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Abstract
Fractional inequalities are useful in establishing the uniqueness of solution for partial
differential equations of fractional order. Also they provide upper and lower bounds
for solutions of fractional boundary value problems. In this paper we obtain some
general integral inequalities containing generalized Mittag-Leffler function and some
already known integral inequalities have been produced as special cases.
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1 Introduction
Inequalities play a vital role in both pure and applied mathematics. Specially, inequalities
involving the derivative and the integral of functions are very captivating for researchers.
Convex functions play an important role in the study of inequalities in all kinds of math-
ematical analysis.

Definition  A function f : I → R, where I is an interval in R, is said to be a convex
function if

f
(
tx + ( – t)y

) ≤ tf (x) + ( – t)f (y)

holds for t ∈ [, ] and x, y ∈ I .

Theorem . Let a function f : I →R be convex on I . Then we have

f
(

a + b


)
≤ 

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)


,

where a, b ∈ I , a < b.

In the literature this inequality is known as the Hadamard inequality.
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Recently, a number of researchers have taken great interest in establishing the Hadamard
type inequalities for fractional integral operators of different kinds in the diverse field of
fractional calculus. For example one may refer to [–].

2 Fractional derivative and integral operators
Fractional calculus is a theory of integral and differential operators of non-integral order.
Many mathematicians, like Liouville, Riemann and Weyl, made major contributions to
the theory of fractional calculus. The study on the fractional calculus continued with the
contributions from Fourier, Abel, Lacroix, Leibniz, Grunwald and Letnikov. For details,
see [, , ]. A first formulation of an integral operator of fractional order in reliable form
is named the Riemann-Liouville fractional integral operator.

Definition  ([, ]) Let f ∈ L[a, b]. Then Riemann-Liouville fractional integrals of f of
order ν >  with a ≥  are defined by

Iν
a+ f (x) =


�(ν)

∫ x

a
(x – t)ν–f (t) dt, x > a,

and

Iν
b– f (x) =


�(ν)

∫ b

x
(t – x)ν–f (t) dt, x < b,

where

�(ν) =
∫ ∞


tν–e–t dt,

it is clear that �(ν + ) = ν�(ν).

Definition  ([]) Let f ∈ L[a, b]. Then Riemann-Liouville k-fractional integrals of f of
order ν >  with a ≥  are defined by

Iν,k
a+ f (x) =


k�k(ν)

∫ x

a
(x – μ)

ν
k –f (μ) dμ, x > a,

and

Iν,k
b–

f (x) =


k�k(ν)

∫ b

x
(x – μ)

ν
k –f (μ) dμ, x < b,

where

�k(ν) =
∫ ∞


tν–e– tk

k dt.

Also �(ν) = limk→ �k(ν), �k(ν) = k
ν
k –�( ν

k ) and �k(ν + k) = ν�k(ν).

Actually, these forms of fractional integral operators have been formulated due to the
work of Sonin [], Letnikov [] and then by Laurent []. Now a days a variety of frac-
tional integral operators are under discussion. Many generalized fractional integral oper-
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ators also take part in generalizing the theory of fractional integral operators [, , , , ,
–].

Definition  ([]) Let μ, ν , k, l, γ be positive real numbers and ω ∈ R. Then the gen-
eralized fractional integral operator containing the generalized Mittag-Leffler function
ε

γ ,δ,k
μ,ν,l,ω,a+ and ε

γ ,δ,k
μ,ν,l,ω,b– for a real valued continuous function f is defined by

(
ε

γ ,δ,k
μ,ν,l,ω,a+ f

)
(x) =

∫ x

a
(x – t)ν–Eγ ,δ,k

μ,ν,l
(
ω(x – t)μ

)
f (t) dt ()

and

(
ε

γ ,δ,k
μ,ν,l,ω,b– f

)
(x) =

∫ b

x
(t – x)ν–Eγ ,δ,k

μ,ν,l
(
ω(t – x)μ

)
f (t) dt,

where the function Eγ ,δ,k
μ,ν,l is the generalized Mittag-Leffler function defined as

Eγ ,δ,k
μ,ν,l (t) =

∞∑

n=

(γ )kntn

�(μn + ν)(δ)ln
, ()

(a)n is the Pochhammer symbol, it is defined as (a)n = a(a + )(a + ) . . . (a + n – ),
(a) = . If k = l =  in (), then the integral operator ε

γ ,δ,k
μ,ν,l,ω,a+ reduces to an integral opera-

tor ε
γ ,δ,
μ,ν,,ω,a+ containing generalized Mittag-Leffler function Eγ ,δ,

μ,ν, introduced by Srivastava
and Tomovski in []. Along with k = l = , in addition if δ =  then () reduces to an integral
operator defined by Prabhaker in [] containing Mittag-Leffler function Eγ

μ,ν . For ω =  in
(), the integral operator ε

γ ,δ,k
μ,ν,l,ω,a+ reduces to the Riemann-Liouville fractional integral op-

erator [].

In [, ] the properties of the generalized integral operator and the generalized Mittag-
Leffler function are studied in brief. In [] it is proved that Eγ ,δ,k

μ,ν,l (t) is absolutely conver-
gent for all t ∈R where k < l + μ.

Since

∣∣Eγ ,δ,k
μ,ν,l (t)

∣∣ ≤
∞∑

n=

∣
∣∣
∣

(γ )kntn

�(μn + ν)(δ)ln

∣
∣∣
∣,

with
∑∞

n= | (γ )kntn

�(μn+ν)(δ)ln
| = S, we have

∣∣Eγ ,δ,k
μ,ν,l (t)

∣∣ ≤ S.

We use this definition of S in the sequel in our results.
A lot of authors presently are working on inequalities involving fractional integral op-

erators, for example the versions of Riemann-Liouville, Caputo, Hillfer, Canvati etc. In
fact fractional integral inequalities are useful in establishing the uniqueness of solutions
for partial differential equations of fractional order, also they provide upper and lower
bounds for solutions of fractional boundary value problems.
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In this paper we give some integral inequalities for a generalized fractional integral oper-
ator containing the generalized Mittag-Leffler function which are generalizations of sev-
eral results proved in [–].

The following result was obtained by Sarikaya et al. in [].

Theorem . Let f : [a, b] → R be a positive and convex function with  ≤ a < b. If f ∈
L[a, b], then the following inequalities for a fractional integral hold:

f
(

a + b


)
≤ ν–�(ν + )

(b – a)ν
[
Iν

( a+b
 )+ f (b) + Iν

( a+b
 )– f (a)

] ≤ f (a) + f (b)


.

3 Main results
First of all we establish the following result which would be helpful to obtain the main
result.

Lemma . Let f : I → R be a differentiable mapping on I , a, b ∈ I with a < b and let
g : [a, b] →R be continuous on [a, b]. If f ′ ∈ L[a, b], then the following equality holds:

(∫ b

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν[
f (a) + f (b)

]
– ν

∫ b

a

(∫ t

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

× g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

– ν

∫ b

a

(∫ b

t
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

=
∫ b

a

(∫ t

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν

f ′(t) dt

–
∫ b

a

(∫ b

t
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν

f ′(t) dt. ()

Proof To prove this lemma, we have

∫ b

a

(∫ t

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν

f ′(t) dt

=
(∫ b

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν

f (b) – ν

∫ b

a

(∫ t

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

× g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt. ()

Similarly

∫ b

a

(∫ b

t
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν

f ′(t) dt

= –
(∫ b

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν

f (a) + ν

∫ b

a

(∫ b

t
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

× g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt. ()

Subtracting equation () from (), we get (). �
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By using Lemma . we prove the following theorem.

Theorem . Let f : I → R be a differentiable function on I , a, b ∈ I with a < b and also
let g : [a, b] → R be continuous function on [a, b]. If |f ′| is convex function on [a, b], then
the following inequality holds for k < l + μ:

∣∣
∣∣

(∫ b

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν[
f (a) + f (b)

]
– ν

∫ b

a

(∫ t

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

× g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

– ν

∫ b

a

(∫ b

t
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

∣∣
∣∣

≤ (b – a)ν+‖g‖ν∞Sν

ν + 
[∣∣f ′(a)

∣
∣ +

∣
∣f ′(b)

∣
∣],

where ‖g‖∞ = supt∈[a,b] |g(t)|.

Proof By Lemma ., we have

∣∣
∣∣

(∫ b

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν[
f (a) + f (b)

]
– ν

∫ b

a

(∫ t

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

× g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

– ν

∫ b

a

(∫ b

t
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

∣
∣∣∣

≤
∫ b

a

∣∣
∣∣

∫ t

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

∣∣
∣∣

ν∣
∣f ′(t)

∣
∣dt

+
∫ b

a

∣∣
∣∣

∫ b

t
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

∣∣
∣∣

ν∣
∣f ′(t)

∣
∣dt. ()

By using ‖g‖∞ = supt∈[a,b] |g(t)| and absolute convergence of the generalized Mittag-Leffler
function, we have

∣
∣∣
∣

(∫ b

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν[
f (a) + f (b)

]
– ν

∫ b

a

(∫ t

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

× g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

– ν

∫ b

a

(∫ b

t
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

∣
∣∣
∣

≤ ‖g‖ν
∞Sν

[∫ b

a
(t – a)ν

∣∣f ′(t)
∣∣dt +

∫ b

a
(b – t)ν

∣∣f ′(t)
∣∣dt

]
. ()

Since |f ′| is convex function, it can be written as

∣
∣f ′(t)

∣
∣ ≤ b – t

b – a
∣
∣f ′(a)

∣
∣ +

t – a
b – a

∣
∣f ′(b)

∣
∣ ()

for t ∈ [a, b].
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Using () in (), we have

∣∣
∣∣

(∫ b

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν[
f (a) + f (b)

]
– ν

∫ b

a

(∫ t

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

× g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

– ν

∫ b

a

(∫ b

t
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)μ–

g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

∣∣
∣∣

≤ ‖g‖ν
∞Sν

[∫ b

a
(t – a)ν

(
b – t
b – a

∣
∣f ′(a)

∣
∣ +

t – a
b – a

∣
∣f ′(b)

∣
∣
)

dt

+
∫ b

a
(b – t)ν

(
b – t
b – a

∣
∣f ′(a)

∣
∣ +

t – a
b – a

∣
∣f ′(b)

∣
∣
)

dt
]

. ()

After simplification of inequality () we get the result. �

Remark . By giving particular values to parameters in the generalized Mittag-Leffler
function several fractional integral inequalities can be obtained for corresponding frac-
tional integrals. For example for the Riemann-Liouville fractional integral operator we
have the following results.

Remark . In Theorem . for different values of the parameter, we have
(i) if we put ω = , then we get [], Theorem ;

(ii) for ω = , ν = μ

k and g(s) = , then we get [], Corollary .;
(iii) for ω =  and ν = , we get [], Corollary .

Next we give the following result.

Theorem . Let f : I →R be a differentiable function on I , a, b ∈ I with a < b and also let
g : [a, b] → R be a continuous function on [a, b]. If |f ′|q, where q > , is a convex function
on [a, b], then the following inequality holds for k < l + μ:

∣
∣∣
∣

(∫ b

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν[
f (a) + f (b)

]
– ν

∫ b

a

(∫ t

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

× g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

– ν

∫ b

a

(∫ b

t
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

∣∣
∣∣

≤ (b – a)ν+‖g‖ν∞Sν

(νp + )

q

[ |f ′(a)|q + |f ′(b)|q


] 
q

,

where ‖g‖∞ = supt∈[a,b] |g(t)| and 
p + 

q = .

Proof By using Lemma ., we have

∣∣
∣∣

(∫ b

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν[
f (a) + f (b)

]
– ν

∫ b

a

(∫ t

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

× g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt
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– ν

∫ b

a

(∫ b

t
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

∣
∣∣
∣

≤
∫ b

a

∣
∣∣
∣

∫ t

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

∣
∣∣
∣

ν∣∣f ′(t)
∣∣dt +

∫ b

a

∣
∣∣
∣

∫ b

t
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

∣
∣∣
∣

ν∣∣f ′(t)
∣∣dt. ()

Using the Hölder inequality, we have

∣∣∣
∣

(∫ b

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν[
f (a) + f (b)

]
– ν

∫ b

a

(∫ t

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

× g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

– ν

∫ b

a

(∫ b

t
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

∣∣
∣∣

≤
(∫ b

a

∣
∣∣
∣

∫ t

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

∣
∣∣
∣

νp

dt
) 

p
(∫ b

a

∣∣f ′(t)
∣∣q dt

) 
q

+
(∫ b

a

∣∣
∣∣

∫ b

t
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

∣∣
∣∣

νp

dt
) 

p
(∫ b

a

∣
∣f ′(t)

∣
∣q dt

) 
q

. ()

Using ‖g‖∞ = supt∈[a,b] |g(t)| and absolute convergence of the generalized Mittag-Leffler
function, we have

∣
∣∣
∣

(∫ b

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν[
f (a) + f (b)

]
– ν

∫ b

a

(∫ t

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

× g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

– ν

∫ b

a

(∫ b

t
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

∣∣
∣∣

≤ ‖g‖ν
∞Sν

[(∫ b

a
|t – a|νp dt

) 
p

+
(∫ b

a
|b – t|νp dt

) 
p
](∫ b

a

∣∣f ′(t)
∣∣q

) 
q

. ()

Since |f ′(t)|q is convex function, we have

∣
∣f ′(t)

∣
∣q ≤ b – t

b – a
∣
∣f ′(a)

∣
∣q +

t – a
b – a

∣
∣f ′(b)

∣
∣q. ()

Using () in (), we have

∣
∣∣
∣

(∫ b

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν[
f (a) + f (b)

]
– ν

∫ b

a

(∫ t

a
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

× g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt – ν

∫ b

a

(∫ b

t
g(s)Eγ ,δ,k

μ,ν,l
(
ωsμ

)
ds

)ν–

g(t)Eγ ,δ,k
μ,ν,l

(
ωtμ

)
f (t) dt

∣
∣∣∣

≤ ‖g‖ν
∞Sν

[(∫ b

a
|t – a|νp dt

) 
p

+
(∫ b

a
|b – t|νp dt

) 
p
]

×
(∫ b

a

b – t
b – a

∣∣f ′(a)
∣∣q +

t – a
b – a

∣∣f ′(b)
∣∣q

) 
q

. ()

After simplification, we get the required result. �
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Remark . By giving particular values to the parameters in the generalized Mittag-
Leffler function, several fractional integral inequalities can be obtained for corresponding
fractional integrals. For example for the Riemann-Liouville fractional integral operator we
have the following result.

Corollary . In Theorem ., if we take ω =  and g(s) = , then we have the following
inequality for the Riemann-Liouville fractional integral operator:

∣∣
∣∣
f (a) + f (b)


–

�(ν + )
(b – a)ν

[
Iν

a+ f (b) + Iν
b– f (a)

]
∣∣
∣∣ ≤ b – a

(νp + )

p

[ |f ′(a)|q + |f ′(b)|q


] 
q

.

Remark . For particular values of the parameters, Theorem . gives the following re-
sults.

(i) If we put ω = , then we get [], Theorem .
(ii) If we put ω = , ν = , then we get [], Corollary .

(iii) If we take ω =  along with ν = μ

k , then we get [], Theorem ..

The next result is the Hadamard type inequality for a generalized fractional integral
operator.

Theorem . Let f : [a, b] → R be a positive and convex function with  ≤ a < b. If f ∈
L[a, b], then the following inequalities for the generalized fractional integral hold:

f
(

a + b


)
(
ε

γ ,δ,k
μ,ν,l,ω′ ,( a+b

 )+ 
)
(b) ≤ [(

ε
γ ,δ,k
μ,ν,l,ω′ ,( a+b

 )+ f
)
(b) +

(
ε

γ ,δ,k
μ,ν,l,ω′ ,( a+b

 )– f
)
(a)

]

≤ f (a) + f (b)


(
ε

γ ,δ,k
μ,ν,l,ω′ ,( a+b

 )– 
)
(a),

where ω′ = μω
(b–a)μ .

Proof Since f is a convex function, we have

f
(

x + y


)
≤ f (x) + f (y)


()

for x, y ∈ [a, b].
Substituting x = –t

 a + t
 b, y = t

 a + –t
 b for t ∈ [, ], inequality () becomes

f
(

a + b


)
≤ f

(
 – t


a +

t


b
)

+ f
(

t


a +
 – t


b
)

. ()

Multiplying both sides of () by tν–Eγ ,δ,k
μ,ν,l (ωtμ) and integrating over [, ], we have

f
(

a + b


)∫ 


tν–Eγ ,δ,k

μ,ν,l
(
ωtμ

)
dt

≤
∫ 


tν–Eγ ,δ,k

μ,ν,l
(
ωtμ

)
f
(

 – t


a +
t


b
)

dt

+
∫ 


tν–Eγ ,δ,k

μ,ν,l
(
ωtμ

)
f
(

t


a +
 – t


b
)

dt. ()
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Setting u = –t
 a + t

 b and v = t
 a + –t

 b in (), we have

f
(

a + b


)∫ b

a+b


(b – v)ν–Eγ ,δ,k
μ,ν,l

(
ω′(b – v)μ

)
dv

≤
∫ b

a+b


(b – v)ν–Eγ ,δ,k
μ,ν,l

(
ω′(b – v)μ

)
f (v) dv

+
∫ a+b



a
(u – a)ν–Eγ ,δ,k

μ,ν,l
(
ω′(u – a)μ

)
f (u) du,

where ω′ = μω
(b–a)μ .

This implies

f
(

a + b


)
(
ε

γ ,δ,k
μ,ν,l,ω′ ,( a+b

 )+ 
)
(b) ≤ [(

ε
γ ,δ,k
μ,ν,l,ω′ ,( a+b

 )+ f
)
(b) +

(
ε

γ ,δ,k
μ,ν,l,ω′ ,( a+b

 )– f
)
(a)

]
. ()

On the other hand, convexity of f gives

f
(

 – t


a +
t


b
)

+ f
(

t


a +
 – t


b
)

≤  – t


f (a) +
t


f (b) +
t


f (a) +
 – t


f (b)

= f (a) + f (b). ()

Multiplying both sides of () by tν–Eγ ,δ,k
μ,ν,l (ωtμ) and integrating over [, ], we have

∫ 


tν–Eγ ,δ,k

μ,ν,l
(
ωtμ

)
f
(

 – t


a +
t


b
)

dt +
∫ 


tν–Eγ ,δ,k

μ,ν,l
(
ωtμ

)
f
(

t


a +
 – t


b
)

≤ [
f (a) + f (b)

]∫ 


tν–Eγ ,δ,k

μ,ν,l
(
ωtμ

)
dt. ()

Setting u = –t
 a + t

 b and v = t
 a + –t

 b in (), we have

∫ a+b


a
(u – a)ν–Eγ ,δ,k

μ,ν,l
(
ω′(u – a)μ

)
f (u) du +

∫ b

a+b


(b – v)ν–Eγ ,δ,k
μ,ν,l

(
ω′(b – v)μ

)
f (v) dv

≤
∫ a+b



a
(u – a)ν–Eγ ,δ,k

μ,ν,l
(
ω′(u – a)μ

)
du. ()

This implies

[(
ε

γ ,δ,k
μ,ν,l,ω′ ,( a+b

 )+ f
)
(b) +

(
ε

γ ,δ,k
μ,ν,l,ω′ ,( a+b

 )– f
)
(a)

] ≤ f (a) + f (b)


(
ε

γ ,δ,k
μ,ν,l,ω′ ,( a+b

 )– 
)
(a). ()

Combining () and () we get the result. �

Corollary . In Theorem . if we take ω = , then we get the following inequality for
the Riemann-Liouville fractional integral operator:

f
(

a + b


)
≤ ν�(ν + )

(b – a)ν
[
Iν

( a+b
 )+ f (b) + Iν

( a+b
 )– f (a)

] ≤ f (a) + f (b)


.
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Remark . On giving particular values to the parameters in Theorem ., we have the
following results.

(i) If we put ω =  and ν = , we get the classical Hadamard inequality.
(ii) If we put ω = , then we get Theorem ..

4 Conclusion
In Section , we give the generalizations of the Hermite-Hadamard type inequalities via
generalized fractional integrals. Also we prove a version of the Hadamard inequality for
convex functions via a generalized fractional integral operator. Being generalizations, the
results of [–] have been obtained. The idea is extendable for m-convex, p-convex and
other related classes of functions.
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