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Abstract
In this paper, we introduce new sequences, which generalize the celebrated
DeTemple sequence, having enhanced speed of convergence. We also give a new
representation for Euler’s constant in terms of the Riemann zeta function evaluated at
positive odd integers.
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1 Introduction and preliminaries
As is well known, the celebrated Euler-Mascheroni sequence,

γn =  +



+ · · · +

n

– log n (n ≥ ),

is convergent to the Euler-Mascheroni constant γ = . . . . , and the rate
of convergence is n–. In order to improve the rate of convergence, in [], DeTemple mod-
ified the argument of the logarithm and showed that the sequence

Rn =  +



+ · · · +

n

– log

(
n +




)

converges quadratically to γ . For more details as regards the approximation of the Euler
constant with a very high accuracy, we mention the work of Sweeney [], Bailey [] and
Alzer and Koumandos [].

There are many famous unsolved problems associated with the properties of this con-
stant; for example it is not known yet if the Euler constant is irrational. The Euler constant
is an unusual constant and it seems unrelated to other known constants. However, there
are many areas in which Euler’s constant appears, for example, probability theory, random
matrix theory and Riemann hypothesis, etc. Recently, Agarwal et al. [], Wang et al. [–]
and Yang et al. [] showed that the Euler-Mascheroni constant has important applica-
tions in the field of special functions. In a sense, its appearance in different mathematical
areas can be regarded as possible connections between these subjects.
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It is the aim of this article to develop a new direction to accelerate the speed of conver-
gence of the sequence (Rn)n≥. For this purpose, we consider the sequence

ωn =  +



+ · · · +

n

+ xn – log(n + bn),

where (xn)n≥ and (bn)n≥ are suitable sequences, which are chosen in order to increase
the speed of convergence of (ωn)n≥.

Note that we can write ωn in the form of

ωn =  +



+ · · · +

n

– log n + xn + log


 + bn
n

.

If limn→∞ xn = x, with x ∈R, and limn→∞ bn
n = , then the sequence (ωn)n≥ is convergent

to γ + x.
To calculate the rate of convergence, we will utilize the Stolz lemma in the case of 

 .

Lemma . Let (un)n≥ and (vn)n≥ be two sequences of real numbers, having the following
properties:

(i) limn→∞ un = limn→∞ vn = ;
(ii) the sequence (vn)n≥ is strictly decreasing;

(iii) there exists limn→∞ un–un–
vn–vn–

= �, with � ∈R.
Then the sequence ( un

vn
)n≥ is convergent, and limn→∞ un

vn
= �.

In the following, we are concerned with finding non-vanishing limits of the form

� = lim
n→∞ nk(ωn – ω) = lim

n→∞
ωn – ω


nk

,

where ω = limn→∞ ωn. The result will be better as the natural number k is large.
Note that

lim
n→∞


nk+


nk – 

(n–)k

= –

k

,

using Lemma ., it is enough to find the following limit:

� = lim
n→∞

ωn – ωn–


nk – 
(n–)k

= –

k

lim
n→∞ nk+(ωn – ωn–).

We shall write the difference ωn – ωn– as a power series of n–.
First, we arrange the difference ωn – ωn– as

ωn – ωn– =

n

+ xn – xn– – log(n + bn) + log(n –  + bn–)

=

n

+ xn – xn– – log

[
n
(

 +
bn

n

)]
+ log

[
n
(

 +
bn– – 

n

)]

=

n

+ xn – xn– – log

(
 +

bn

n

)
+ log

(
 +

bn– – 
n

)
.
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Then, using the power series representation of log( + x), we obtain

ωn – ωn– =

n

+ xn – xn– –
[

bn

n
–




(
bn

n

)

+



(
bn

n

)

–



(
bn

n

)

+ · · ·
]

+
[

bn– – 
n

–



(
bn– – 

n

)

+



(
bn– – 

n

)

–



(
bn– – 

n

)

+ · · ·
]

.

After some arrangement, we have

ωn – ωn– =

n

+ xn – xn– –
bn

n
+

bn– – 
n

+
b

n – (bn– – )

n –
b

n – (bn– – )

n

+
b

n – (bn– – )

n + O
(


n

)
,

or more convenient

ωn – ωn– = xn – xn– –
bn – bn–

n
+

b
n – (bn– – )

n

–
b

n – (bn– – )

n +
b

n – (bn– – )

n + O
(


n

)
. (.)

The above relational expression (.) is useful, it will be used to establish our main results
in subsequent sections.

2 Sequences of DeTemple type and relevant results
Let us consider certain special cases of xn – xn– and bn – bn–, which will enable us to
establish the generalizations of some sequences from DeTemple [] and Mortici [].

Case . Suppose xn – xn– = , for all n ≥  and bn – bn– = , for all n ≥ .
In this case the sequences (xn)n≥ and (bn)n≥ are constant; let xn = c, for all n ≥  and

bn = b, for all n ≥ .
In (.), the coefficient of 

n becomes b
n – (bn– – ) = b – (b – ) = b – .

Subcase .. If b = 
 , then the coefficient of 

n vanishes and

� = lim
n→∞ n(ωn – ω) = –




lim
n→∞ n

[


n + O
(


n

)]
= –




,

therefore the speed of convergence is n–.
Finally, we obtain the sequence

ωn =  +



+ · · · +

n

+ c – log

(
n +




)
,

which for c =  is the celebrated DeTemple sequence [].
Subcase .. If b �= 

 , then the term in 
n is present, therefore the speed of convergence

is n–.
Case . If bn – bn– = , for all n ≥ , then the sequence (bn)n≥ is constant. Suppose

bn = b, for all n ≥  and b �= 
 . Then

ωn – ωn– = xn – xn– +
b – 

n –
b – b + 

n + O
(


n

)
.
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Subcase .. Suppose xn – xn– + b–
n =  for all n ≥ . Taking the sum, we obtain

xn = x +
 – b



(


 +


 + · · · +


n

)
.

The sequence (ωn) becomes

ωn =  +



+ · · · +

n

+ x +
 – b



(


 +


 + · · · +


n

)
– log(n + b)

or, in a more suitable form,

ωn =  + x +
n∑

k=

k +  – b
k – log(n + b). (.)

The speed of convergence of (ωn)n≥ is n–. Note that the logarithm function in the above
expression has definition for b ≥ . Therefore, we obtain the following result.

Theorem . If we denote by (ωn)n≥ the sequence (.) and by ω its limit, then (ωn)n≥

converges quadratic to ω.

For b = , we obtain the sequence defined in Theorem . of [].
Subcase .. Suppose

xn – xn– +
b – 

n +
–b + b – 

n =  for all n ≥ .

Summing side by side, we obtain

xn = x +
n∑

k=

(
 – b


· 

k +
b – b + 


· 

k

)
.

The sequence (ωn) has the form

ωn =  + x +
n∑

k=

(

k

+
 – b


· 

k +
b – b + 


· 

k

)
– log(n + b). (.)

The speed of convergence is n–. Note that the logarithm log(n + b) has definition for
b ≥ . This leads to the following assertion.

Theorem . If we denote by (ωn)n≥ the sequence (.) and by ω its limit, then (ωn)n≥

converges cubic to ω.

For b = , we obtain the sequence defined in Theorem . of [].

3 Generalized DeTemple sequences
In this section we shall establish two generalized DeTemple sequences in terms of the
condition bn + bn– –  = .
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Case . Suppose

xn – xn– –
bn – bn–

n
+

b
n – (bn– – )

n =  (n ≥ ). (.)

We would like to find the sequence (bn)n≥ such that bn + bn– –  =  (this vanishes; the
nominator b

n – (bn– – ) = ). It follows that bn = –bn– + . Therefore bn = (–)n–·(b–)+
 ,

and this satisfies the initial condition limn→∞ bn
n = . On the other hand, one has bn –bn– =

(–)n–(b – ).
Equation (.) becomes

xn – xn– =
(–)n–

n
(b – ).

Taking the sum from  to n and fixing x = b – , we obtain

xn = (b – )
(




–



+



–



+ · · · +
(–)n–

n

)
.

We remark that (xn)n≥ is the Leibniz’s sequence multiplied by the constant (b – ). This
sequence is convergent, having the limit

lim
n→∞ xn = (b – ) log .

Therefore, we obtain the sequence

ωn =  +



+ · · · +

n

+ (b – )
(

 –



+



–



+ · · · +
(–)n–

n

)

– log

[
n +

(–)n– · (b – ) + 


]
,

or, in more suitable form,

ωn =
n∑

k=

 + (b – )(–)k–

k
– log

[
n +

(–)n– · (b – ) + 


]
, (.)

with speed of convergence n– and limit γ + (b – ) log .
Note that the logarithm function in the above expression has definition for b ∈ (, ).

Hence, we have the following result.

Theorem . If we denote by (wn)n≥ the sequence (.), then (wn)n≥ converges quadrati-
cally to its limit γ + (b – ) log .

It is clear that for b = 
 we obtain DeTemple sequence.

Case . Note that

ωn – ωn– = xn – xn– –
bn – bn–

n
–

b
n – (bn– – )

n

– · · · –
bp+

n – (bn– – )p+

(p + )np+ + O
(


np+

)
.
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As above, we consider the sequence bn = (–)n–(b–)+
 , b ∈ (, ).

We have seen that it satisfies the equality bn + bn– –  = . Then b
n – (bn– – ) =  and,

in general,

bk
n – (bn– – )k = , k = , , . . . .

Suppose

xn – xn– =
bn – bn–

n
+

b
n – (bn– – )

n + · · · +
bp+

n – (bn– – )p+

(p + )np+ .

From bn + bn– –  = , one has bn– –  = –bn. Further, it follows that

bk+
n – (bn– – )k+ = bk+

n – (–bn)k+ = bk+
n .

On the other hand,

bn – bn–

n
=

b(–)n– + –(–)n–

 – b(–)n– – –(–)n–


n

=
(–)n–(b – )

n
.

Hence, we deduce that

xn – xn– =
(–)n–(b – )

n
+

b
n

n +
b

n
n + · · · +

bp+
n

(p + )np+ .

Taking the sum for k from  to n, we have

xn – x =
n∑

k=

[
(–)k–(b – )

k
+

b
k

k + · · · +
bp+

k
(p + )kp+

]
.

If we fix

x = b –  +
b




+
b




+ · · · +
bp+


p + 

,

then we obtain

xn =
n∑

k=

[
(–)k–(b – )

k
+

b
k

k + · · · +
bp+

k
(p + )kp+

]
.

Hence,

ωn =  +



+ · · · +

n

+
n∑

k=

[
(–)k–(b – )

k
+

b
k

k + · · · +
bp+

k
(p + )kp+

]

– log

[
n +

(–)n–(b – ) + 


]
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=
n∑

k=


k

+
n∑

k=

[
(–)k–(b – )

k
+

b
k

k + · · · +
bp+

k
(p + )kp+

]

– log

[
n +

(–)n–(b – ) + 


]

=
n∑

k=

[
 · (–)k–(b – ) + 

k
+




(
(–)k–(b – ) + 

k

)

+ · · · +


p + 

(
(–)k–(b – ) + 

k

)p+]

– log

[
n +

(–)n–(b – ) + 


]
.

Putting ak = (–)k–(b–)+
k , then limk→∞ ak = .

Further,

ωn = 
n∑

k=

(
ak


+

a
k


+ · · · +

ap+
k

p + 

)
– log(n + nan).

Consequently, we get the following result.

Theorem . The sequence

ωn = 
n∑

k=

(
ak


+

a
k


+ · · · +

ap+
k

p + 

)
– log(n + nan)

has speed of convergence n–p–, where ak = (–)k–(b–)+
k , b ∈ (, ).

It is easy to observe that ak = –b
k and ak+ = b

k+ .
In order to find the limit of the sequence (ωn)n≥, we note that it is related to the har-

monic sequence ζn(s) =
∑n

k=

ks .

For s > , the limit of this sequence defined the celebrated Riemann zeta function ζ (s),
which is very important in mathematics. The speed of convergence of this sequence to its
limit is described by the double inequality


(s – )(n + )s– < ζ (s) – ζn(s) <


(s – )ns– .

Thus the sequence (ζn(s))n≥ converges with speed of convergence n–s.
A direct calculation gives

∞∑
k=

as+
k

s + 
=


s + 

(
as+

 + as+
 + · · · + as+

n + · · · )

=


s + 

[(
b



)s+

+
(

 – b



)s+

+
(

b



)s+

+
(

 – b



)s+

+ · · ·
]

=


s + 

[
bs+

 ·
(


s+ +


s+ +


s+ + · · ·

)
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+ ( – b)s+ ·
(


s+ +


s+ +


s+ + · · ·

)]

=


s + 

[
bs+



(


s+ +


s+ +


s+ +


s+ +


s+ + · · ·
)

– bs+


(


s+ +


s+ +


s+ + · · ·
)

+ ( – b)s+ · 
s+

(


s+ +


s+ +


s+ + · · ·
)]

.

Hence,

∞∑
k=

as+
k

s + 
=


s + 

[
bs+

 · ζ (s + ) – bs+
 · 

s+ ζ (s + )

+ ( – b)s+ · 
s+ ζ (s + )

]

=


s + 
· bs+

 (s+ – ) + ( – b)s+

s+ · ζ (s + )

=
bs+

 (s+ – ) + ( – b)s+

(s + ) · s · ζ (s + ),

where s ∈ {, , . . . , p}.
We have showed in Case  that limn→∞

∑n
k= ak – log(n + nan) = γ + (b – ) log .

Therefore, we obtain the following theorem.

Theorem . The sequence (ωn)n≥ defined by Theorem . converges to

γ + (b – ) log  +
p∑

s=

bs+
 (s+ – ) + ( – b)s+

s(s + )
ζ (s + )

with speed of convergence n–p–.

If we take b = 
 in Theorem ., then ak = 

k ,

ωn =
n∑

k=


[


k

+


 · k + · · · +


(p + )p+kp+

]

– log

(
n +




)

= Rn +
n∑

k=

[


 · k + · · · +


(p + )pkp+

]
, (.)

where

Rn =  +



+ · · · +

n

– log

(
n +




)
.

Thus, we obtain the following assertion.
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Corollary . The sequence (ωn)n≥ defined by (.) converges to

γ +
p∑

s=


(s + )s ζ (s + )

with speed of convergence n–p–.

Particular cases. For p = , the sequence (ωn)n≥ is a DeTemple sequence.
For p = , the sequence (ωn)n≥ is the sequence defined in Theorem . of [].
For p = , the sequence (ωn)n≥ is the sequence defined in Theorem . of [].
We remark that the expressions from Theorem . and Corollary . concern the ex-

pansion of Euler’s constant in terms of the Riemann zeta function evaluated at positive
odd integers. Therefore the constant γ can be approximated with a very high speed of
convergence by the above expansions. For more details of the series representations of the
Euler constant, we mention the work of Alzer, Karayannakis and Srivastava [], Alzer and
Koumandos [] and Sofo [].

4 Conclusion
Our method for accelerating the convergence of DeTemple type sequences is more general
than the method introduced in [] and [] by Mortici. We support this statement by the
large degree of freedom in choosing the sequences (xn)n≥, and (bn)n≥. In this way, we
generalized sequences from [] and introduced two new sequences which generalized
DeTemple sequence (Rn)n≥ having faster convergence rate.
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