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Abstract
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1 Introduction
Singular value problems of rectangular tensors have become an important topic in applied
mathematics and numerical multilinear algebra, and it has a wide range of practical appli-
cations, such as the strong ellipticity condition problem in solid mechanics [, ] and the
entanglement problem in quantum physics [, ].

Let R (respectively, C) be the real (respectively, complex) field. Assume that p, q, m, n
are positive integers, m, n ≥ , l = p + q, and N = {, , . . . , n}. A real (p, q)th order m ×
n dimensional rectangular tensor (or simply a real rectangular tensor) A is defined as
follows:

A = (ai···ipj···jq ), ai···ipj···jq ∈ R,  ≤ i, . . . , ip ≤ m,  ≤ j, . . . , jq ≤ n.

A real rectangular tensor A is called nonnegative if ai···ipj···jq ≥  for ik = , . . . , m, k =
, . . . , p, and jv = , . . . , n, v = , . . . , q.

For vectors x = (x, . . . , xm)T, y = (y, . . . , yn)T and a real number α, let x[α] = (xα
 , xα

 , . . . ,
xα

m)T, y[α] = (yα
 , yα

 , . . . , yα
n)T, Axp–yq be an m dimension real vector whose ith component

is

(
Axp–yq)

i =
m∑

i,...,ip=

n∑

j,...,jq=

aii···ipj···jq xi · · ·xip yj · · · yjq ,
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and Axpyq– be an n dimension real vector whose jth component is

(
Axpyq–)

j =
m∑

i,...,ip=

n∑

j,...,jq=

ai···ipjj···jq xi · · ·xip yj · · · yjq .

If λ ∈C, x ∈ C
m\{}, and y ∈C

n\{} are solutions of

⎧
⎨

⎩
Axp–yq = λx[l–],

Axpyq– = λy[l–],

then we say that λ is a singular value of A, x and y are a left and a right eigenvectors of A,
associated with λ. If λ ∈ R, x ∈ R

m, and y ∈ R
n, then we say that λ is an H-singular value

of A, x and y are a left and a right H-eigenvectors of A, associated with H-singular value
λ []. Here,

λ = max
{|λ| : λ is a singular value of A

}

is called the largest singular value [].
The definition of singular values for tensors was first introduced in []. Note here that

when l is even, the definitions in [] is the same as in [], and when l is odd, the definition
in [] is slightly different from that in [], but parallel to the definition of eigenvalues of
square matrices []; see [] for details.

Recently, many people focus on bounding the largest singular value for nonnegative rect-
angular tensors [, , ]. For convenience, we first give some notation. Given a nonempty
proper subset S of N , we denote

�N :=
{

(i, . . . , ip, j, . . . , jq) : i, . . . , ip, j, . . . , jq ∈ N
}

,

�S :=
{

(i, . . . , ip, j, . . . , jq) : i, . . . , ip, j, . . . , jq ∈ S
}

,

�N :=
{

(i, . . . , ip, j, . . . , jq) : i, . . . , ip, j, . . . , jq ∈ N
}

,

�S :=
{

(i, . . . , ip, j, . . . , jq) : i, . . . , ip, j, . . . , jq ∈ S
}

,

and then

�S = �N\�S, �S = �N\�S.

This implies that, for a nonnegative rectangular tensorA = (ai···ipj···jq ), we have, for i, j ∈ S,

ri(A) =
∑

i,...,ip ,j,...,jq∈N
δii ···ipj ···jq =

aii···ipj···jq = r�S
i (A) + r�S

i (A), rj
i(A) = ri(A) – aij···jj···j,

cj(A) =
∑

i,...,ip ,j,...,jq∈N
δi ···ipjj ···jq =

ai···ipjj···jq = c�S
j (A) + c�S

j (A), ci
j(A) = cj(A) – ai···iji···i,
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where

δi···ipj···jq =

⎧
⎨

⎩
, if i = · · · = ip = j = · · · = jq,

, otherwise,

and

r�S
i (A) =

∑

(i,...,ip ,j,...,jq)∈�S
δii ···ipj ···jq =

aii···ipj···jq , r�S
i (A) =

∑

(i,...,ip ,j,...,jq)∈�S

aii···ipj···jq ,

c�S
j (A) =

∑

(i,...,ip ,j,...,jq)∈�S
δi ···ipjj ···jq =

ai···ipjj···jq , c�S
j (A) =

∑

(i,...,ip ,j,...,jq)∈�S

ai···ipjj···jq .

In [], Yang and Yang gave the following bound for the largest singular value of a non-
negative rectangular tensor A.

Theorem  ([], Theorem ) Let A be a (p, q)th order m × n dimensional nonnegative
rectangular tensor. Then

λ ≤ max
≤i≤m,≤j≤n

{
Ri(A), Cj(A)

}
,

where

Ri(A) =
m∑

i,...,ip=

n∑

j,...,jq=

aii···ipj···jq , Cj(A) =
m∑

i,...,ip=

n∑

j,...,jq=

ai···ipjj···jq .

When m = n, He et al. [] have given an upper bound which is lower than that in Theo-
rem .

Theorem  ([], Theorem .) Let A be a (p, q)th order n × n dimensional nonnegative
rectangular tensor. Then

λ ≤ �(A) = max
{
�(A),�(A),�(A),�(A)

}
,

where

�(A) = max
i,j∈N ,i�=j



{

ai···ii···i + aj···jj···j + rj
i(A)

+
[(

ai···ii···i – aj···jj···j + rj
i(A)

) + aij···jj···jrj(A)
] 


}

,

�(A) = max
i,j∈N ,i�=j



{

ai···ii···i + aj···jj···j + cj
i(A)

+
[(

ai···ii···i – aj···jj···j + cj
i(A)

) + aj···jij···jcj(A)
] 


}

,

�(A) = max
i,j∈N ,i�=j



{

ai···ii···i + aj···jj···j + rj
i(A)

+
[(

ai···ii···i – aj···jj···j + rj
i(A)

) + aij···jj···jcj(A)
] 


}

,
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�(A) = max
i,j∈N ,i�=j



{

ai···ii···i + aj···jj···j + cj
i(A)

+
[(

ai···ii···i – aj···jj···j + cj
i(A)

) + aj···jij···jrj(A)
] 


}

.

Similarly, under the condition of m = n, by breaking N = {, , . . . , n} into disjoint subsets
S and its complement S̄, Zhao and Sang [] provided an S-type upper bound for the
largest singular value of nonnegative rectangular tensors.

Theorem  ([], Theorem .) Let A be a (p, q)th order n × n dimensional nonnegative
rectangular tensor, S be a nonempty proper subset of N , S̄ be the complement of S in N .
Then

λ ≤ US(A) = max
{

US
 (A), US̄

 (A), US
 (A), US̄

 (A)
}

,

where

US
 (A) = max

i∈S,j∈S̄



{

ai···ii···i + aj···jj···j + r�S
j (A)

+
[(

ai···ii···i – aj···jj···j – r�S
j (A)

) +  max
{

ri(A), ci(A)
}

r�S
j (A)

] 

}

,

US̄
 (A) = max

i∈S̄,j∈S



{

ai···ii···i + aj···jj···j + r�S̄
j (A)

+
[(

ai···ii···i – aj···jj···j – r�S̄
j (A)

) +  max
{

ri(A), ci(A)
}

r�S̄
j (A)

] 

}

,

US
 (A) = max

i∈S,j∈S̄



{

ai···ii···i + aj···jj···j + c�S
j (A)

+
[(

ai···ii···i – aj···jj···j – c�S
j (A)

) +  max
{

ri(A), ci(A)
}

c�S
j (A)

] 

}

,

US̄
 (A) = max

i∈S̄,j∈S



{

ai···ii···i + aj···jj···j + c�S̄
j (A)

+
[(

ai···ii···i – aj···jj···j – c�S̄
j (A)

) +  max
{

ri(A), ci(A)
}

c�S̄
j (A)

] 

}

.

In this paper, we continue this research, and give a new S-type upper bound for the
largest singular value of nonnegative rectangular tensors. It is proved that the new upper
bound is better than those in Theorems -.

2 Main results
Theorem  Let A be a (p, q)th order n × n dimensional nonnegative rectangular tensor, S
be a nonempty proper subset of N , S̄ be the complement of S in N . Then

λ ≤ �S(A) = max
{
�S

 (A),� S̄
 (A),�S

 (A),� S̄
 (A),�S

 (A),� S̄
 (A),�S

(A),� S̄
(A)

}
,

where

�S
 (A) = max

i∈S,j∈S̄



{

ai···ii···i + aj···jj···j + r�S
i (A) + r�S

j (A)

+
[(

ai···ii···i – aj···jj···j + r�S
i (A) – r�S

j (A)
) + r�S

i (A)r�S
j (A)

] 

}

,
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� S̄
 (A) = max

i∈S̄,j∈S



{

ai···ii···i + aj···jj···j + r�S̄
i (A) + r�S̄

j (A)

+
[(

ai···ii···i – aj···jj···j + r�S̄
i (A) – r�S̄

j (A)
) + r�S̄

i (A)r�S̄
j (A)

] 

}

,

�S
 (A) = max

i∈S,j∈S̄



{

ai···ii···i + aj···jj···j + c�S
i (A) + c�S

j (A)

+
[(

ai···ii···i – aj···jj···j + c�S
i (A) – c�S

j (A)
) + c�S

i (A)c�S
j (A)

] 

}

,

� S̄
 (A) = max

i∈S̄,j∈S



{

ai···ii···i + aj···jj···j + c�S̄
i (A) + c�S̄

j (A)

+
[(

ai···ii···i – aj···jj···j + c�S̄
i (A) – c�S̄

j (A)
) + c�S̄

i (A)c�S̄
j (A)

] 

}

,

�S
 (A) = max

i∈S,j∈S̄



{

ai···ii···i + aj···jj···j + r�S
i (A) + c�S

j (A)

+
[(

ai···ii···i – aj···jj···j + r�S
i (A) – c�S

j (A)
) + r�S

i (A)c�S
j (A)

] 

}

,

� S̄
 (A) = max

i∈S̄,j∈S



{

ai···ii···i + aj···jj···j + r�S̄
j (A) + c�S̄

i (A)

+
[(

ai···ii···i – aj···jj···j – r�S̄
j (A) + c�S̄

i (A)
) + r�S̄

j (A)c�S̄
i (A)

] 

}

,

�S
(A) = max

i∈S,j∈S̄



{

ai···ii···i + aj···jj···j + r�S
j (A) + c�S

i (A)

+
[(

ai···ii···i – aj···jj···j – r�S
j (A) + c�S

i (A)
) + r�S

j (A)c�S
i (A)

] 

}

,

� S̄
(A) = max

i∈S̄,j∈S



{

ai···ii···i + aj···jj···j + r�S̄
i (A) + c�S̄

j (A)

+
[(

ai···ii···i – aj···jj···j + r�S̄
i (A) – c�S̄

j (A)
) + r�S̄

i (A)c�S̄
j (A)

] 

}

.

Proof Because λ is the largest singular value of A, from Theorem  in [], there are non-
negative nonzero vectors x = (x, x, . . . , xn)T and y = (y, y, . . . , yn)T, such that

Axp–yq = λx[l–], ()

Axpyq– = λy[l–]. ()

Let

xt = max{xi : i ∈ S}, xh = max{xi : i ∈ S̄};
yf = max{yi : i ∈ S}, yg = max{yi : i ∈ S̄};
wi = max{xi, yi}, i ∈ N , wS = max{wi : i ∈ S}, wS̄ = max{wi : i ∈ S̄}.

Then at least one of xt and xh is nonzero, and at least one of yf and yg is nonzero. We next
divide into four cases to prove.

Case I: If wS = xt , wS̄ = xh, then xt ≥ yt , xh ≥ yh.
(i) If xh ≥ xt , then xh = max{wi : i ∈ N}. From () of Theorem . in [], we have

(
λ – ah···hh···h – r�S

h (A)
)
xl–

h ≤ r�S
h (A)xl–

t . ()
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If xt = , by xh > , we have λ – ah···hh···h – r�S
h (A) ≤ . Then λ ≤ ah···hh···h + r�S

h (A) ≤
�S

 (A). Otherwise, xt > . From (), we have

(λ – at···tt···t)xl–
t ≤ λxl–

t – at···tt···tx
p–
t yq

t

=
∑

(i,...,ip ,j,...,jq)∈�S
δti ···ipj ···jq =

ati···ipj···jq xi · · ·xip yj · · · yjq

+
∑

(i,...,ip ,j,...,jq)∈�S

ati···ipj···jq xi · · ·xip yj · · · yjq

≤
∑

(i,...,ip ,j,...,jq)∈�S
δti ···ipj ···jq =

ati···ipj···jq xl–
t +

∑

(i,...,ip ,j,...,jq)∈�S

ati···ipj···jq xl–
h

= r�S
t (A)xl–

t + r�S
t (A)xl–

h ,

i.e.,

(
λ – at···tt···t – r�S

t (A)
)
xl–

t ≤ r�S
t (A)xl–

h . ()

If λ –at···tt···t –r�S
t (A) ≤ , then λ ≤ at···tt···t +r�S

t (A) ≤ �S
 (A). If λ –at···tt···t –r�S

t (A) > ,
multiplying () with () and noting that xl–

t xl–
h > , we have

(
λ – at···tt···t – r�S

t (A)
)(

λ – ah···hh···h – r�S
h (A)

) ≤ r�S
t (A)r�S

h (A). ()

Solving λ in () gives

λ ≤ 

{

at···tt···t + ah···hh···h + r�S
t (A) + r�S

h (A)

+
[(

at···tt···t + r�S
t (A) – ah···hh···h – r�S

h (A)
) + r�S

t (A)r�S
h (A)

] 

}

≤ max
i∈S,j∈S̄



{

ai···ii···i + aj···jj···j + r�S
i (A) + r�S

j (A)

+
[(

ai···ii···i – aj···jj···j + r�S
i (A) – r�S

j (A)
) + r�S

i (A)r�S
j (A)

] 

}

= �S
 (A).

(ii) If xt ≥ xh, similar to the proof of (i), we have

(
λ – ah···hh···h – r�S̄

h (A)
)(

λ – at···tt···t – r�S̄
t (A)

) ≤ r�S̄
h (A)r�S̄

t (A),

and

λ ≤ 

{

ah···hh···h + at···tt···t + r�S̄
h (A) + r�S̄

t (A)

+
[(

ah···hh···h – at···tt···t + r�S̄
h (A) – r�S̄

t (A)
) + r�S̄

h (A)r�S̄
t (A)

] 

}

≤ max
i∈S̄,j∈S



{

ai···ii···i + aj···jj···j + r�S̄
i (A) + r�S̄

j (A)
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+
[(

ai···ii···i – aj···jj···j + r�S̄
i (A) – r�S̄

j (A)
) + r�S̄

i (A)r�S̄
j (A)

] 

}

= � S̄
 (A).

Case II: Assume that wS = yf , wS̄ = yg . If yg ≥ yf , similar to the proof of (i), we have

(
λ – af ···ff ···f – c�S

f (A)
)(

λ – ag···gg···g – c�S
g (A)

) ≤ c�S
f (A)c�S

g (A),

and

λ ≤ 

{

af ···ff ···f + ag···gg···g + c�S
f (A) + c�S

g (A)

+
[(

af ···ff ···f – ag···gg···g + c�S
f (A) – c�S

g (A)
) + c�S

f (A)c�S
g (A)

] 

}

≤ max
i∈S,j∈S̄



{

ai···ii···i + aj···jj···j + c�S
i (A) + c�S

j (A)

+
[(

ai···ii···i – aj···jj···j + c�S
i (A) – c�S

j (A)
) + c�S

i (A)c�S
j (A)

] 

}

= �S
 (A).

If yf ≥ yg , similarly, we have

(
λ – ag···gg···g – c�S̄

g (A)
)(

λ – af ···ff ···f – c�S̄
f (A)

) ≤ c�S̄
g (A)c�S̄

f (A)

and

λ ≤ 

{

ag···gg···g + af ···ff ···f + c�S̄
g (A) + c�S̄

f (A)

+
[(

ag···g···g – af ···ff ···f + c�S̄
g (A) – c�S̄

f (A)
) + c�S̄

g (A)c�S̄
f (A)

] 

}

≤ max
i∈S̄,j∈S



{

ai···ii···i + aj···jj···j + c�S̄
i (A) + c�S̄

j (A)

+
[(

ai···ii···i – aj···jj···j + c�S̄
i (A) – c�S̄

j (A)
) + c�S̄

i (A)c�S̄
j (A)

] 

}

= � S̄
 (A).

Case III: Assume that wS = xt , wS̄ = yg . If yg ≥ xt , similar to the proof of (i), we have

(
λ – at···tt···t – r�S

t (A)
)(

λ – ag···gg···g – c�S
g (A)

) ≤ r�S
t (A)c�S

g (A)

and

λ ≤ 

{

at···tt···t + ag···gg···g + r�S
t (A) + c�S

g (A)

+
[(

at···tt···t – ag···gg···g + r�S
t (A) – c�S

g (A)
) + r�S

t (A)c�S
g (A)

] 

}

≤ max
i∈S,j∈S̄



{

ai···ii···i + aj···jj···j + r�S
i (A) + c�S

j (A)

+
[(

ai···ii···i – aj···jj···j + r�S
i (A) – c�S

j (A)
) + r�S

i (A)c�S
j (A)

] 

}

= �S
 (A).
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If xt ≥ yg , similarly, we have

(
λ – ag···gg···g – c�S̄

g (A)
)(

λ – at···tt···t – r�S̄
t (A)

) ≤ c�S̄
g (A)r�S̄

t (A)

and

λ ≤ 

{

at···tt···t + ag···gg···g + r�S̄
t (A) + c�S̄

g (A)

+
[(

at···tt···t – ag···gg···g + r�S̄
t (A) – c�S̄

g (A)
) + r�S̄

t (A)c�S̄
g (A)

] 

}

≤ max
i∈S̄,j∈S



{

ai···ii···i + aj···jj···j + r�S̄
j (A) + c�S̄

i (A)

+
[(

ai···ii···i – aj···jj···j – r�S̄
j (A) + c�S̄

i (A)
) + r�S̄

j (A)c�S̄
i (A)

] 

}

= � S̄
 (A).

Case IV: Assume that wS = yf , wS̄ = xh. If xh ≥ yf , similar to the proof of (i), we have

(
λ – af ···ff ···f – c�S

f (A)
)(

λ – ah···hh···h – r�S
h (A)

) ≤ c�S
f (A)r�S

h (A)

and

λ ≤ 

{

af ···ff ···f + ah···hh···h + r�S
h (A) + c�S

f (A)

+
[(

af ···ff ···f – ah···hh···h – r�S
h (A) + c�S

f (A)
) + c�S

f (A)r�S
h (A)

] 

}

≤ max
i∈S,j∈S̄



{

ai···ii···i + aj···jj···j + r�S
j (A) + c�S

i (A)

+
[(

ai···ii···i – aj···jj···j – r�S
j (A) + c�S

i (A)
) + c�S

i (A)r�S
j (A)

] 

}

= �S
(A).

If yf ≥ xh, similarly, we have

(
λ – ah···hh···h – r�S̄

h (A)
)(

λ – af ···ff ···f – c�S̄
f (A)

) ≤ r�S̄
h (A)c�S̄

f (A)

and

λ ≤ 

{

ah···hh···h + af ···ff ···f + r�S̄
h (A) + c�S̄

f (A)

+
[(

ah···hh···h – af ···ff ···f + r�S̄
h (A) – c�S̄

f (A)
) + r�S̄

h (A)c�S̄
f (A)

] 

}

≤ max
i∈S̄,j∈S



{

ai···ii···i + aj···jj···j + r�S̄
i (A) + c�S̄

j (A)

+
[(

ai···ii···i – aj···jj···j + r�S̄
i (A) – c�S̄

j (A)
) + r�S̄

i (A)c�S̄
j (A)

] 

}

= � S̄
(A).

The conclusion follows from Cases I, II, III and IV. �
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We next give the following comparison theorem for these upper bounds in Theorems
-.

Theorem  Let A be a (p, q)th order n × n dimensional nonnegative rectangular tensor,
S be a nonempty proper subset of N , S̄ be the complement of S in N . Then

�S(A) ≤ US(A) ≤ �(A) ≤ max
i,j∈N

{
Ri(A), Cj(A)

}
.

Proof I. By Remark . in [], �(A) ≤ maxi,j∈N {Ri(A), Cj(A)} holds.
II. Next, we prove US(A) ≤ �(A). Here, we only prove US

 (A) ≤ �(A). Similarly, we can
prove US̄

 (A), US
 (A), US̄

 (A) ≤ �(A), respectively.
(i) Suppose that

US
 (A) = max

i∈S,j∈S̄



{

ai···ii···i + aj···jj···j + r�S
j (A)

+
[(

ai···ii···i – aj···jj···j – r�S
j (A)

) + ri(A)r�S
j (A)

] 

}

.

From the proof of Theorem . in [], we can see that the bound US
 (A) is obtained by

solving λ from

(λ – ai···ii···i)
(
λ – aj···jj···j – r�S

j (A)
) ≤ ri(A)r�S

j (A). ()

From the proof of Theorem . in [], we can see that the bound

�(A) = max
i,j∈N ,i�=j



{

ai···ii···i + aj···jj···j + ri
j (A)

+
[(

ai···ii···i – aj···jj···j – ri
j (A)

) + aji···ii···iri(A)
] 


}

is obtained by solving λ from

(λ – ai···ii···i)
(
λ – aj···jj···j – ri

j (A)
) ≤ aji···ii···iri(A). ()

Taking i ∈ S, j ∈ S̄ in (), by the proof of Theorem  in [], we know that if λ satisfies (),
then λ satisfies (), which implies that

�(A) ≥ max
i∈S,j∈S̄



{

ai···ii···i + aj···jj···j + ri
j (A)

+
[(

ai···ii···i – aj···jj···j – ri
j (A)

) + aji···ii···iri(A)
] 


}

≥ US
 (A).

Obviously, US
 (A) ≤ �(A).

(ii) Suppose that

US
 (A) = max

i∈S,j∈S̄



{

ai···ii···i + aj···jj···j + r�S
j (A)

+
[(

ai···ii···i – aj···jj···j – r�S
j (A)

) + ci(A)r�S
j (A)

] 

}

.
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Similar to the proof of (i), we can obtain US
 (A) ≤ �(A) ≤ �(A).

III. Finally, we prove that �S(A) ≤ US(A). Here, we only prove �S
 (A) ≤ US(A). Simi-

larly, we can prove � S̄
 (A),�S

 (A),� S̄
 (A),�S

 (A),� S̄
 (A),�S

(A),� S̄
(A) ≤ US(A), respec-

tively.
Let i ∈ S and j ∈ S̄. From the proof of Theorem , we can see that the bound �S

 (A) is
obtained by solving λ from

(
λ – ai···ii···i – r�S

i (A)
)(

λ – aj···jj···j – r�S
j (A)

) ≤ r�S
i (A)r�S

j (A). ()

(i) Suppose that r�S
i (A)r�S

j (A) = . If λ – ai···ii···i – r�S
i (A) > , i.e., λ > ai···ii···i + r�S

i (A),

then λ – aj···jj···j – r�S
j (A) ≤ , and for any i ∈ S,

(λ – ai···ii···i)
(
λ – aj···jj···j – r�S

j (A)
) ≤  ≤ ri(A)r�S

j (A).

That is to say, if λ satisfies (), then λ satisfies (), which implies that �S
 (A) ≤ US

 (A) ≤
US(A).

If λ – ai···ii···i – r�S
i (A) ≤ , then λ – aj···jj···j – r�S

j (A) ≥ , i.e., λ ≥ aj···jj···j + r�S
j (A). From

(), we can obtain λ – aj···jj···j – r�S
j (A) ≤ r�S

j (A), i.e.,

λ – aj···jj···j ≤ rj(A). ()

By λ – ai···ii···i – r�S
i (A) ≤  ≤ r�S

i (A), i.e., λ – ai···ii···i ≤ ri(A), we have

λ – ai···ii···i – r�S̄
i (A) ≤ r�S̄

i (A). ()

Multiplying () with (), we can obtain

(λ – aj···jj···j)
(
λ – ai···ii···i – r�S̄

i (A)
) ≤ r�S̄

i (A)rj(A), ()

which implies that if λ satisfies (), then λ satisfies (), consequently, �S
 (A) ≤ US̄

 (A) ≤
US(A).

(ii) Suppose that r�S
i (A)r�S

j (A) > . Then dividing () by r�S
i (A)r�S

j (A), we have

(λ – ai···i – r�S
i (A))

r�S
i (A)

(λ – aj···j – r�S
j (A))

r�S
j (A)

≤ . ()

Furthermore, if λ–ai···i–r�
S

i (A)

r�S
i (A)

≥ , then by Lemma . in [] and (), we have

(λ – ai···i)
ri(A)

(λ – aj···j – r�S
j (A))

r�S
j (A)

≤ (λ – ai···i – r�S
i (A))

r�S
i (A)

(λ – aj···j – r�S
j (A))

r�S
j (A)

≤ .

Thus, () holds, which implies that if λ satisfies (), then λ satisfies (), consequently,

�S
 (A) ≤ US

 (A). And if λ–ai···i–r�
S

i (A)

r�S
i (A)

≤ , then () holds, which leads to () from (). This

implies that if λ satisfies (), then λ satisfies (), consequently, �S
 (A) ≤ US̄

 (A) ≤ US(A).
The conclusion follows immediately from what we have proved. �
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3 Numerical examples
Example  Let A = (aijkl) be a (, )th order  ×  dimensional nonnegative rectangular
tensor with entries defined as follows:

A(:, :, , ) =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ , A(:, :, , ) =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ ,

A(:, :, , ) =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ ,

A(:, :, , ) =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ , A(:, :, , ) =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ ,

A(:, :, , ) =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ ,

A(:, :, , ) =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ , A(:, :, , ) =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ ,

A(:, :, , ) =

⎡

⎢
⎣

  
  
  

⎤

⎥
⎦ .

By Theorem , we have

λ ≤ .

By Theorem , we have

λ ≤ ..

Taking S = {, }, S̄ = {}, by Theorem , we have

λ ≤ .;

by Theorem , we have

λ ≤ ..

In fact, λ = .. This example shows that the upper bound in Theorem  is smaller
than those in Theorems -.

Example  Let A = (aijkl) be a (, )th order  ×  dimensional nonnegative rectangular
tensor with entries defined as follows:

a = a = a = a = a = a = ,
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the other aijkl = . By Theorem , we have

λ ≤ .

In fact, λ = . This example shows that the upper bound in Theorem  is sharp.

4 Conclusions
In this paper, a new S-type upper bound �S(A) of the largest singular value for a nonneg-
ative rectangular tensor A with m = n is obtained by breaking N into disjoint subsets S
and its complement. It is proved that the bound �S(A) is better than those in [, , ].

Note here that when n = , �(A) = US(A) = �S(A), and when n ≥ , �(A) ≥ US(A) ≥
�S(A) always holds. How to pick S to make �S(A) as small as possible is an interesting
problem, but difficult when n is large. We will research this problem in the future.
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