, is said to be a harmonically convex set if

Xy

— € Q, VxyeQtel0,1].
tx+(1-1t)y oY [0.1]

Iscan [8] introduced the class of harmonic convex functions. The natural domain of har-
monic convex functions is harmonic convex sets. Noor et al. [10] extended the definition
of harmonic convex functions and defined a new generalization, which is called harmonic
h-convex functions.

Definition 1.2 ([10]) Let /:[0,1] €] — R be a real function. A function f: Q C R, - R
is said to be a harmonically /-convex function if

f<x7y) <h(L- () + KeY6), Veyelie (0. (1)
tx+(1-1t)y
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Remark 1.3 Note that, if 4(t) = t,£5,t™5, ¢! and ¢ = 1, then the definition of harmonic
h-convex functions reduces to the definitions of harmonic convex, harmonic s-convex,
harmonic s-Godunova-Levin convex, harmonic Godunova-Levin and harmonic
P-functions, respectively. Thus it is worth to mention here that the class of harmonic
h-convex functions is quite unifying one as it naturally includes several other classes of

harmonic convex functions.

Convexity theory has also a strong relationship with theory of inequalities, and resul-
tantly many inequalities have been obtained via convex functions, see [6, 13—15]. Inter-
ested readers may find the importance of generalized convexity to variational inequalities
and multiple objective optimization in [16—20]. One of the most extensively studied in-
equalities is Hermite-Hadamard’s inequality. This inequality was proved by Hermite and
Hadamard independently. It provides a necessary and sufficient condition for a function
to be convex. Dragomir et al. [6] has written a nice monograph on Hermite-Hadamard
type inequalities. Interested readers may find very interesting and useful details about
these inequalities in this monograph. Khattri [21] discussed some very interesting ap-
plications of Hermite-Hadamard’s inequality. Recently fractional calculus has attracted
many researchers and thus become a powerful tool in many branches of mathematics. For
some recent investigations in fractional calculus, see [22]. The classical form of Riemann-
Liouville integrals is defined as follows.

Definition 1.4 ([22]) Let f € Li[a, b]. Then the Riemann-Liouville integrals /7, f and J; f
of order « > 0 with a > 0 are defined by

o _ 1 ¥ o—
I fx) = m/ﬂ (k-0 (t)dt, x>a, (1.2)
and
1 b
W= / (t-x)f(@)dt, x<b, 13)
where

oo
MNa) = j e~ ix*tdx,
0

is the well-known gamma function.

Sarikaya et al. [23] obtained Hermite-Hadamard type inequalities via Riemann-Liouville
fractional integrals. Diaz et al. [24] introduced the generalized k-gamma function as

k" (k)&
() = lim ’q(((')q—)k k>0,xeC\KkZ . (1.4)
n—00 X) .k

'k is one parameter deformation of the classical gamma function as I'y — I' when k — 1.
[k is based on the repeated appearance of the expression of

D@ +k)(¢ + 2k)(p + 3K) - -+ (¢ + (n = 1)k).
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This above statement is a function of the variable ¢ and is denoted by (¢),,x. It is known
as Pochhammer k-symbol, which reduces to classical Pochhammer symbol (¢), by taking

k = 1. The integral of 'y is given by
o Lk
Cr(x) :/ e wdt, NRx)>O0. 1.5)
0

It is evident from (1.5) that
x X
(%) = kk-lr<%).

Diaz et al. [24] also defined a k-beta function as

_ D@T)

Bix,y) Tty

R(x) > 0,%R(y) > 0. (1.6)

The integral form of a k-beta function is given by

1
Bel,y) = % / 1= pE dr. 17)
0

From (1.5) and (1.7) one can have

Bi(x,y) = %ﬁ(%%)

Using these definitions of k-gamma and k-beta functions, Mubeen et al. [25] introduced

the k-Riemann-Liouville fractional integral of the type

o« _ 1 * %1
k]f(x)_kl"k(a)/o k-0 f(H)dt, «>0,x>0,k>0. (1.8)

It is obvious that when k — 1, the above definition reduces to classical Riemann-Liouville
fractional integrals.

Sarikaya et al. [26] introduced the notion of k-Riemann-Liouville fractional integrals
and discussed some of its interesting applications with respect to inequalities.

To be more precise, let f be piecewise continuous on I* = (0, 00) and integrable on any
finite subinterval of I = [0, 0c0]. Then, for ¢ > 0, we consider the k-Riemann-Liouville frac-

tional integral of f of order «

o _ 1 ¥ _ a_q
Wafx) = (a)/u(x H S dt, x>ak>0.

kT

For more details, see [26]. Note that when k — 1, k-Riemann-Liouville fractional integrals
become classical Riemann-Liouville fractional integrals. It is worth mentioning here that
the notion of k-Riemann-Liouville fractional integral is the significant generalization of all
above Riemann-Liouville fractional integrals. We would like to emphasize that for k # 1
the properties of k-Riemann-Liouville fractional integrals are quite different from those
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of classical Riemann-Liouville fractional integrals. Due to these facts, the k-Riemann-
Liouville fractional integrals have important applications in several branches of pure and
applied sciences, see [24, 26, 27].

The integral representation of k-Appell’s series F) x, where k > 0, is

Fk(C 7_1 71 _a
Fii= 1-1) 1-kznt 7 1-kzt kdt
- ch_a)f ( (1 - kart) % (1 - kzat)”

For some more details, see [27].

2 Some new auxiliary results
In this section, we derive some new k-fractional identities which will serve as auxiliary

results for the developments of our next results.

Lemma 2.1 Letf:1\ {0} — R be differentiable on I° such that f' € L|a, b], where a,b € I
with a < b, then

1 o o
Tyta, b ki) = 209 [ 1 (I_t)k]f/(m+ ab )dt,

2 ), TtarA-0pP 1-Db
where
Ty(a, by, k; g)
e (ba_ba>% s oo (5) +onoeo(3))

Proof 1Tt suffices to show that

Ty(a, b, k; ) =

ab(b-a) [ [tk —(1-1)%] ab &
2 o [ta+(1-1t)b]? (ta+(1—t)b)
=K + K. (2.1)

Now integrating by parts yields

ab(b a) £k ) ab
K= ,/ [ta+ (1 - t)b]zf (tu+(1—t)b)dt
1 kTi(@+k) [ ab \% 1 i1 o
o G5) e ) (G oG]

fb) Tla+k) ( ab \* 1
B (m> k]l#(fog)(;)- (2.2)

Similarly

_abb-a) [ Q-0F (  ab
K== [ta+(1—t)b]2f<ta+(1—t)b)dt

K) [ ab \*
:@_ rk(ozz+ <)(ba_a) k]‘ai(fog)G)' (2.3)
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Combining (2.1), (2.2) and (2.3) completes the proof. O

Lemma 2.2 Under the assumptions of Lemma 2.1 and k = 1, we have

1 o o
Tf(a,b;a,l;g):ab(b_a)/o [t -(1-2 f’( ab )dt,

2 ta+1A-1)b)” \ta+Q-1)b
where
b b \%
N T D)

This is due to Iscan [8].

Lemma 2.3 Letf:1\ {0} — R be differentiable on I° such that ' € Lla, b], where a,b € I
with a < b, then

3
1
Mf(ﬂ, b;a’krg) = E le

i=1

3 1 , ab

|:ab(b 9 fo [ta+(1- t)b]zf (m +1- t)b) “
1 1 , ab

S a)/i lta+ (=057 (m +(1- t)b> v

1 . o 1 , ab
—zzb(b—a)‘/o [(1—t)k _tk][m+(1_t)b]2f <m+(1—t)b) dti|’

N =

where

My(a,b;a, k; g)

2ab T +1) [ ab \F* 3 1 ) .
:f<a+b)_ 2 (b—a) {/(]bé(fog)<;)+k]%(fog)(z)}

Proof Calculate I3, I and I3 as follows:

; 1 (__ab
h :“b(”‘”)/o lta+ (- b1 (ra+(1—f)b>dt

=f( 2ab ) ~fla). 2.4

a+b

Now

1 1 (__ab
f= _“b(b_“)/; [ta+ (- 0b (m+<l—f>b)dt

:f< 2ab ) b, 25)

a+b
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Also

1 . 1 ’ ab
I —ab(b‘“)/o i e e (m+(l—t)b>dt

1 . ab
_/0 [a-of —tk]df<M)

! a ab ! a ab
_/0 (1-0 df(m+(l—t)h) +/0 £ df(m+(1—t)b)

I] +111. (26)

Now consider

1 a ab
li= _/o (l_t)kdf(tm l—t)b)
a (! o ab
:f(“)_ifo -0 lf<ta+(1—t)b)dt

Now suppose u = then

ab
ta+(1-t)b’

b o b o _1
1,=f(a)_%(bﬂ_a>k/ G—%)k %f(u)du.

. _1
Again suppose u = 3, then

I =f(@) - k(e +k>(%)kkf§_ (fog>(§). 27)
Similarly
b o
Ly =f(B) - Talar+ k)(b“—) o (fog)(l). 28)
—a at b

Using (2.7) and (2.8) in (2.6) and then adding the resultant with (2.4) and (2.5) completes
the proof. O

Lemma 2.4 Under the assumptions of Lemma 2.3, if k — 1, we have

My(a,b;a, 1;8) =

3
21
i=1

N =

1

1 2 1 , ab
:E[”b(b_“)/o e+ A-0b? <ta+(1—t)b>dt
! 1 , ab
_“b(b_“)/% e+ a_on? (ta+(1—t)b) dt

1 o 1 , ab
_“b(b_“)/o (-0~ ][ta+(1—t)b]2f(ta+(1—t)b)dt]’
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where

b b\ ¥
wnsnsaA(2)- 2 () o )

This result is due to Set et al. [28].

3 Results and discussions
In this section, we derive some new k-fractional integral inequalities.

Theorem 3.1 Letf:1\ {0} — R be a harmonically h-convex function where a,b € I with
a<b. Iff € Lla, b], then, for h(%) #0, we have

k 2ab ab % . 1 3 1
ah(%)f(a+b) = <b—a) krk(a){k]{%(fog)(z) +/Jbl+(fog)(;)}

1
< [f(@ +£(®)] / tE 1 [h(1— ) + h(t)] de

0

Proof Since f is a harmonically /-convex function, so we have

f((l_i)#:”» fh(%)[f(mﬁ_ t)b) +f((1—gz+tb>]'

Multiplying both sides of the above inequality by k' and integrating it with respect to ¢

on [0,1], we have
k ( 2ab
a_f<u + b)

() [

b
= G)[ <m+?1b t)b)d”/olt%%u—g%)dt}
)G U =5) e [ G) ()
A il o)
This implies
ahk(%)f(jfi))g<h“_ba)zkrk(a fovea(y) s vea(3)]l e

Now

ab
Iy ) == @ ey o)

b
f(dﬁ) )f (@) + h(1 - O (b).
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Adding the above two inequalities and multiplying both sides by %71, we have

ti‘b‘(L)b) + ti‘1f<a—b> < t%‘l[h(l —t) + h(t)][f (@) + f(B)].

ta+(1-t 1-ta+th

Integrating the above inequality with respect to ¢ on [0,1], we have

(;—b)kaa){m_ (fog><3> " <fog)<3)}
—-a a b 5 a

1
<[f@+£®)] /0 tE 7 [h(1 - t) + h()] dt. (3.2)

Summing inequalities (3.1) and (3.2) completes the proof. O

We now discuss some special cases of Theorem 3.1.

L. If i(t) = t in Theorem 3.1, then we have the following new result.

Corollary 3.2 Let f: 1\ {0} — R be a harmonically convex function, where a,b € I with
a<b.Iff € Lla, b], then we have

2k Zﬂb ﬂb % . 1 ) )
;f(a-;-b) = (E) kl"k(a){k]%(fog)<g> +k]b%(fog)(;)}

_ k@ + &)

o

IL If h(¢) = £ in Theorem 3.1, then we have the following new result.

Corollary 3.3 Letf:I\ {0} — R be a harmonically s-convex function, where a,b € I with
a<b.Iff € L|a, b], then we have

2k [ 2ab ab \ ., 1 . 1
7f<a+b> < (b—zz) krk(“){k]%(fog)<z> +/Jb%(f°g)(;>}

k
< [f@ +£®)] (kBk (o k(s + 1)) = — ks>'

IIL. If h(t) = ¢~° in Theorem 3.1, then we have the following new result.

Corollary 3.4 Let f:1\ {0} = R be a harmonically s-Godunova-Levin convex function,
where a,b €  with a < b. Iff € L{a, b], then, for a > ks, we have

k [ 2ab b\t 1 1
Ef(ajl) < (;_ﬂ) krk(a){k]l;(fog)<z> +/J‘%(f°g)(;>}

< [f(zz) +f(b)] (kBk (a,k(l - s)) - k )

o —ks

IV.If h(t) =1 in Theorem 3.1, then we have the following new result.
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Corollary 3.5 Let f: I\ {0} — R be a harmonic P-function, where a,b € I with a < b. If
f € Lla, b], then we have

k [ 2ab ab \* . 1 3 1
Ef<a+b> < (E) ka(a){k]al_(ng)<z> +k1b1+(f°g)(;)}

- 2K/ (@) +f®)]

o

Now using the auxiliary results, we derive some trapezoidal and mid-point type inequal-
ities.

Theorem 3.6 Assume that f : [0,1] — R is a differentiable function such that |f'|7 is a
harmonic convex function on [0,1]. Then

b(b - 11
| Ty(a, b0, k;9)| < ¥ N yes
where
1,8 o
|tk — (1—1)F| 1 1
= ————dt=— (1 L+l—1, ),
o ltav@—pp B2\ 2R TR
with

1 b-a
Il—kFlk(k -, 2k, 2k; — 2k Zbk)

L = kBi(a + k, 1)Fi a+k,0,2k,a+k+1;0,b;a ;
2bk
b-a
Is = kBi(at + k, 1)1-"1,,((0[ +k,0,2k, + k +1;0, 7>,
b-a
I, = kB (k,a + k)FLk(k, 0,2k, + 2k;0, b—k)’
and
;. /1 Itk —(1-1)%| ab
r-opr| e+ a-ob

1
=< ﬁ |:lf/(6l)|q<]1 - W]z +J5 —]7> + lf’(b)|‘1(5 201/k+1]4 +Je — ]8>],

q
dt

with

1 b-a
Ji = kB (k, k) Fy x (k —0 =k, 2k, 2k; o 2k’ 2bk )

1 b-a
kBk(oz+kk)F1k<a+k k2ka+2k 2bk)

1 b-a
J3 = kBi(2k, k)Flk(2k —a, 2k, 3k; — TET )

b—
Ja = kBi (o + 2k, k)Fyz (oe +2k, 0,2k, + 3k30, 2bZ >;
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b
]5—kBk(oe+k,2k)F1k<oc+k()2ka+3k0 bk“);
b-a
Jo = kBi(a + 2k, k)Fy i | o + 2k, 0,2k, o + 3k; 0, o ;
b-a
J7 = kBi(k, o + 2k)Fy x| k, 0,2k, & + 3k; 0, —— o
b-a
]g—kBk(Zkoz+k)F1k(2k02koz+3k0 bk)

Proof From Lemma 2.1, using the property of modulus and the power-mean inequality,

we have
| Ty (a, b, ki )|
labb-a) (' [tk -(1-0)F] ab
- 2 0 [m+(1—t)b]2f (m+(1—t)b>dt’
ab(b - a)/‘1 |tk — (1—1)%] < ab )‘dt
- [ta + (1 - ¢t)b]? ta+(1-1t)b
_ ab(b - a) 1_%]%’
- 2
where

_ [l -a-oF
o [ta+(1-1t)b)?

I e L Ltk - (-t

'2/0 [ta+ (- D)D) d”/o ara_om &

= 1 I L %I I3 -1 3.3
_ﬁ[l_<§) '2+3—4i|; (3.3)

with

1 u\ & b—a \~ 1 b-a
]1:/0 <1_§> (1— T u> du = kFlk(k a2k2k " ObK ),
1 a b—(l -2
12:‘/0 uk<1— T u) du

b-
= kBy(a + k, )F1k<a+k02ka+k+10 a);

2bk
1, b-—a )\~
13=f tk(l——“t) dr
; b

b-
= kB (o + K, 1)F1k<oz+k0 2, + k + 150, “)

bk

1 « b—a \> b-
14:/ (l—t)?<1——b“t> dt:kBk(k,a+/<)P1,k<k,o,2k,a+2k;o,—bk“>,
0
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and using the harmonic convexity of |[f'|7, we have

Lk - (1- 1)k | ab
/- / [ta + (1-t)b]? (ta+(1—t)b)
' |tF_(1_t)7\:| / q / q
5/0 m[(l—ﬂv(aﬂ +t|f'(b)|*] et
B 12 (1% ,
‘2/0 m[(l—tw(a)\ +t|f'(5)|"] dt
th —(1-0)F T Y
+/0 m[(l—t)[f(aﬂ +t|f'(b)|"] de
_ t( _%)%—(%)% U\, oa Wiaa
- [ g (-5 @l o as
Lk —(1-1)k e
+/0 m[(l—t)lf(an +t|f ()| "] de
= %[V’(d)|q<]1 - ﬁfz +J5 —]7>

1
+Lf/(b)|q(§]3 za/k+1]4+]6 ]8)i|, (3.4)

q
dt

with

1 1 %+1 b-—a -2 1 b-a
- (1-2 1- du = kBe(k, K)Fug ( K, o — k, 2k, 2k —, 22 );
A /0( 2”) ( 20 ”) u=kBilk )1"< * Y2k 2bk>
)
u) du

1 b-a
=kB , K)F
kBy(o + k, k) 1,k(a+k —k, 2k, o + 2k; — o 2bk>

S

|
S~
2

N
=R
N
—

|
N =

<
N~
N
—

|
S
Q|1
Q

1 b-a
J5 = (1——u> 1— u) du = kBk(Zkk)F1k<2k a2k3k§( 2bk>

L, b—a \* b-a
Ja= / uktt(1- u) du=kBi(o + 2k k)F il o + 2k,0,2k, 0 + 3k; 0, —— );
0 2b 2bk

1, b- -
]5:/ tﬂl—t)(l—Tat) dt = kBk(oc+k,2k)F1k<oz+k02kot+3k0 bk)
0

L, b-a\7 b
16:/ tz+1<1_7“t> dt:kBk(a+2k,k)FLk<oe+2k,0,2k,a+3k;0 bk“)

-2
]7_/(1 tk+1<1—Tt> dt = kBk(k,ot+2k)F1k(k02koz+3k0 ) >

b a

b _
/8—/ t(1 —t)F 1——t dt kB (2k,a + K)Fy x| 2k,0,2k,« + 3k; 0
0 b bk

and the proof is complete. O
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Theorem 3.7 Assume that f : [0,1] — R is a differentiable function such that |f'|7 is a

harmonic convex function on [0,1]. Then

| My(a, b, k; g)| b(b - “) (11_1/q]1/q L K\Vapla Ml—l/qu/q)’

where I is given by (3.3) , ] is given by (3.4),

~ a
T b(a+b)
1 b-a

[f"(a)|?
L= b2 - kBy(k, k)Fii | &, k2k,2k S

L o b-a
1 KBk OFL( 26,0,2k,3K:0, - .

_ 1
" bla+b)

and

_F@r b- 1 b-a
= | Fuk| K 0,2k3k0, bk = Fue| ko=h, 2k, 2K ) =

lf(b)|q b-a 1 b-a
E ——F g
+ — YD Fi i\ 2k,0,2k,3k;0, —— ok k| 2k,0,2k,3k;0, —— o

Proof From Lemma 2.3, using the property of modulus and the power-mean inequality,

we have

- abb-a)[ (1 |A-t)k —tk|]| ab
My bioskig)] = = Uo [ta + (1- )b]2 <m+(1—t)h)‘dt
3 1 , ab
+/0 [ta+(1—t)b]2"/(ta+(1—t)h)‘dt

! 1 , ab
+/% [ta + (1 £)b2 P <m+ (1-t)b)‘dt]

- ab(b2 -a) ([Vapa 4 g1-Vagya o pp-Vapia),

where

K—/% ! dt= —=
“Jo [ta+(@-0)b)2 " b a+b)

and

q
| a

I 2 1 }// ab
_/0 [m+(1—t)b]2|: (m+(1—t)b)

5 1 o
5/0 m[(l—t)lf(a)l +t|f'(b)|"] de
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and using the change of variables, we have

1 1 -
+@[f’(b)’q u(l—u b—) du
_r@r 1 b-a
Y -kBk(k,k)FLk k,—k,2k,2k; % Ik
[f’(b)|’f b-a
g+ KBk RF i 246,0,2K,3K:0, =

! 1 1
M:/; ta+ (0B " ba+ by

and

q
/[m+(1 tb]ZH'[<m+(1 t)b ):| de

1 q
_/ [ta+(1- tb]2H/<m+1 t)b >i| de
% q
"/0 [m+(1—t)b]2 H/ (m+(1—t)b>] dt

1 _
% (1_;5. b%) [(l—t)v/(a”q+tv/(b)|q]dt
0

IA

1

1 2 b- - 1 /
5 [ (-0 50 -l @l o)

-2
_ a)l"[/ (1_t)<1—t —“) di — /(1 t)(1—t.b"7“) dt:|
NACK b-a)™
»” [/0 t(““ b) dt_/o t( ) ]
@) b 1 b-a
- [Flk(koszkO bk) F1k<k k242K 3, )]

L o b- 1 b-a
iz | Fik| 20,2k, 3K0, bk = 2 P 24,0,2k,3k;0, =

This completes the proof. d

4 Conclusion

A new refinement of Hermite-Hadamard’s inequality via k-Riemann-Liouville fractional
integrals is obtained. We have derived two new k-fractional integral identities. Utilizing
these identities, we have derived some new k-fractional bounds which involve k-Appell’s
hypergeometric functions via the functions which have the harmonic convexity property.

It is expected that the ideas and techniques of this article may be useful for future research.
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