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1 Introduction
If f,g > 0, satisfying 0 < fooofz(x) dx <00,0< fooo 2%(y) dy < oo, then there is the following
basic Hilbert-type integral inequality and its equivalent form [1]

* % S @) * B,
o0 o0 2 00

/ [/ ﬂdx} dy < 16/ fz(x) dx, @)
0 o max{x,y} o

where the constants are optimal. Inequalities (1) and (2) are important in the analysis and
partial differential equations [1, 2]. In 2004 and 2006, respectively, (1) and (2) were gener-
alized and improved by introducing an independent parameter A and two parameters 11,
Aa [3, 4].

In recent years, the fractal theory has been developed rapidly, and it has been widely used
in the fields of science and engineering. Some researchers have used the fractal theory to
discuss and generalize some classical inequalities on fractal sets [5, 6], but the research into
the Hilbert-type integral inequality on the fractal set is still not involved. In this paper, by
using the fractal theory and the method of weight function to make a meaningful attempt,

a Hilbert-type integral inequality and its equivalent form on a fractal set are established.

2 Preliminaries

Definition 2.1 ([7]) A non-differentiable function f : R — R* (0 <&@ < 1), x — f(x) is
called local fractional continuous at xy if for any ¢ > 0, there exists § > 0 such that |f(x) —
f(x0)| < e* whenever |x — x| < 8. If f(x) is local fractional continuous on the interval (a, b),
we denote f(x) € C,(a, b).
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Definition 2.2 ([7]) The local fractional derivative of f(x) of order o (0 < o <1) at xy is
defined by

@)y L+ DEW —fo)
dx ) _x—>xo (x xo)

X=X

S (o) =

where I'(z) = [;" e u* du (z > 0) [8]. If for all x € I C R, there exists f**)(x) =
k+1

———
D --- D f(x), then we denote f € Dx,1)o(I), where k =0,1,2,....

Lemma 2.1 ([9]) Suppose that f(x) € Cy(a,b) and f(x) € Dy(a,b). Then, for 0 < <1, we
have an a-differential form

d°f (x) = ) (x) da”.

Lemma 2.2 ([5]) Let I be an interval, f,g:1 C R — R (I° is the interior of I) such that
f,8 € D,(I°). Then the following differentiation rules are valid:
(i) d“(f(x)ig(x)) _f(oz)(x) :tg(oz)(x).

(i) £z f“)(x)g(x) +f(x)g“>(x)
af o
(i) ddf;u =L )("gi 2 (g(x) £0)

(iv) duig;( Cf(x), where C is a constant;

V) 1Y) = (f 0 )(@), then L2 = @ (g(x)) @ ()",
Definition 2.3 ([7]) Let f(x) € C,(a,b). Then the local fractional integral is defined by

N

0= s [ S0 = D

with At; =¢ —t;1 (i =1,...,N) and A = max<;<n{AL}, anda=t) <ty <---<ty=b is
partition of interval [a, b]. Here, it follows that ,I} = 0ifa = b, JI}f(x) = —pI5f (x) ifa < b.

Lemma 2.3 ([7])
(1) Suppose that f(x) = g (x) € C,(a, b), then we have

oy f (x) = g(b) - g(a);
(2) Suppose that f(x),g(x) € Dy(a, b), and f@ (x),g'* (x) € C,(a, b), then we have
@) () = f(R)g )12 - i f @ ()g ().

Lemma 2.4 ([7]) For f(x) =" (y > 0), we have the following equations:

a*x)  I'(l+y)

- R
dx® F(l +y—a)

- I'(l+y)
F(a+1) T I1+y+a)

(by+o¢ _ ay+a)'
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Lemma 2.5 (7, 10]) Iff.g (= 0) € Co(@,b), F,G,h (2 0) € Co(5¥), p>1, L 4 1 =1, %) is
a fractal surface, then we have
(i) Holder’s inequality on the fractal set

oy [ T

APt e
<{F(a+1 /f”(x(dx)} {F(ot+1)_/ﬂ g7(x)(dx) } ;

(i) Holder’s weighted inequality on the fractal set

/ h(x,y)E(x, )G x, ) () (dy)®

F2(a +1)
{Fqgjﬁ / h@JﬁW%wMMW@W}
{m / h(x, )G (x, y)(dx)* (dy)“}

The inequality keeps the form of equality, then there exist constants A and B such that they
are not all zero and AF?(x,y) = BGi(x,y) a.e. on S¥)

Lemma 2.6 Suppose that p > 1, i + %1 =1, 0 <« <1, and weight functions are defined by

1 1 yroo
Aors)=re i ), () (@) € 0rrec)

1 _

o(a,q,y) = / (dx) y € (0, +00).

F(a+1 max{x®, y* }y

Then

wla,p,x) = n(@x2??,  w(a,q,y) = nla)yr?,
where

a+l
= 3
n(a) Fi+a) (3)

Proof Set £ = u, then (dy)* = x*(du)”. Note the following exchange integral, let x = %, and
Ju = s, we have (du)* = —t2%(dt)® and w3 (du)® = 2%(ds)”. Then we have

a

1 y 2
1y 2] = o d &
Cl)(a p x) F((x + 1) o max{x“,y"‘}x*%,( )’)
o0 o
50 1 max{1, z“} u‘%(du)“

I'oe+1) Jo max{x*,y¥}

— 52 1 ! - o OO —370‘ o
=x Ta+D /Ou (du) +/1 u 2 (du)
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_ Sy L [1‘; o, [1 -2 a}
x a+1)/ (du) +/Ot (dt)

<F<a+1)/ ”_W")Q)
< 20[+1 (ds)a)

'a+1) J,

II
N\Q

5(-2)
X2
F(l+a)

= na)x2®?.

Similarly, we obtain w(«, g, y) = n(a)y%(q’z). O

Lemma 2.7 Suppose thatp > 1, }7 + %1 =1,0<a <1,and ¢ > 0 is small enough, let us define
the real functions as follows:

=y 10 xeO), _ v Jo ye(o,
f(x)_{x_%_%, x € [1,00), g()/)—{x_%_%’ y € [1,00),
then we have
7o = L T ] o= g
7 o _ Ja o f(x)g(y) o 77(05) = 0F
7 _OIw[OIWmax{xa,ya}]'g >F(a+l)(1_0(1)) (e > 0%). (5)

Proof Note the properties of local fractal space [5, 7]: (a + b)* = a* + b* and (-a)* = —a?,
we easily obtain

Q-

J e = ol (5 027 @) )7 [o12 (4 4-2g10) ] -

= [ (o) )] [ (™ 1”))]% e

Te+1)

1_e
Lett2 9 =u, x

(dv)*, we write

74 = v, and from (§ - £)*¢73 77 (de)* = (du)*, ~(§ - £)*%" T (dw)” =

q
() ol (57 = m (f1 x‘“(dx)“) (fo t‘f“f(dt)“)
(dV)“)

1 o0 o o X
- )ar2(a+1>(f1 * (dx)><./o

£
q

|,

_ Sa th&' d
(%—g)wm(au)/l ("

1 o
T - g)mr%an)/l @

1
(=522 o+ 1)
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Further, let 2 = £, and by Lemma 2.6, we have

7 [ . JWe) ]y

h-g% =I5 | ol
& Tols|0 * max{x?, y*}

g [(x77)11“ <max{xa,y“})]

a.

8-
i )]
— [113[0( —a(l+e) )]

i) () )]
ks max{1, £} Tl max{1, £} oL max{1, £} ¢
[110[ ( —a(l+e) )][olf(t_%_og) +11go(t‘37a‘%) _Ollit (%)] Lg%
1]a ~a(l+e) 0[0( t_%_% +01a t_%+% —oltf t_%_7 ~8a

1 1 1
_ 1 + . 1 _ Io( (x—o((lJrS)) . 01(;1 (t*%*j) . 80‘

G-9erxa+1) (G+er2e+1) *

:F$?n+“m—ﬂﬂ‘“mwuyf%%yy

> o D) o ()

) F?ofoi)l) +oi(1) - o 8)25‘;2(0[ -

_ FZ)EO?D (1-0) (e 0"). D

3 Main results and applications
Introducing the mark: oI% [oI% F(x,y)] = a+1 fo fo F(x,y)(dx)* (dy)® (see [7]).

Theorem 3.1 Ifp>1, —+ L1, 0<a<1f,g(>0) e Cy(0,00),and 0 < oI% (x2(p 2)ff*’(x))<
00, 0<01“(y2q2gq(y) <oo then

o [ o S@e0)

0700 0%c0 max{x®, y*}

] <n(e){ol% (x 2722 ()} 7 {12 (y2 P g7(9)) } 7, (6)
where the constant factor n(«) defined in (3) is the best possible.

Proof By Holder’s weighted inequality on the fractal set and Lemma 2.6, we obtain

o| o SXED) T 1 e flagly) « e
OI”[OI ] - r 2(Ol+1)/0 0 (@) (ay)

* max{x?, y*} max{x®,y*}

_ y_% x_%z o .
= rz(a+1)/ / max{x ,ya}[ Myﬁ;](dx) (dy)

= {1"2(01 +1) / / max{xa,ya} . e —(dx )"‘(dy)ot}
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fWe) x% ]
{FZ(OHI)/ maxxay}ng(d)(dy)}

1

{%/0 ‘”(“’P’xf’”(x)(dx)“}p

1 00 0O o %
x{m /0 /0 w(a,q,wgq(y)(dy)}

1 o ¢ (p-2) a}p
1 iy [ @

1 = e o
Ay [ o]

n(e){ol%, (x5 D) 17 {12, (Y5421 (3)) } .

Q=

Rl

(7)

Now assume that equahty holds in (7), there exist two nonzero constants A and B such

that A2 pzafp(x) = B~ Za a.e. in (0,00) x (0,00), then there is constant C # 0 such that
y "2
Ax3P- 2f"(x) = By2 @-2g4(y) = C a.e. in (0,00) x (0,00). Assummg that A # 0, we have

x3P- fr(x) = € a.e. in (0,00). Because m fooo E(dx)® = mx “|6° is diffuse, which
contradicts the fact that 0 < oI5, (x%(”‘z)fp (%)) < 0o, thus inequality (7) is strict.

If the constant factor n(«) in (6) is not optimal, then there exists positive K < n(«) such
that inequality (6) is still valid if we replace n(«) by K. Hence by (4) and (5), we have
n(a)(1-o0(1)) < K.

Letting e — 0%, we get K > (o), which contradicts the fact that K < n(«), therefore n(a)
in (6) is the best possible. O

Theorem 3.2 Under the conditions of Theorem 3.1, we have

{ﬁ?? [ za L]p} <)ol (<E 07 (), ®)

* max{x?, y*}

where the constant factor n?(«) is the best possible, and inequality (8) is equivalent to in-
equality (6).

Proof Define [f(x)],:= min{n,f(x)}. Since 0 < oI, (x3- Dfr(x)) < oo, there exists ny € N
such that 0 < ;Iﬁ(x%(p‘z)[f( )15) < 00 (1 > ny). Setting g,(y) —yzfi 1 [11"‘

LIy ]q G

y < n,n>ng), when n > ng, by (6), we find

0<1I; (2 Pgl()

__ 1 " a2 g1 «
_F(a+1)/% y2 gl (v)gu () (dy)
U@\ ool @l 17,0,
F(a+1) (max{x”‘ ¥ })y ( )[iln max{x“,y“}:| (@)

”g" o o
I“Z(oc+1)/ /1 max {x”‘,y“}(dx) (@)

@B W) (L1652 gm)) . ©)
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Moreover, by (9) we have

<) 1 I (x3 PP [f@)])) < oo, (10)

For n — 00, it follows that 0 < olgo(y%(q’z)ggo(y)) <00,and 0 < olgo(x%(”’z)fp(x)) < 00, by
(6), both (9) and (10) still keep the form of strict inequalities. Hence we have inequality (8).
On the other hand, by Holder’s inequality on the fractal set and (8), we find

ol [0 o S®g0) ]

* max{x?, y*}

1 > fgl)
[

F2(a +1) max{x“,y“}

/ [ ) f®) (dx)"‘][ G )] (@)
F(a +1) F(a +1) Jo rnax{x"‘,y"‘} g 4

e

I'oe+1) 'a+1) Jy max{x"‘ ¢}
1

X{F(Ol+1)o

[ g
< n(a){olgo(x%@'zb‘”(x))}}’ {0l (y2 4 2g(y)) } 2.

—— - (dx)"(dy)*

p iz
(dx)“] (dy)“}

-Q\r—t

The above inequality is (6), therefore inequality (8) is equivalent to inequality (6).

If the constant factor in (8) is not optimal, then by (8) we can get a contradiction that
the constant factor in (6) is not the optimal too. Thus the constant factor n”(«) in (8) is
the best possible. O

4 Simple applications
Selecting o values in (6) and (8), and using mathematics software to calculate, some
Hilbert-type fractional integral inequalities and their equivalent forms are obtained.

Examplel Lettingo =1, p = g = 2, to calculate formula (3), we get (1) = 4, then we obtain
inequalities (1) and (2).

Example 2 Letting @ = 0.5, p = g = 2, to calculate formula (3), we get 1(0.5) = 4\/% Sup-
pose that f,g (> 0) € Co5(0,00), 0 < 012 (f*(x)) < 00, 0 < oI%>(g*(y)) < 0o, then we have the
following equivalence inequalities:

oefos SO0 o 2 s oo a

05| 705 S 2 32 o502
olso I:OIOO m] < oI (f* (), (12)

32

where the constant factors 4 % = are the best values.
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20 War(%)
Example3 Lettingo = 0.1, p = g = 2, to calculate formula (3), we find 7(0.1) = reo(@) =

2.253161500". Suppose that f,g (> 0) € Cp1(0,00), 0 < oI%(f%(x)) < 00, 0 < 0101(g21(y)) <
00, then we have the following equivalence inequalities:

olz% [0135 % ] <nOD{ol (P6) ) ol (20) ), 13)
2
01&1 [01&1 ﬁﬁyn}} < 772(01)01&1 (fz (x)), (14)

where the constant factors 7(0.1), n2(0.1) are the best values.

5 Conclusions

In the paper, based on the local fractional calculus theory, a Hilbert-type fractional inte-
gral inequality and its equivalent form are tentatively researched. The results show that
some methods and skills of the Hilbert-type integral inequality can be transplanted to the
research of Hilbert-type fractional integral inequality, which provides a new direction and
field to research Hardy-Hilbert’s integral inequalities.
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