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1 Introduction
LetCn×n denote the set of all complex matrices of order n. For the matrices A, B ∈C

n×n, we
call the family of matrices A – zB a matrix pencil, which is parameterized by the complex
number z. Next, we regard a matrix pencil A – zB as a matrix pair (A, B) []. A matrix pair
(A, B) is called regular if det(A – zB) �= , and otherwise singular. A complex number λ is
called a generalized eigenvalue of (A, B), if

det(A – λB) = .

Furthermore, we call a nonzero vector x ∈C
n a generalized eigenvector of (A, B) associated

with λ if

Ax = λBx.

Let σ (A, B) = {λ ∈ C : det(A – λB) = } denote the generalized spectrum of (A, B). Clearly,
if B is an identity matrix, then σ (A, B) reduces to the spectrum of A, i.e. σ (A, B) = σ (A).
When B is nonsingular, σ (A, B) is equivalent to the spectrum of B–A, that is,

σ (A, B) = σ
(
B–A

)
.

So, in this case, (A, B) has n generalized eigenvalues. Moreover, if B is singular, then the
degree of the characteristic polynomial det(A – λB) is d < n, so the number of general-
ized eigenvalues of the matrix pair (A, B) is d, and, by convention, the remaining n – d
eigenvalues are ∞ [, ].

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-017-1388-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-017-1388-x&domain=pdf
mailto:lichaoqian@ynu.edu.cn


Gao and Li Journal of Inequalities and Applications  (2017) 2017:113 Page 2 of 11

We now list some notation which will be used in the following. Let N = {, , . . . , n}.
Given two matrices A = (aij), B = (bij) ∈C

n×n, we denote

ri(A) =
∑

k∈N ,
k �=i

|aik|, rj
i(A) =

∑

k∈N ,
k �=i,j

|aik|,

Ri(A, B, z) =
∑

k∈N ,
k �=i

|aik – zbik|, Rj
i(A, B, z) =

∑

k∈N ,
k �=i,j

|aik – zbik|,

�i(A, B) =
{

z ∈C : |aii – zbii| ≤ Ri(A, B, z)
}

,

and

�ij(A, B) =
{

z ∈C :
∣∣(aii – zbii)(ajj – zbjj) – (aij – zbij)(aji – zbji)

∣∣

≤ |ajj – zbjj|Rj
i(A, B, z) + |aij – zbij|Ri

j(A, B, z)
}

.

The generalized eigenvalue problem arises in many scientific applications; see [–].
Many researchers are interested in the localization of all generalized eigenvalues of a ma-
trix pair; see [, , , ]. In [], Kostić et al. provided the following Geršgorin-type theorem
of the generalized eigenvalue problem.

Theorem  ([], Theorem ) Let A, B ∈ C
n×n, n ≥  and (A, B) be a regular matrix pair.

Then

σ (A, B) ⊆ �(A, B) =
⋃

i∈N

�i(A, B).

Here, �(A, B) is called the generalized Geršgorin set of a matrix pair (A, B) and �i(A, B)
the ith generalized Geršgorin set. As showed in [], �(A, B) is a compact set in the complex
plane if and only if B is strictly diagonally dominant (SDD) []. When B is not SDD, �(A, B)
may be an unbounded set or the entire complex plane (see Theorem ).

Theorem  ([], Theorem ) Let A = (aij), B = (bij) ∈C
n×n, n ≥ . Then the following state-

ments hold:
(i) Let i ∈ N be such that, for at least one j ∈ N , bij �= . Then �i(A, B) is an unbounded

set in the complex plane if and only if |bii| ≤ ri(B).
(ii) �(A, B) is a compact set in the complex plane if and only if B is SDD, that is,

|bii| > ri(B).
(iii) If there is an index i ∈ N such that both bii =  and

|aii| ≤
∑

k∈β(i),
k �=i

|aik|,

where β(i) = {j ∈ N : bij = }, then �i(A, B), and consequently �(A, B), is the entire
complex plane.

Recently, in [], Nakatsukasa presented a different Geršgorin-type theorem to estimate
all generalized eigenvalues of a matrix pair (A, B) for the case that the ith row of either
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A (or B) is SDD for any i ∈ N . Although the set obtained by Nakatsukasa is simpler to
compute than that in Theorem , the set is not tighter than that in Theorem  in general.

In this paper, we research the generalized eigenvalue localization for a regular matrix
pair (A, B) without the restrictive assumption that the ith row of either A (or B) is SDD
for any i ∈ N . By considering Ax = λBx and using the triangle inequality, we give a new
inclusion set for generalized eigenvalues, and then prove that this set is tighter than that in
Theorem  (Theorem  of []). Numerical examples are given to verify the corresponding
results.

2 Main results
In this section, a set is provided to locate all the generalized eigenvalue of a matrix pair.
Next we compare the set obtained with the generalized Geršgorin set in Theorem .

2.1 A new generalized eigenvalue localization set
Theorem  Let A = (aij), B = (bij) ∈ C

n×n, with n ≥  and (A, B) be a regular matrix pair.
Then

σ (A, B) ⊆ �(A, B) =
n⋃

i,j=,
i�=j

{
�ij(A, B) ∩ �ji(A, B)

}
.

Proof For any λ ∈ σ (A, B), let  �= x = (x, x, . . . , xn)T ∈ C
n be an associated generalized

eigenvector, i.e.,

Ax = λBx. ()

Without loss of generality, let

|xp| ≥ |xq| ≥ max
{|xi| : i ∈ N , i �= p, q

}
.

Then xp �= .
(i) If xq �= , then from Equality (), we have

appxp + apqxq +
∑

k∈N ,
k �=p,q

apkxk = λbppxp + λbpqxq + λ
∑

k∈N ,
k �=p,q

bpkxk

and

aqqxq + aqpxp +
∑

k∈N ,
k �=q,p

aqkxk = λbqqxq + λbqpxp + λ
∑

k∈N ,
k �=q,p

bqkxk ,

equivalently,

(app – λbpp)xp + (apq – λbpq)xq = –
∑

k∈N ,
k �=p,q

(apk – λbpk)xk ()
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and

(aqq – λbqq)xq + (aqp – λbqp)xp = –
∑

k∈N ,
k �=q,p

(aqk – λbqk)xk . ()

Solving for xp and xq in () and (), we obtain

(
(app – λbpp)(aqq – λbqq) – (apq – λbpq)(aqp – λbqp)

)
xp

= –(aqq – λbqq)
∑

k∈N ,
k �=p,q

(apk – λbpk)xk + (apq – λbpq)
∑

k∈N ,
k �=q,p

(aqk – λbqk)xk ()

and

(
(app – λbpp)(aqq – λbqq) – (apq – λbpq)(aqp – λbqp)

)
xq

= –(app – λbpp)
∑

k∈N ,
k �=q,p

(aqk – λbqk)xk + (aqp – λbqp)
∑

k∈N ,
k �=p,q

(apk – λbpk)xk . ()

Taking absolute values of () and () and using the triangle inequality yield

∣∣(app – λbpp)(aqq – λbqq) – (apq – λbpq)(aqp – λbqp)
∣∣|xp|

≤ |aqq – λbqq|
∑

k∈N ,
k �=p,q

|apk – λbpk||xk| + |apq – λbpq|
∑

k∈N ,
k �=q,p

|aqk – λbqk||xk|

and

∣∣(app – λbpp)(aqq – λbqq) – (apq – λbpq)(aqp – λbqp)
∣∣|xq|

≤ |app – λbpp|
∑

k∈N ,
k �=q,p

|aqk – λbqk||xk| + |aqp – λbqp|
∑

k∈N ,
k �=p,q

|apk – λbpk||xk|.

Since xp �=  and xq �=  are, in absolute value, the largest and second largest components
of x, respectively, we divide through by their absolute values to obtain

∣∣(app – λbpp)(aqq – λbqq) – (apq – λbpq)(aqp – λbqp)
∣∣

≤ |aqq – λbqq|Rq
p(A, B,λ) + |apq – λbpq|Rq

p(A, B,λ)

and

∣∣(app – λbpp)(aqq – λbqq) – (apq – λbpq)(aqp – λbqp)
∣∣

≤ |app – λbpp|Rp
q(A, B,λ) + |aqp – λbqp|Rq

p(A, B,λ).

Hence,

λ ∈
(
�pq(A, B) ∩ �qp(A, B)

)
⊆ �(A, B).
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(ii) If xq = , then xp is the only nonzero entry of x. From equality (), we have

A

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝


...

xp


...


⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

=

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

apxp
...

ap–,pxp

appxp

ap+,pxp
...

anpxp

⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

= λ

⎛

⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎝

bpxp
...

bp–,pxp

bppxp

bp+,pxp
...

bnpxp

⎞

⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎠

,

which implies that, for any i ∈ N , aip = λbip, i.e., aip – λbip = . Hence for any i ∈ N , i �= p,

λ ∈
(
�pi(A, B) ∩ �ip(A, B)

)
⊆ �(A, B).

From (i) and (ii), σ (A, B) ⊆ �(A, B). The proof is completed. �

Since the matrix pairs (A, B) and (AT , BT ) have the same generalized eigenvalues, we can
obtain a theorem by applying Theorem  to (AT , BT ).

Theorem  Let A = (aij) ∈ C
n×n, B = (bij) ∈ C

n×n, with n ≥ , and (AT , BT ) be a regular
matrix pair. Then

σ (A, B) ⊆ �
(
AT , BT)

.

Remark  If B is an identity matrix, then Theorems  and  reduce to the corresponding
results of [].

Remark  When all entries of the ith and jth rows of the matrix B are zero, then

�ij(A, B) =
{

z ∈ C : |aiiajj – aijaji| ≤ |ajj|rj
i(A) + |aij|ri

j (A)
}

and

�ji(A, B) =
{

z ∈C : |aiiajj – aijaji| ≤ |aii|ri
j (A) + |aji|rj

i(A)
}

.

Hence, if

|aiiajj – aijaji| ≤ |ajj|rj
i(A) + |aij|ri

j (A) ()

and

|aiiajj – aijaji| ≤ |aii|ri
j (A) + |aji|rj

i(A), ()

then

�ij(A, B) ∩ �ji(A, B) = C,



Gao and Li Journal of Inequalities and Applications  (2017) 2017:113 Page 6 of 11

otherwise,

�ij(A, B) ∩ �ji(A, B) = ∅.

Moreover, when inequalities () and () hold, the matrix B is singular, and det(A – zB) has
degree less than n. As we are considering regular matrix pairs, the degree of the polynomial
det(A – zB) has to be at least one; thus, at least one of the sets �ij(A, B) ∩ �ji(A, B) has to
be nonempty, implying that the set �(A, B) of a regular matrix pair is always nonempty.

We now establish the following properties of the set �(A, B).

Theorem  Let A = (aij), B = (bij) ∈ C
n×n, with n ≥  and (A, B) be a regular matrix pair.

Then the set �ij(A, B) ∩ �ji(A, B) contains zero if and only if inequalities () and () hold.

Proof The conclusion follows directly from putting z =  in the inequalities of �ij(A, B)
and �ji(A, B). �

Theorem  Let A = (aij), B = (bij) ∈ C
n×n, with n ≥  and (A, B) be a regular matrix pair.

If there exist i, j ∈ N , i �= j, such that

bii = bjj = bij = bji = ,

|aiiajj – aijaji| ≤ |ajj|
∑

k∈β(i),
k �=i,j

|aik| + |aij|
∑

k∈β(j),
k �=j,i

|ajk|,

and

|aiiajj – aijaji| ≤ |aii|
∑

k∈β(j),
k �=j,i

|ajk| + |aji|
∑

k∈β(i),
k �=i,j

|aik|,

where β(i) = {k ∈ N : bik = }, then �ij(A, B) ∩ �ji(A, B), and consequently �(A, B) is the
entire complex plane.

Proof The conclusion follows directly from the definitions of �ij(A, B) and �ji(A, B). �

2.2 Comparison with the generalized Geršgorin set
We now compare the set in Theorem  with the generalized Geršgorin set in Theorem .
First, we observe two examples in which the generalized Geršgorin set is an unbounded
set or the entire complex plane.

Example  Let

A = (aij) =

⎛

⎜
⎜⎜
⎝

–   .
  . 
  i 

.   –i

⎞

⎟
⎟⎟
⎠

, B = (bij) =

⎛

⎜
⎜⎜
⎝

. . . .
 – . .
  i .

.   –.i

⎞

⎟
⎟⎟
⎠

.
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Figure 1 �(A, B) of Example 1 on the left, and �(A, B) on the right.

It is easy to see that b = . >  and

|b| =
∑

k=,,

|bk| = ..

Hence, from the part (i) of Theorem , we see that �(A, B) is unbounded. However, the
set �(A, B) in Theorem  is compact. These sets are given by Figure , where the actual
generalized eigenvalues are plotted with asterisks. Clearly, �(A, B) ⊂ �(A, B).

Example  Let

A = (aij) =

⎛

⎜⎜
⎜
⎝

–   .
  . 
  i 

.   –i

⎞

⎟⎟
⎟
⎠

, B = (bij) =

⎛

⎜⎜
⎜
⎝

  . .
 – . .
  i .

.   –.i

⎞

⎟⎟
⎟
⎠

.

It is easy to see that b = , β() = {} and

|a| =
∑

k∈β(),
k �=

|ak| = |a| = .

Hence, from the part (iii) of Theorem , we see that �(A, B) is the entire complex plane,
but the set �(A, B) in Theorem  is not. �(A, B) is given by Figure , where the actual
generalized eigenvalues are plotted with asterisks.

We establish their comparison in the following.
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Figure 2 �(A, B) of Example 2.

Theorem  Let A = (aij) ∈C
n×n, B = (bij) ∈C

n×n, with n ≥  and (A, B) be a regular matrix
pair. Then

�(A, B) ⊆ �(A, B).

Proof Let z ∈ �(A, B). Then there are i, j ∈ N , i �= j such that

z ∈
(
�ij(A, B) ∩ �ji(A, B)

)
.

Next, we prove that

�ij(A, B) ⊆
(
�i(A, B) ∪ �j(A, B)

)
()

and

�ji(A, B) ⊆
(
�i(A, B) ∪ �j(A, B)

)
. ()

(i) For z ∈ �ij(A, B), then z ∈ �i(A, B) or z /∈ �i(A, B). If z ∈ �i(A, B), then () holds. If
z /∈ �i(A, B), that is,

|aii – zbii| > Ri(A, B, z), ()

then

|ajj – zbjj|Rj
i(A, B, z) + |aij – zbij|Rj

i(A, B, z)

≥ ∣
∣(aii – zbii)(ajj – zbjj) – (aij – zbij)(aji – zbji)

∣
∣

≥ |aii – zbii||ajj – zbjj| – |aij – zbij||aji – zbji|. ()
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Note that Rj
i(A, B, z) = Ri(A, B, z) – |aij – zbij| and Ri

j(A, B, z) = Rj(A, B, z) – |aji – zbji|. Then
from inequalities () and (), we have

|ajj – zbjj|
(
Ri(A, B, z) – |aij – zbij|

)
+ |aij – zbij|

(
Rj(A, B, z) – |aji – zbji|

)

≥ |ajj – zbjj|Ri(A, B, z) – |aij – zbij||aji – zbji|,

which implies that

|aij – zbij|Rj(A, B, z) ≥ |aij – zbij||ajj – zbjj|. ()

If aij = zbij, then from z ∈ �ij(A, B), we have

|aii – zbii||ajj – zbjj| ≤ |ajj – zbjj|Rj
i(A, B, z) ≤ |ajj – zbjj|Ri(A, B, z).

Moreover, from inequality (), we obtain |ajj – zbjj| = . It is obvious that

z ∈ �j(A, B) ⊆
(
�i(A, B) ∪ �j(A, B)

)
.

If aij �= zbij, then from inequality (), we have

|ajj – zbjj| ≤ Rj(A, B, z),

that is,

z ∈ �j(A, B) ⊆
(
�i(A, B) ∪ �j(A, B)

)
.

Hence, () holds.
(ii) Similar to the proof of (i), we also see that, for z ∈ �ji(A, B), () holds.
The conclusion follows from (i) and (ii). �

Since the matrix pairs (A, B) and (AT , BT ) have the same generalized eigenvalues, we can
obtain a theorem by applying Theorem  to (AT , BT ).

Theorem  Let A = (aij) ∈ C
n×n, B = (bij) ∈ C

n×n, with n ≥  and (AT , BT ) be a regular
matrix pair. Then

�
(
AT , BT) ⊆ �

(
AT , BT)

.

Example  ([], Example ) Let

A = (aij) =

⎛

⎜
⎜⎜
⎝

   .
 – . 
  i 

.   –i

⎞

⎟
⎟⎟
⎠

, B = (bij) =

⎛

⎜
⎜⎜
⎝

. . . .
 – . .
  i .

.   –.i

⎞

⎟
⎟⎟
⎠

.

It is easy to see that B is SDD. Hence, from the part (ii) of Theorem , we see that �(A, B)
is compact. �(A, B) and �(A, B) are given by Figure , where the exact generalized eigen-
values are plotted with asterisks. Clearly, �(A, B) ⊂ �(A, B).
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Figure 3 �(A, B) of Example 3 on the left, and �(A, B) on the right.

Remark  From Examples ,  and , we see that the set in Theorem  is tighter than that
in Theorem  (Theorem  of []). In addition, note that A and B in Example  satisfy

|a| =  <
∑

k=,,

|ak| = .

and

|b| =
∑

k=,,

|bk| = .,

respectively. Hence, we cannot use the method in [] to estimate the generalized eigen-
values of the matrix pair (A,B). However, the set we obtain is very compact.

3 Conclusions
In this paper, we present a new generalized eigenvalue localization set �(A, B), and we
establish the comparison of the sets �(A, B) and �(A, B) in Theorem  of [], that is, �(A, B)
captures all generalized eigenvalues more precisely than �(A, B), which is shown by three
numerical examples.
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