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Abstract
In this study we approach a mixed initial-boundary value problem to modeling a
three-phase-lag dipolar thermoelastic body. The constitutive laws in this context are
given. We establish a uniqueness result and prove a reciprocal theorem. The
variational principle obtained in this context is a generalization of the known Gurtin’s
principle for classical elasticity.
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1 Introduction
In many studies published in the last period of time it was demonstrated that the classi-
cal uncoupled theory of thermoelasticity predicts two phenomena not compatible with
concrete experiments: the equation of heat conduction does not contain any elastic terms
and the heat equation is of parabolic type and this means that it predicts infinite speeds of
propagation for heat waves. As such there are published a number of studies to eliminate
the paradoxes of the classical theory. We refer to some of them, most of them are discussed
lately. The first important model is due to Lord and Shulman []. Then Green and Naghdi
developed three different theories, labeled type I, type II and type III, in [–]. We want
to outline that the Green-Naghdi theory of type I is equivalent to the classical coupled
thermoelasticity theory; the Green-Naghdi theory of type II does not admit energy dis-
sipation and implies a finite speed of propagation for heat waves; and the Green-Naghdi
theory of type III admits dissipation of energy and the heat flux is a combination of type I
and type II. Also, this type III implies a finite speed of propagation for heat waves. In other
recent studies (see, for instance, []), the Fourier law is replaced by an approximation of the
equation where the thermal displacement function, the thermal conductivity tensor and
the conductivity rate tensor appear. This is the three-phase-lag heat conduction model,
and it is an extension of the dual-phase-lag (see []). Using Taylor approximations, it is
proved that this theory covers the Green-Naghdi theories. Many studies that highlight the
beneficial effect in terms of application of this theory have been published. So, the effects
of three-phase-lags on an infinite medium with cylindrical cavity are studied in [], and
in [] the generalized thermoelastic functionally graded orthotropic hollow sphere under
thermal shock with three-phase-lag effect is studied. Other studies emphasize the theo-
retical advantages of the three-phase-lag theory. So, in [] and [] the authors highlight

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-017-1380-5
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-017-1380-5&domain=pdf
http://orcid.org/0000-0003-1552-3763
mailto:m.marin@unitbv.ro


Marin et al. Journal of Inequalities and Applications  (2017) 2017:109 Page 2 of 16

the importance of the reciprocity theorems which produce boundary integral equations
used in the boundary element method. Also, the variational principles provide a theoret-
ical basis for numerical techniques such as finite-element method or boundary element
method (see [–]).

The theory of bodies with microstructure has the primary aim to remove the differ-
ences which occur between experiments and the classical theory of elasticity. The results
of classical elasticity prove not to be appropriate when the body’s overall deformations
are subject to effects of material microstructure. This happens in the case of ceramics,
graphite, human bones, polymers (that is, some granular bodies with large molecules), and
so on. Eringen was first to study this kind of theory (see, for instance, [, ]) which was
continuously studied in various papers, such as [–]. Some considerations on waves
for specific bodies with microstructure can be found in [–]. A specific aspect of the
microstructure is the dipolar structure. Many valuable researchers emphasized the impor-
tance of the dipolar structure of materials. The start was given by the published results of
Mindlin [] as well as Green and Rivlin [], who approached also in other papers the
multipolar structures and, in particular, the dipolar structures. Another known researcher,
Gurtin, has published a few articles on multipolar structures. It is enough to recall the pa-
per [] where Gurtin together with Fried discover integral statements of force balance,
energy balance and entropy imbalance for an interface between a body and its environ-
ment. We want to outline that in the theory of dipolar continua the degrees of freedom
for each particle are three translations and nine micro-deformations, and each material
point is constrained to deform homogeneously. The theories of dipolar bodies are quite
sufficient for a large number of applications in solid mechanics.

In our present study the constitutive equations for the three-phase-lag dipolar thermoe-
lastic solids are given. These were obtained by the procedure used in a simple case of
classical elasticity. In order to prove the consistency of the mixed problem formulated in
this context, we state and argue two qualitative results, namely uniqueness and recipro-
cal results. These are obtained without resorting to known processes (for example, with-
out using Laplace’s transform). Instead of these procedures, in proving the uniqueness
result, the dissipative inequality is used. Also, for the general case of an anisotropic and
inhomogeneous material, we prove a variational principle which generalizes the known
convolutional variational principle of Gurtin in order to cover the three-phase-lag dipolar
thermoelasticity theory.

2 Notations and basic equations
Assume that at time t our dipolar thermoelastic body occupies the domain � included
in the Euclidean three-dimensional space R. Its boundary is the piecewise smooth sur-
face ∂�. In � we will use a fixed system of rectangular Cartesian axes Oxi, i = , , , so
that in this system any point P from � is characterized by three rectangular coordinates
x, x, x, and we use the notation x for (x, x, x). So, x will be the position and t will be
time. The functions in the following are considered to be functions of (x, t) defined on
cylinder �̄ × (,∞), where �̄ = � ∪ ∂�. If there is no likelihood of confusion, the spa-
tial variables and the time variable of functions will be omitted. We will use the known
convention on summation over repeated subscripts and differentiation. Greek subscripts
are understood to range over the integers (, ), and Latin subscripts take the values , , .
We also use a superposed dot to denote the partial differentiation with respect to time,
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t, ḟ = ∂f /∂t, and a subscript preceded by a comma denotes partial differentiation with re-
spect to the corresponding Cartesian coordinate, f,j = ∂f /∂xj. The motion of the body will
be characterized by the displacement vector of components (ui), the dipolar displacement
tensor of components (ϕij) and variation of temperature θ . We will consider that all com-
ponents of displacement and temperature variation from some reference temperature are
small. Also, the space derivatives of these functions and their time derivatives are small.

Our mathematical model requires a system of governing equations in the context of the
linear theory of dipolar thermoelasticity. Using the known procedure of Green and Rivlin,
we consider a new motion which differs from the given motion only by superposed rigid
motion defined by a rotation of uniform rigid body angular velocity; and suppose that for
the given motion, all characteristics of the body are unaltered by such superposed rigid
motion. So we deduce the following kinetic relations, which give expressions of the strain
measures εij, γij and χijk with regard to variables of motion (see Eringen []):

εij =



(ui,j + uj,i), γij = uj,i – ϕij, χijk = ϕjk,i. ()

Also, according to Eringen [], the continuity equation has the form

d	

dt
+ 	u̇j,j = , ()

where 	 is the mass density.
With a suggestion given by Green and Naghdi in [], we will consider the thermal dis-

placement α and thermal gradient βi defined with the help of temperature by

α(x, t) =
∫ t

t

θ (x, τ ) dτ , βi(x, t) =
∫ t

t

θ,i(x, τ ) dτ . ()

Clearly, we have

α̇(x, t) = θ (x, t), α(x, t) = , βi(x, t) = α,i(x, t),

and, in the case t = , we obtain

α(x, ) = , βi(x, ) = . ()

Now we obtain some consequences of the laws of thermodynamics. So it is required that
the first two laws of thermodynamics hold at every time t and at any point x ∈ �.

If we denote by ni the components of the outward unit normal to the surface ∂�, then
at each regular point of ∂� we can define the components of surface traction ti, the com-
ponents of surface couple μjk and the surface heat flux q by

ti = (τij + σij)nj, mjk = μijkni, q = qini, ()

where τij, σij and μijk are the components of the stress and qi are the components of the
heat flux vector.

Now, we denote by e the internal energy per unit mass, by Iij the micro-inertia tensor
(which is a symmetric tensor), by fi the components of body force, by gjk the components
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of body couple and by Q the intensity of applied heat source per unit volume. Then the
first law of thermodynamics is

d
dt

∫
�

(	e + 	u̇iu̇i + Ijkϕ̇jsϕ̇ks) dV

=
∫

�

(	fiu̇i + 	gjkϕ̇jk + Q) dV +
∫

∂�

(tiu̇i + mjkϕ̇jk – q) dA. ()

Also, if η is the entropy per unit volume and T is the absolute temperature, then the second
law of thermodynamics receives the form

η̇ ≥ Q
T

–
qi,i

T
+

qi

T T,i, T = T + θ , ()

where T is the temperature in the reference state.
With the help of equations () and () and using the divergence theorem, from () we

deduce

	ė = τijε̇ij + σijγ̇ij + μijkχ̇ijk + Q – qi,i,

(τij + σij),j + 	fi = 	üi, ()

μijk,i + σjk + 	gjk = Ijsϕ̈ks.

Considering (), inequality () becomes

	ė – τijε̇ij – σijγ̇ij – μijkχ̇ijk – T η̇ +
qiT,i

T
≤ . ()

Now we introduce the Helmholtz free energy density, denoted by � , and defined by

� = 	e – Tη, ()

such that the entropy inequality () receives the form

�̇ + Ṫη – τijε̇ij – σijγ̇ij – μijkχ̇ijk +
qiθ,i

T
≤ . ()

Taking into account that the set of independent variables of function � is (εij,γij,χijk , θ ),
from () we are led to

∂�

∂εij
ε̇ij +

∂�

∂γij
γ̇ij +

∂�

∂χijk
χ̇ijk +

∂�

∂θ
θ̇ + θ̇η – τijε̇ij – σijγ̇ij – μijkχ̇ijk +

qiθ,i

T
≤ . ()

We restrict our considerations to the case where the materials have a center of symme-
try. Also, we suppose that the body is free from stress, in its reference configuration, and
has zero intrinsic equilibrated body forces and body couples. The linear theory requires a
quadratic form for the internal energy density with regard to its independent constitutive
variables. According to the principle of conservation of energy, we can expand in series
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the internal energy density about reference configuration so that it can be written in the
following form:

� =



Cijmnεijεmn + Gijmnεijγmn + Fijmnrεijχmnr +



Bijmnγijγmn

+ Dijmnrγijχmnr +



Aijkmnrχijkχmnr – aijεijθ – bijγijθ – cijkχijkθ –


βθ. ()

As a consequence, this form of � is used in inequality () to obtain the constitutive equa-
tions that give the expressions for stress measures in terms of the strain measures

τij =
∂�

∂εij
= Cijmnεmn + Gmnijγmn + Fmnrijχmnr – aijθ ,

σij =
∂�

∂γij
= Gijmnεmn + Bijmnγmn + Dijmnrχmnr – bijθ ,

μijk =
∂�

∂χijk
= Fijkmnεmn + Dmnijkγmn + Aijkmnrχmnr – cijkθ , ()

η = –
∂�

∂θ
= aijεij + bijγij + cijkχijk + βθ ,

Tη̇ = Q – qi,i,

and the following symmetry relations are assumed to hold in the domain �:

Cijmn = Cmnij, Bijmn = Bmnij, Aijkmnr = Amnrijk . ()

Also, from () we deduce the dissipative inequality
∫

�

qiθ,i

T
dV ≤ , ()

which leads to
∫

�

qi,iθ

T
dV –

∫
∂�

qθ

T
dA ≥ , ()

which, obviously, becomes
∫

�

qi,iθ

T
dV ≥ ,

when there is no flux, that is, q = .
Let us denote by tα the phase-lag of the thermal displacement gradient, by tq the phase-

lag of the heat flux, by tT the phase-lag of the temperature gradient, by kij the thermal
conductivity tensor and by k∗

ij the conductivity rate tensor. As is enshrined in the literature
(see, for instance, []), for the heat flux vector in the three-phase-lag theory, we have the
following constitutive equation:

qi(x, t + tq) = –
[
kijθ,j(x, t + tT ) + k∗

ijα,j(x, t + tα)
]
,

tensors kij and k∗
ij being symmetric.
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If we develop here in the Taylor series and retain terms of the order t
q , we obtain the

following equation:

qi + tqq̇i +



t
q q̈i

= –
[
kijθ,j + kijtT θ̇,j + k∗

ij tTα,j + k∗
ij tαα̇,j

]
,  < tα ≤ tT ≤ tq. ()

It is a usual notation f̂ =
∫ t

 f (x, s) ds with which we introduce two new variables

ξi = βi + tT β̇i, ςi = β̂i + tαβi ()

in order to get a more simple form of equation (), namely

( + Dt)qi = –
(
kijξ̇j + k∗

ijς̇j
)
, ()

where the differential operator Dt is defined by

Dt = tq
∂

∂t
+




t
q

∂

∂t .

Using the notation hi = T–
 q̂i, we can introduce the entropy flux vector h by

h = hini = T–
 q̂ini. ()

Considering the definition of convolution product

(v ∗ w)(t) =
∫ t


v(x, t – s)w(x, s) ds,

the energy equation () receives the form

t ∗ (η + hi,i, – R) = , R =


T
Q̂ + η, ()

where Q is the intensity of applied heat source per unit volume and η is the initial value
of entropy.

Now we will add the initial and boundary conditions. So, on the domain �̄, we consider
the initial conditions

ui(x, ) = u
i (x), u̇i(x, ) = u

i (x), ϕij(x, ) = ϕ
ij (x),

ϕ̇ij(x, ) = ϕ
ij(x), θ (x, ) = θ(x), θ̇ (x, ) = θ (x),

()
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while on the cylinder ∂� × (,∞) we add the boundary conditions

ui(x, t) = ũi, (x, t) ∈ ∂�u × (,∞),

(τij + σij)(x, t)nj = t̃i, (x, t) ∈ ∂�c
u × (,∞),

ϕij(x, t) = ϕ̃ij, (x, t) ∈ ∂�ϕ × (,∞),

μijk(x, t)ni = m̃jk , (x, t) ∈ ∂�c
ϕ × (,∞),

α(x, t) = α̃, (x, t) ∈ ∂�α × (,∞),

qi(x, t)ni = q̃, (x, t) ∈ ∂�c
α × (,∞),

()

where the surfaces ∂�u, ∂�ϕ , ∂�α and their complements ∂�c
u, ∂�c

ϕ , ∂�c
α are subsets of

the boundary surface ∂� which satisfy the properties

∂�̄u ∪ ∂�c
u = ∂�̄ϕ ∪ ∂�c

ϕ = ∂�̄α ∪ ∂�c
α = ∂�,

∂�u ∩ ∂�c
u = ∂�ϕ ∩ ∂�c

ϕ = ∂�α ∩ ∂�c
α = ∅.

In () the functions u
i (x), u

i (x), ϕ
ij (x), ϕ

ij(x), θ(x) and θ (x) are prescribed in their do-
main of definition. Also, in () ũi, t̃i, ϕ̃ij, m̃jk , α̃ and q̃ are given functions in their domain of
definition and, as above, ni are the components of the outward unit normal to the surface
∂�.

Now we apply the convolution product in () and () so that by using the initial con-
ditions () and notations

Fi = t ∗ fi + tu
i + u

i , Gjk = t ∗ gjk + Ijs
(
tϕ

ks + ϕ
ks
)

we are led to

t ∗ (τij + σij),j + 	Fi = 	ui,

t ∗ μijk,i + t ∗ σjk + 	Gjk = Ijsϕks. ()

From () and () we obtain the equation

hi + tqḣi +



t
qḧi =


T

(
kijξj + k∗

ijςj
)
,

which can be rewritten in the form

( + Dt)hi = –


T

(
kijβj + kijtT β̇j + k∗

ijβ̂j + k∗
ij tαβj

)
. ()

Now, we take into account () and () so that () receives the form

( + Dt)
(

βθ̇ + aijε̇ij + bijγ̇ij + cijkχ̇ijk –
Q
T

)
=


T

(
kijξ̇j + k∗

ijς̇j
)
, ()

which is known as the heat transport equation.
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If we integrate on the domain � in (), we are led to

∫
�

θ

[
Dt(βθ̇ + aijε̇ij + bijγ̇ij + cijkχ̇ijk) – ( + Dt)

Q
T

–


T

(
kijξ̇j + k∗

ijς̇j
)

,i

]
dV

= –
∫

�

θ (βθ̇ + aijε̇ij + bijγ̇ij + cijkχ̇ijk) dV , ()

which, using relation (), receives the simpler form

∫
�

θ

(
η̇ –

Q
T

)
dV =

∫
�

θ

[


T

(
kijξ̇j + k∗

ijς̇j
)

,i + Dt

(
Q
T

– η̇

)]
dV . ()

Summarizing, the mixed initial boundary value problem for the three-phase-lag dipolar
thermoelastic bodies, denoted by P , is given by the geometric equations (), the constitu-
tive equations (), () and (), the equation of motion (), the initial conditions ()
and the boundary conditions ().

3 Main results
First, we require the elasticity tensors occurring in () and () to satisfy the following
condition: there is a constant c >  so that

Cijmnuijumn + Gijmnuijvmn + Fijmnruijwmnr + Bijmnvijvmn

+ Dijmnrvijwmnr + Aijkmnrwijkwmnr ≥ c(uijuij + vijvij + wijkwijk) ()

for any three tensors uij, vij and wijk .
A result regarding the uniqueness of solution to the problem P is given in the next the-

orem.

Theorem  Assume that
(i) 	(x) > ,β(x) > , T(x) > ,∀x ∈ �;

(ii) Iij(x) is a positive definite tensor;
(iii) condition () takes place.

Then the problem P has at most one solution.

Proof Suppose, by contradiction, that the mixed problem P would have two solutions
(u()

i ,ϕ()
ij , θ ()) and (u()

i ,ϕ()
ij , θ ()). Because of linearity, their difference is also a solution to

the problem P . Let us use the notation u(d)
i = u()

i – u()
i , ϕ(d)

ij = ϕ
()
ij –ϕ

()
ij , θ (d) = θ () –θ (). Of

course, (u(d)
i ,ϕ(d)

ij , θ (d)) satisfies the problem P in the particular case when all the elements
of external data are zeros, the initial data are null and also with null boundary conditions.
To obtain an estimate of the difference (u(d)

i ,ϕ(d)
ij , θ (d)), we will use the integral

∫
�

(τijε̇ij + σijγ̇ij + μijkχ̇ijk) dV .

Here and until the end of the demonstration, because there is no likelihood of confusion,
we give up writing the superscript (d) for all functions.
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Using the equations of motion () and () for the difference solutions and applying the
divergence theorem, because of null boundary conditions, we are led to

∫
�

(τijε̇ij + σijγ̇ij + μijkχ̇ijk) dV = –
∫

�

(	üiu̇i + Ijkϕ̈jsϕ̇ks) dV . ()

This identity can be rewritten in the form




d
dt

[∫
�

(
Cijmnεijεmn + Gijmnuεijγmn + Fijmnrεijχmnr

+ Bijmnγijγmn + Dijmnrγijχmnr + Aijkmnrχijkχmnr

+ 	u̇iu̇i + Ijkϕ̇jsϕ̇ks + βθ)dV
]

=
∫

�

η̇θ dV ()

upon adding βθθ̇ and considering the constitutive equations () and the symmetry rela-
tions ().

On the other hand, taking into account inequality () in the particular case q =  and
the constitutive relation (), we obtain

∫
�


T

qi,iθ dV = –
∫

�

η̇θ ≥ , ()

and this inequality with () lead to




d
dt

{∫
�

(
Cijmnεijεmn + Gijmnuεijγmn + Fijmnrεijχmnr

+ Bijmnγijγmn + Dijmnrγijχmnr + Aijkmnrχijkχmnr

+ 	u̇iu̇i + Ijkϕ̇jsϕ̇ks + βθ)dV
}

≤  ()

for all (x, t) ∈ � × [,∞).
Clearly, from () it easy to obtain u̇i = , ϕ̇ij =  and θ = . As such, if we consider the

fact that for difference of solutions, the initial conditions are null, we deduce ui =  and
ϕij = , which concludes the proof of the theorem. �

Let us consider two different systems of external data acting on our dipolar body, namely

S (ν) =
{

F (ν)
i , G(ν)

jk , R(ν), ũ(ν)
i , ϕ̃(ν)

ij , α̃(ν),

t̃(ν)
i , m̃(ν)

ij , q̃(ν), u(ν)
i , u(ν)

i ,ϕ(ν)
ij ,ϕ(ν)

ij , θ(ν), θ (ν)}, ()

where ν = , . The solutions of mixed problem corresponding to each system of external
data will be denoted by s(ν), that is,

s(ν) =
{

u(ν)
i ,ϕ(ν)

ij , θ (ν),α(ν)}, ν = , .

The link between charging systems S (ν) and corresponding solutions s(ν) is given in the
following theorem.
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Theorem  Between loading systems S (ν) and corresponding solutions s(ν), the next recip-
rocal relation of Betti type holds

∫
�

(
	F ()

i ∗ u()
i + 	G()

ij ∗ ϕ
()
ij – t ∗ R() ∗ θ () –


T

t ∗ q()
i ∗ β

()
i

)
dV

+
∫

∂�

(
t ∗ t()

i ∗ u()
i + t ∗ m()

ij ∗ ϕ
()
ij +


T

t ∗ q() ∗ α()
)

dA

=
∫

�

(
	F ()

i ∗ u()
i + 	G()

ij ∗ ϕ
()
ij – t ∗ R() ∗ θ () –


T

t ∗ q()
i ∗ β

()
i

)
dV

+
∫

∂�

(
t()
i ∗ u()

i + m()
ij ∗ ϕ

()
ij +


T

t ∗ q() ∗ α()
)

dA. ()

Proof With the help of constitutive equation () and symmetry relations (), we can
write

∫
�

(
t ∗ τ

()
ij ∗ ε

()
ij – t ∗ τ

()
ij ∗ ε

()
ij

)
dV

=
∫

�

(
t ∗ Gijmnγ

()
mn ∗ ε

()
ij + t ∗ Fijmnrχ

()
mnr ∗ ε

()
ij – t ∗ aijθ

()ε
()
ij

)
dV

–
∫

�

(
t ∗ Gijmnγ

()
mn ∗ ε

()
ij + t ∗ Fijmnrχ

()
mnr ∗ ε

()
ij – t ∗ aijθ

()ε
()
ij

)
dV . ()

Also, with () and symmetry relations (), we can write

∫
�

(
t ∗ σ

()
ij ∗ γ

()
ij – t ∗ σ

()
ij ∗ γ

()
ij

)
dV

=
∫

�

(
t ∗ Gijmnγ

()
ij ∗ ε()

mn + t ∗ Dijmnrχ
()
mnr ∗ γ

()
ij – t ∗ bijθ

()γ
()
ij

)
dV

–
∫

�

(
t ∗ Gijmnγ

()
mn ∗ ε

()
ij + t ∗ Dijmnrχ

()
mnr ∗ γ

()
ij – t ∗ aijθ

()ε
()
ij

)
dV . ()

Similarly, with the help of () and symmetry relations (), we can write

∫
�

(
t ∗ μ

()
ijk ∗ χ

()
ijk – t ∗ μ

()
ijk ∗ χ

()
ijk

)
dV

=
∫

�

(
t ∗ Fijkmnχ

()
ijk ∗ ε()

mn + t ∗ Dijkmnχ
()
ijk ∗ γ ()

mn – t ∗ cijkθ
()χ

()
ijk

)
dV

–
∫

�

(
t ∗ Fijkmnχ

()
ijk ∗ ε()

mn + t ∗ Dijkmnχ
()
ijk ∗ γ ()

mn – t ∗ cijkθ
()χ

()
ijk

)
dV . ()

Now, we will use the constitutive equation for entropy, (), in order to obtain

∫
�

(
t ∗ η() ∗ θ () – t ∗ η() ∗ θ ())dV

=
∫

�

(
t ∗ aijε

()
ij ∗ θ () + t ∗ bijγ̇

()
ij ∗ θ () + t ∗ cijkχ̇

()
ijk ∗ θ ())dV

–
∫

�

(
t ∗ aijε

()
ij ∗ θ () + t ∗ bijγ̇

()
ij ∗ θ () + t ∗ cijkχ̇

()
ijk ∗ θ ())dV . ()
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Finally, if we add member by member equalities (), () and () and then subtract
equality (), we obtain

∫
�

(
t ∗ τ

()
ij ∗ ε

()
ij – t ∗ τ

()
ij ∗ ε

()
ij + t ∗ σ

()
ij ∗ γ

()
ij – t ∗ σ

()
ij ∗ γ

()
ij

+ t ∗ μ
()
ijk ∗ χ

()
ijk – t ∗ μ

()
ijk ∗ χ

()
ijk – t ∗ η() ∗ θ () + t ∗ η() ∗ θ ())dV = ,

and, obviously, this equality can be rewritten in the form

∫
�

(
t ∗ τ

()
ij ∗ ε

()
ij + t ∗ σ

()
ij ∗ γ

()
ij + t ∗ μ

()
ijk ∗ χ

()
ijk – t ∗ η() ∗ θ ())dV

=
∫

�

(
t ∗ τ

()
ij ∗ ε

()
ij + t ∗ σ

()
ij ∗ γ

()
ij + t ∗ μ

()
ijk ∗ χ

()
ijk – t ∗ η() ∗ θ ())dV . ()

In () we will consider the equations of motion (), (), the energy equation () and the
kinetic relations (). Then we apply the divergence theorem and the boundary conditions
() so that we are led to the identity

∫
�

(
	F ()

i ∗ u()
i + 	G()

ij ∗ ϕ
()
ij – t ∗ R() ∗ θ () – t ∗ h()

i ∗ θ
()
,i

)
dV

+
∫

∂�

(
t ∗ t()

i ∗ u()
i + t ∗ m()

ij ∗ ϕ
()
ij + t ∗ h() ∗ θ ())dA

=
∫

�

(
	F ()

i ∗ u()
i + 	G()

ij ∗ ϕ
()
ij – t ∗ R() ∗ θ () – t ∗ h()

i ∗ θ
()
,i

)
dV

+
∫

∂�

(
t ∗ t()

i ∗ u()
i + t ∗ m()

ij ∗ ϕ
()
ij + t ∗ h() ∗ θ ())dA. ()

Considering that hi = 
T

q̂i, α = θ̂ and β̇i = θ,i, from () we immediately obtain the desired
identity (). �

Remark We want to give an explicit form for the components of the heat flux vector qi. So,
if we integrate in () and take into account the initial conditions qi() =  and ∂

∂t qi() = ,
we will obtain

qi = –
(
kijaj + k∗

ijbj
)
, ()

in which, we remind that kij is the thermal conductivity tensor and k∗
ij is the conductivity

rate tensor. For aj and bj, we obtain the expressions

aj =
e–t/τq

τq

[
sin

t
τq

∫ t



(
e

t
τq cos

t
τq

ξ̇j

)
dτq – cos

t
τq

∫ t



(
e

t
τq sin

t
τq

ξ̇j

)
dτq

]
,

bj =
e–t/τq

τq

[
cos

t
τq

∫ t



(
e

t
τq sin

t
τq

ς̇j

)
dτq – sin

t
τq

∫ t



(
e

t
τq cos

t
τq

ς̇j

)
dτq

]
,

where ξ and ςj are defined in () and τq is the phase-lag of the heat flux.

Other important result of our paper is a variational principle. We strengthen the known
variational principle in order to cover the three-phase-lag dipolar thermoelasticity theory.
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Assuming that the tensors kij and k∗
ij can be reversed, we will use the symmetric tensors

λij and λ∗
ij, defined by

λij = [kij]–, λ∗
ij =

[
k∗

ij
]–. ()

We will write hi in the form

hi = h(I)
i + h(II)

i + h(III)
i + h(IV )

i ()

so that considering () and () we obtain

( + Dt)λijh(I)
j +


T

βi = , ( + Dt)λijh(II)
j +

τT

T
θ,i = ,

( + Dt)λ∗
ijs

(III)
j +


T

βi = , ( + Dt)λ∗
ijh

(IV )
j +

τα

T
βi = ,

()

where βi = θ̂,i and s(III)
i = ∂h(III)

i /∂t.
Motivation of the decomposition () will appear later. We will call an admissible pro-

cess be an ordered array

p = (ui,ϕij,α, θ , εij,γij,χijk , τij,σij,βi,η, hi, hi,i, qi) ()

having as components sufficiently regular functions on their domain of definition.
Let us denote byA the set of all admissible processes which is a linear space with addition

and scalar multiplication.
On A and for each t ∈ [,∞), we define the functional Ft(p) by

Ft(p) =



∫
�

t ∗ (Cijmnεmn ∗ εij + Gijmnεmn ∗ γij + Fijmnrχmnr ∗ εij

+ Bijmnγmn ∗ γij + Dijmnrχmnr ∗ γij + Aijkmnrχmnr ∗ χijk) dV

+
∫

�

[
	ui ∗ ui + Ijkϕjs ∗ ϕks – t ∗ (η – R) ∗ θ

]
dV

+
∫

�


β

[
t ∗ (η – aijεij – bijγij – cijkχijk)

∗ (η – amnεmn – bmnγmn – cmnrχmnr)
]

dV

–
∫

�

{[
t ∗ (τij + σij),j + 	Fi

] ∗ ui + t ∗ τij ∗ εij + t ∗ σij ∗ γij
}

dV

–
∫

�

[
(t ∗ μijk,i + t ∗ σjk + 	Gjk) ∗ ϕjk – t ∗ μijk ∗ χijk

]
dV

+



∫
�

( + Dt)
(

T̂λijh(I)
i ∗ h(I)

j + t ∗ T

τT
λijh(II)

i ∗ h(II)
j

+ λ∗
ijq

(III)
i ∗ h(III)

j +
T̂

τα

λ∗
ijh

(IV )
i ∗ h(IV )

j

)
dV

+
∫

�

(
ĥi ∗ βi + ĥi ∗ α,i – t ∗ 

T
qi ∗ βi + ĥi,i ∗ α –


T

t ∗ q̂i,i ∗ θ

)
dV
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+
∫

∂�u

(t ∗ ti ∗ ũi) dA +
∫

∂�c
u

[
t ∗ (ti – t̃i) ∗ ui

]
dA +

∫
∂�ϕ

(t ∗ mij ∗ ϕ̃ij) dA

+
∫

∂�c
ϕ

[
t ∗ (mij – m̃ij) ∗ ϕij

]
dA –

∫
∂�α

[
ĥ ∗ (α – α̃)

]
dA –

∫
∂�c

α

[ ˆ̃h ∗ α] dA. ()

Now, we can state and prove the convolutional variational principle for the three-phase-
lag dipolar thermoelasticity theory.

Theorem  If the symmetric tensors kij and k∗
ij can be reversed, τα > , τT >  and the

symmetry relations () hold on �, then

δFt(p) = , t ≥  ()

if and only if p is a solution of the mixed initial boundary value problem P .

Proof First, we will prove the inverse implication, that is, assuming that p from () is a
solution of the mixed problemP , we must prove that δFt(p) = . Along with the admissible
process p, we consider another process

p̆ = (ŭi, ϕ̆ij, ᾰ, θ̆ , ε̆ij, γ̆ij, χ̆ijk , τ̆ij, σ̆ij, β̆i, η̆, h̆i, h̆i,i, q̆i).

Of course, we have

p, p̆ ∈A ⇒ p + κ p̆ ∈A, ∀κ ∈ R.

Let us compute the variation of the functional Ft(p)

δFt(p) =
∫

�

{
t ∗

[
Cijmnεmn + Gijmnγmn + Fijmnrχmnr

–
aij

β
(η – amnεmn – bmnγmn – cijkχijk) – τji

]
∗ ε̆ij

+ t ∗
[

Gijmnεmn + Bijmnγmn + Dijmnrχmnr

–
bij

β
(η – amnεmn – bmnγmn – cijkχijk) – σji

]
∗ γ̆ij

+ t ∗
[

Fijkmnεmn + Dmnijkγmn + Aijkmnrχmnr

–
cijk

β
(η – amnεmn – bmnγmn – cijkχijk) – μijk

]
∗ χ̆ijk

}
dV

+
∫

�

{
t ∗

[
–θ +


β

(η – amnεmn – bmnγmn – cmnrχmnr)
]

∗ η̆

}
dV

+
∫

�

[
t ∗ (R – η – hi,i) ∗ θ̆

]
dV +

∫
�

[(
	ui – t ∗ (τij + σij),j – 	Fi

) ∗ ŭi
]

dV

+
∫

�

[
(Ijsϕks – t ∗ μijk,i – t ∗ σjk – 	Gjk) ∗ ϕ̆jk

]
dV

+
∫

�

[
T( + Dt)λijh(I)

j + βi
] ∗ h̆(I)

i dV



Marin et al. Journal of Inequalities and Applications  (2017) 2017:109 Page 14 of 16

+
∫

�

t ∗
[

T

τT
( + Dt)λijh(II)

j + βi

]
∗ h̆(II)

i dV

+
∫

�

[
( + Dt)λ∗

ijh
(III)
j + βi

] ∗ h̆(III)
i dV

+
∫

�

t ∗
[

T

τα

( + Dt)λ∗
ijh

(IV )
j + βi

]
∗ h̆(IV )

i dV

+
∫

�

[(
hi –

qi

T

)
∗ ᾰ,i +

(
hi,i –

qi,i

T

)
∗ ᾰ

]
dV

+
∫

�

[
(α,i – βi) ∗ h̆i + (α – θ̂ ) ∗ h̆i,i

]
dV

+
∫

∂�u

[
t ∗ (ũi – ui) ∗ t̆i

]
dA +

∫
∂�c

u

[
t ∗ (ti – t̃i) ∗ ŭi

]
dA

+
∫

∂�ϕ

[
t ∗ (ϕ̃ij – ϕij) ∗ m̆ij

]
dA +

∫
∂�c

ϕ

[
t ∗ (mij – m̃ij) ∗ ϕ̆ij

]
dA

+
∫

∂�α

[
t ∗ (α̃ – α) ∗ h̆

]
dA +

∫
∂�c

α

[
t ∗ (h – h̃) ∗ ᾰ

]
dA. ()

Here, to compute the first variation of ĥi ∗βi, we have used the above decomposition of hi

in four components.
If p is a solution of the mixed problem P , then the equations of motion (), the energy

equations (), the initial conditions () and the boundary conditions () are satisfied.
Also, equations () are satisfied. If we take into account these equations and conditions
in (), we obtain δFt(p) = .

Now, let us prove the reverse implication, namely, assuming that

δFt(p) = , t ≥ , ()

we have to prove that p is a solution of the mixed problem P .
To this aim we use a suggestion given by Gurtin in the paper []. We take a displacement

ŭi such that it and its space derivatives vanish on cylinder ∂� × [,∞) and choose the
particular admissible process p̆ of the form

p̆ = (ŭi, , , , , , , , , , , , , ).

We substitute p̆ in () such that () reduces to

∫
�

[(
t ∗ (τij + σij),j + 	Fi – 	ui

) ∗ ŭi
]

dV = 

for arbitrary ŭi. According to the fundamental lemma of calculus of variations, we obtain
the equation of motion ().

Now we take p̆ of the form () but suppose that ŭi vanishes on ∂�u × [,∞). With
this p̆, () and () lead to

t ∗ (ti – t̃i) =  on ∂�u × [,∞),
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by using again the fundamental lemma of calculus of variations. This last equality implies
the boundary condition ().

We repeat the above procedure by making suitable choices of process p̆. With each
choice of p̆, by applying the fundamental lemma of calculus of variations, we get an equa-
tion or condition of a mixed problem.

Now we can give a justification for decomposition ().
So, if we choose p̆ = (, , , , , , , , , , , h̆(I)

i , , ), from () and () we deduce the
equation T( + Dt)λijh(I)

j + βi = , which can be rewritten in the form

( + Dt)h(I)
j +


T

kijβi = . ()

Let us consider a process p̆ of the form p̆ = (, , , , , , , , , , , h̆(II)
i , , ). From ()

and (), with this p̆, we obtain the equation ( + Dt)λijh(II)
j + τT /Tθ,i =  which can be

rewritten in the form

( + Dt)h(II)
j +

τT

T
kijθ,i = . ()

Next, we choose a process p̆ of the form p̆ = (, , , , , , , , , , , h̆(III)
i , , ) and if we

use () and (), with this p̆, we are led to the equation ( + Dt)λ∗
ijh

(III)
j + βi = , or, in

another form,

( + Dt)h(III)
j +


T

k∗
ijβ̂,i = . ()

Finally, we take the process p̆ in the form p̆ = (, , , , , , , , , , , h̆(IV )
i , , ). Using

() and (), with this p̆, we obtain the equation ( + Dt)λ∗
ijh

(IV )
j + τα/Tβi =  which can

be rewritten in the form

( + Dt)h(IV )
j +

τα

T
k∗

ijβi = . ()

By adding relations ()-(), we obtain (), and, in this way, decomposition () is jus-
tified. The proof of Theorem  is completed. �

4 Conclusions
With the same procedure that was used for simple elastic solids, we deduce the constitutive
laws for the three-phase-lag dipolar thermoelastic solids. To prove the consistency of the
mixed problem formulated in this context, we formulate and argue two qualitative results,
namely uniqueness and reciprocal results. These are obtained without resorting to known
processes (for example, without using Laplace’s transform). Instead of these procedures,
in proving the uniqueness result, for instance, the dissipative inequality is used. Also, for
the general case of an anisotropic and inhomogeneous material, we prove a variational
principle which generalizes the known convolutional variational principle of Gurtin in
order to cover the three-phase-lag dipolar thermoelasticity theory.
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