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Abstract
In this paper we deal with a theoretical question raised in connection with the
application of Dirichlet-Sch type inequality, obtained by Huang (Int. Math. J.
27(02):1650009, 2016), which has been already applied to obtain multiplicity results
for boundary value problems in several recent papers. We also discuss a particular
case of it in more detail. As an application, we deduce the least harmonic majorant
and log-concavity of extended subharmonic functions.
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1 Introduction
Let � be the subset of the upper half unit sphere. The set R+ × � in Rn is called a cone.
We denote it by Cn(�), where � ⊂ S. The sets I × � and I × ∂� with an interval on R are
denoted by Cn(�; I) and Sn(�; I), respectively. We denote Cn(�) ∩ SR and Sn(�; (, +∞))
by Sn(�; R) and Sn(�), respectively.

Furthermore, we denote by dσ (resp. dSR) the (n – )-dimensional volume elements in-
duced by the Euclidean metric on ∂Cn(�) (resp. SR) and by dw the elements of the Eu-
clidean volume in Rn.

It is well known (see, e.g., [], p.) that

�∗ϕ(�) + λϕ(�) =  in �,
(.)

ϕ(�) =  on ∂�,

where �∗ is the Laplace-Beltrami operator. We denote the least positive eigenvalue of this
boundary value problem (.) by λ and the normalized positive eigenfunction correspond-
ing to λ by ϕ(�),

∫
�

ϕ(�) dS = .
We remark that the function rℵ±

ϕ(�) is harmonic in Cn(�), belongs to the class
C(Cn(�)\{O}) and vanishes on Sn(�), where

ℵ± = –n +  ±
√

(n – ) + λ.

For simplicity we shall write χ instead of ℵ+ – ℵ–.
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For simplicity we shall assume that the boundary of the domain � is twice continuously
differentiable, ϕ ∈ C(�) and ∂ϕ

∂n >  on ∂�. Then (see [], p.-)

dist(�, ∂�) ≈ ϕ(�), (.)

where � ∈ �.
Let δ(P) = dist(P, ∂Cn(�)), we have

ϕ(�) ≈ δ(P), (.)

for any P = (,�) ∈ � (see []).
Let u(r,�) be a function on Cn(�). For any given r ∈ R+, the integral

∫

�

u(r,�)ϕ(�) dS,

is denoted by Nu(r), when it exists. The finite or infinite limits

lim
r→∞ r–ℵ+Nu(r) and lim

r→
r–ℵ–Nu(r)

are denoted by Uu and Vu, respectively, when they exist.

Remark  A function g(t) on (,∞) is Ad,d -convex if and only if g(t)td is a convex func-
tion of td (d = d + d) on (,∞), or, equivalently, if and only if g(t)t–d is a convex function
of t–d on (,∞).

Remark  Nu(r) is a Aℵ+,γ –-convex on (,∞), where u is a subharmonic function on
Cn(�) such that

lim sup
P∈Cn(�),P→Q∈∂Cn(�)

u(P) ≤ c, (.)

where c is a nonnegative number (see []).
The function

PCn(�)(P, Q) =
∂GCn(�)(P, Q)

∂nQ

is called the ordinary Poisson kernel, where GCn(�) is the Green function.
The Poisson integral of g relative to Cn(�) is defined by

PICn(�)[g](P) =

cn

∫

Sn(�)
PCn(�)(P, Q)g(Q) dσ ,

where g is a continuous function on ∂Cn(�) and ∂
∂nQ

denotes the differentiation at Q along
the inward normal into Cn(�).

We set functions f satisfying

∫

Sn(�)

|f (t,�)|p
 + tγ

dσ < ∞, (.)
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where – < p < +∞ and

–ℵ+ – n + 
p

< γ <
–ℵ+ – n + 

p
+ n – .

Let – < p < +∞. we denote A� the class of all measurable functions g(t,�) (Q = (t,�) =
(Y , yn) ∈ Cn(�)) satisfying the following inequality:

∫

Cn(�)

|g(t,�)|p–ϕ

 + tγ – dw < ∞

and the class B� , consists of all measurable functions h(t,�) ((t,�) = (Y , yn) ∈Sn(�)) sat-
isfying

∫

Sn(�)

|h(t,�)|q
 + tγ

∂ϕ

∂n
dσ < ∞,

where q > .
We will also consider the class of all continuous functions u(t,�) ((t,�) ∈ Cn(�)) har-

monic in Cn(�) with u+(t,�) ∈ A� ((t,�) ∈ Cn(�)) and u+(t,�) ∈ B� ((t,�) ∈ Sn(�)) is
denoted by C� (see []).

In , Jiang, Hou and Peixoto-de-Büyükkurt (see []) obtained the following result.

Theorem A Let g be a measurable function on ∂Tn such that

∫

∂Tn

(
 + |Q|)–n∣∣g(Q)

∣
∣dQ < ∞.

Then the harmonic function PITn [g] satisfies PITn [g](P) = o(r secn– θ) as r → ∞ in Tn.
Recently, Wang, Huang and N. Yamini (see []) generalized Theorem A to the conical case.

Theorem B Let g be a continuous function on ∂Cn(�) satisfying (.) with p = q =  and
γ = ℵ+ +  – ℵ–. Then

UPICn(�)[g] = UPICn(�)[|g|] = .

The remainder of the paper is organized as follows: in Section , we shall give our main
theorem; in Section , some necessary lemmas are given; in Section , we shall prove the
main result.

2 Main result
In this section, we give the main result of this paper.

Our main aim is to give a least harmonic majorant of a nonnegative subharmonic func-
tion on Cn(�).

Theorem  Let u be a function subharmonic in Cn(�) and u′ be the restriction of u to
∂Cn(�). If u′ satisfy (.) and – ≤ Uu ≤  then

u(P) ≤ hu(P) (.)
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for any P = (r,�) ∈ Cn(�), where hu(P) is the least harmonic majorant of u on Cn(�) and
has the following expression:

hu(P) = PICn(�)
[
u′](P) + Vurℵ–

ϕ(�) + Uurℵ+
ϕ(�).

Remark  Theorem  solves a theoretical question raised in connection with the applica-
tion of Dirichlet-Sch type inequality, obtained by Huang (see []), which has been already
applied to obtain multiplicity results for boundary value problems in several recent papers.

3 Main lemmas
In order to prove our main result, we need the following lemmas.

Lemma  (see []) Let u be a function subharmonic on Cn(�) satisfying (.). Then the
limit Uu (– < Uu ≤ ) exists.

Lemma  Let u be a function subharmonic on Cn(�) satisfying (.) and

Uu+ ≤  and Uu+ < +∞. (.)

Then

u(r,�) ≤ Vu+ rℵ–
ϕ(�) + Uu+ rℵ+

ϕ(�). (.)

Proof Take any (r,�) ∈ Cn(�) and any pair of numbers τ, τ ( < τ < r < τ < +∞). We
define a boundary function on ∂Cn(�; (τ, τ)) by

ν(r,�) =

⎧
⎨

⎩

u(τi,�) on {τi} × � (i = , ),

 on [τ, τ] × ∂�.

If we denote Schrödinger PWB solution of the Dirichlet-Sch problem on Cn(�; (τ, τ))
with ν by Hν((r,�);Cn(�; (τ, τ))), then we have

u(r,�) ≤ Hν

(
(r,�);Cn

(
�; (τ, τ)

))

≤
∫

�

u+(τ,�)
∂GCn(�;(τ,τ))((τ,�), (r,�))

∂R
τ n–

 dS

–
∫

�

u+(τ,�)
∂GCn(�;(τ,τ))((τ,�), (r,�))

∂R
τ n–

 dS,

which shows that (.) holds from (.). �

Lemma  Let g be a locally integrable function on ∂Cn(�) satisfying (.) and u be a sub-
harmonic function on Cn(�) satisfying

– ≤ lim inf
P∈Cn(�),P→Q∈∂Cn(�)

{
u(P) – PICn(�)[g](P)

} ≤  (.)

and

lim inf
P∈Cn(�),P→Q∈∂Cn(�)

{
u+(P) – PICn(�)

[|g|](P)
} ≤ . (.)
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Then the limits Uu and Vu+ (–∞ < Uu ≤ ,  ≤ Uu+ ≤ +∞) exist, and if (.) is satisfied,
then

u(P) ≤ PICn(�)[g](P) + Vu+ rℵ–
ϕ(�) + Uu+ rℵ+

ϕ(�) (.)

for any P = (r,�) ∈ Cn(�).

Proof Put

U(P) = u(P) – PICn(�)[g](P) and U ′(P) = u+(P) – PICn(�)
[|g|](P)

on Cn(�). From (.) and (.) we have

lim inf
P∈Cn(�),P→Q

U(P) ≤ – and lim inf
P∈Cn(�),P→Q

U ′(P) ≤ –.

Hence it follows from Lemma  that the limits UU and VU ′ (– < UU ≤ ,  ≤ VU ′ ≤ )
exist. So Theorem B gives the existence of the limits Uu, Vu+ ,

UU = Vu and UU ′ = Vu+ . (.)

Since  ≤ U+(P) ≤ u+(P) + (PICn(�)[g])–(P) on Cn(�), it also follows from Theorem B
and (.) that

VU+ ≤ Vu+ < ∞,

which together with Lemma  gives the conclusion. �

Lemma  Let g be a lower semi-continuous function on ∂Cn(�) satisfying (.) and u be a
superharmonic function on Cn(�) such that

lim inf
P∈Cn(�),P→Q

u(P) ≤ g(Q) + c (.)

for any Q ∈ ∂Cn(�) and c is a positive number. Then the limit Uu (– ≤ Uu ≤ +) exists,
and if Uu < +∞, then

u(P) ≤ PICn(�)[g](P) + Vurℵ–
ϕ(�) + Uurℵ+

ϕ(�)

for any P = (r,�) ∈ Cn(�).

Proof Since –g is upper semi-continuous function in ∂Cn(�), it follows from [], p., that

lim inf
P∈Cn(�),P→Q

PICn(�)[g](P) ≥ g(Q) – c. (.)

We see from (.) and (.) that

– ≤ lim sup
P∈Cn(�),P→Q

{
u(P) – PICn(�)[g](P)

} ≤ ,

which gives (.). Since g and u are positive, (.) also holds. Lemma  is proved. �
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Lemma  Let u be a subharmonic function in Cn(�) such that u′ = u|∂Cn(�) satisfies
(.). Then PICn(�)[u′](P) ≤ h(P) on Cn(�), where h(P) is the any harmonic majorant of
u on Cn(�).

Proof Take any P′ = (r′,�′) ∈ Cn(�). Let ε be any positive number. In the same way as in
the proof of Lemma , we can choose R such that

∫

Sn(�;(R,∞))
PCn(�)

(
P′, Q

)
u′(Q) dσ <

ε


. (.)

Further, take an integer j (j > R) such that (see [])

∫

Sn(�;(,R))

∂�j(P′, Q)
∂nQ

u′(Q) dσ <
ε


. (.)

Since

∫

Sn(�;(,R))

∂GCn(�;(,j))(P, Q)
∂nQ

u′(Q) dσ ≤ Hu
(
P;Cn

(
�; (, j)

))

for any P ∈ Cn(�; (, j)), we have from (.) and (.)

PICn(�)
[
u′](P′) – Hu

(
P′;Cn

(
�; (, j)

))

≤
∫

Sn(�;(,R))

∂�j(P′, Q)
∂nQ

u′(Q) dσ

+

cn

∫

Sn(�;(R,∞))
PCn(�)

(
P′, Q

)
u′(Q) dσ

< ε. (.)

Here note that Hu(P;Cn(�; (, j))) is the least harmonic majorant of u on Cn(�; (, j))
(see [], Theorem .). If h is a harmonic majorant of u on Cn(�), then

Hu
(
P′;Cn

(
�; (, j)

)) ≤ h
(
P′).

Thus we obtain from (.)

PICn(�)
[
u′](P′) < h

(
P′) + ε,

which gives the conclusion of Lemma . �

4 Proof of Theorem 1
Let P be any point of Cn(�) and ε be any positive number. By the Vitali-Carathéodory
theorem with respect to the Schrödinger operator (see [], p.), there exists a lower
semi-continuous function g ′(Q) on ∂Cn(�) such that

u′(Q) ≤ g ′(Q) (.)
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and

PICn(�)
[
g ′](P) < PICn(�)

[
u′](P) + ε. (.)

Since

lim
P∈Cn(�),P→Q

u(P) ≤ u′(Q) ≤ g ′(Q)

for any Q ∈ ∂Cn(�) from (.), it follows from [], Lemma ., that the limits Uu and Uu

exist, and if – ≤ Uu <  and – ≤ Vu < , then

u(P) ≤ PICn(�)
[
g ′](P) + Vurℵ–

ϕ(�) + Uurℵ+
ϕ(�). (.)

Hence we see from (.) and (.) that (.) holds.
Next we call the least harmonic majorant of u on Cn(�): hu(P). Set h′′(P) is a Schrödinger

harmonic function in Cn(�) such that (see [])

u(P) ≤ h′′(P) + ε. (.)

Put

h∗(P) = hu(P) – h′′(P) on Cn(�).

It is easy to see that

h∗(P) ≤ hu(P).

It follows from Theorem B that Vh∗+ < +∞. Further, from Lemma  we see that

lim sup
P∈Cn(�),P→Q

h∗(P) = lim inf
P∈Cn(�),P→Q

{
PICn(�)

[
u′](P) – h′′(P)

} ≤ –.

From Theorem B and (.) we know

Vh∗ = Vhu – Vh′′ = Vu – Uh′′ ≤ Uu – Uu = .

We see from Lemma  that – ≤ h∗(P) ≤ ε on Cn(�), which shows that hu(P) is the least
harmonic majorant in Cn(�). Theorem  is proved.

5 Conclusion
In this article, we dealt with a theoretical question raised in connection with the applica-
tion of Dirichlet-Sch type inequality. Additionally, we discussed a particular case of it in
more detail. As applications, we deduced the least harmonic majorant and log-concavity
of extended subharmonic functions.
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