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Abstract
In this paper, for a given matrix A = (aij) ∈C

n×n, in terms of ri and ci , where
ri =

∑n
j=1,j �=i |aij|, ci =

∑n
j=1,j �=i |aji|, some new inclusion sets for singular values of the

matrix are established. It is proved that the new inclusion sets are tighter than the
Geršgorin-type sets (Qi in Linear Algebra Appl. 56:105-119, 1984) and the Brauer-type
sets (Li in Comput. Math. Appl. 37:9-15, 1999). A numerical experiment shows the
efficiency of our new results.
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1 Introduction
Singular values and the singular value decomposition play an important role in numerical
analysis and many other applied fields [–]. First, we will use the following notations
and definitions. Let N := {, , . . . , n}, and assume n ≥  throughout. For a given matrix
A = (aij) ∈C

n×n, we define ai = |aii|, si = max{ri, ci} for any i ∈ N and u+ = max{, u}, u is a
real number, and where

ri :=
n∑

j=,j �=i

|aij|, ci :=
n∑

j=,j �=i

|aji|.

In terms of si, the Geršgorin-type, Brauer-type and Ky Fan-type inclusion sets of the
matrix singular values are given in [, , , ], we list the results as follows.

Theorem  If a matrix A = (aij) ∈C
n×n, then

(i) (Geršgorin-type, see []) all singular values of A are contained in

C(A) :=
n⋃

i=

Ci with Ci =
[
(ai – si)+, (ai + si)

] ∈ R; ()

(ii) (Brauer-type, see []) all singular values of A are contained in

D(A) :=
n⋃

i=

n⋃

j=,j �=i

{
z ≥  : |z – ai||z – aj| ≤ sisj

}
; ()
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(iii) (Ky Fan-type, see []) let B = (bij) ∈ R
n×n be a nonnegative matrix satisfying

bij ≥ max{|aij|, |aji|} for any i �= j, then all singular values of A are contained in

E(A) :=
n⋃

i=

{
z ≥  : |z – ai| ≤ ρ(B) – bii

}
.

We observe that all the results in Theorem  are based on the values of si = max{ri, ci},
if ri � ci or ri � ci, all these singular value localization sets in Theorem  become very
crude. In this paper, we give some new singular value localization sets which are based on
the values of ri and ci. The remainder of the paper is organized as follows. In Section , we
give our main results. In Section , a numerical experiment is given to show the efficiency
of our new results.

2 New inclusion sets for singular values
Based on the idea of Li in [], we give our main results as follows.

Theorem  If a matrix A = (aij) ∈C
n×n, then all singular values of A are contained in

�(A) := �(A) ∪ �(A),

where

�(A) :=
n⋃

i=

{
σ ≥  :

∣
∣σ  – |aii|

∣
∣ ≤ |aii|ri(A) + σ ci(A)

}

and

�(A) :=
n⋃

i=

{
σ ≥  :

∣
∣σ  – |aii|

∣
∣ ≤ |aii|ci(A) + σ ri(A)

}
.

Proof Let σ be an arbitrary singular value of A. Then there exist two nonzero vectors
x = (x, x, . . . , xn)T and y = (y, y, . . . , yn)T such that

σx = A∗y and σy = Ax. ()

Denote

|xp| = max
{|xi|,  ≤ i ≤ n

}
, |yq| = max

{|yi|,  ≤ i ≤ n
}

.

Now, we assume that |xp| ≤ |yq|, the qth equations in () imply

σxq – aqqyq =
n∑

j=,j �=q

ajqyj, ()

σyq – aqqxq =
n∑

j=,j �=q

aqjxj. ()
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Solving for yq we can get

(
σ  – aqqaqq

)
yq = aqq

n∑

j=,j �=q

ajqyj + σ

n∑

j=,j �=q

aqjxj. ()

Taking the absolute value on both sides of the equation and using the triangle inequality
yield

∣
∣σ  – |aqq|

∣
∣|yq| ≤ |aqq|

n∑

j=,j �=q

|ajq||yj| + σ

n∑

j=,j �=q

|aqj||xj|. ()

Then we can get

∣
∣σ  – |aqq|

∣
∣ ≤ |aqq|cq(A) + σ rq(A).

Similarly, if |yq| ≤ |xp|, we can get

∣
∣σ  – |app|

∣
∣ ≤ |app|rp(A) + σ cp(A).

Thus, we complete the proof. �

Remark  Since

|aii|ri(A) + σ ci(A) ≤ (|aii| + σ
)
si

and

|aii|ci(A) + σ ri(A) ≤ (|aii| + σ
)
si,

the results in Theorem  are always better than the results in Theorem (i).

Theorem  If a matrix A = (aij) ∈ C
n×n, then all singular values of A are contained in

�(A) := �(A) ∪ �(A) ∪ �(A),

where

�(A) :=
⋃

i�=j

{
σ ≥  :

∣
∣σ  – |aii|

∣
∣
∣
∣σ  – |ajj|

∣
∣ ≤ (|aii|ri(A) + σ ci(A)

)(|ajj|rj(A) + σ cj(A)
)}

,

�(A) :=
⋃

i�=j

{
σ ≥  :

∣
∣σ  – |aii|

∣
∣
∣
∣σ  – |ajj|

∣
∣ ≤ (|aii|ci(A) + σ ri(A)

)(|ajj|cj(A) + σ rj(A)
)}

,

�(A) :=
⋃

i�=j

{
σ ≥  :

∣
∣σ  – |aii|

∣
∣
∣
∣σ  – |ajj|

∣
∣ ≤ (|aii|ci(A) + σ ri(A)

)(|ajj|cj(A) + σ rj(A)
)}
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and

�(A) :=
⋃

i�=j

{
σ ≥  :

∣
∣σ  – |aii|

∣
∣
∣
∣σ  – |ajj|

∣
∣ ≤ (|aii|ri(A) + σ ci(A)

)(|ajj|cj(A) + σ rj(A)
)}

.

Proof Let σ be an arbitrary singular value of A. Then there exist two nonzero vectors
x = (x, x, . . . , xn)T and y = (y, y, . . . , yn)T such that

σx = A∗y and σy = Ax. ()

Denote ωi = max{|xi|, |yi|}. Let q be an index such that ωq = max{|ωi|, i ∈ N}. Obviously,
ωq �= . Let p be an index such that ωp = max{|ωi|, i ∈ N , i �= q}.

Case I: We suppose ωq = |xq|, ωp = |xp|, similar to the proof of Theorem , the qth equa-
tions in () imply

∣
∣σ  – |aqq|

∣
∣ωq ≤ |aqq|

n∑

j=,j �=q

|aqj||yj| + σ

n∑

j=,j �=q

|ajq||xj|

≤
(

|aqq|
n∑

j=,j �=q

|aqj| + σ

n∑

j=,j �=q

|ajq|
)

ωp. ()

Similarly, the pth equations in () imply

∣
∣σ  – |app|

∣
∣ωp ≤

(

|app|
n∑

j=,j �=p

|apj| + σ

n∑

j=,j �=p

|ajp|
)

ωq. ()

Multiplying inequalities () with (), we have

∣
∣σ  – |app|

∣
∣
∣
∣σ  – |aqq|

∣
∣ ≤ (|app|rp(A) + σ cp(A)

)(|aqq|rq(A) + σ cq(A)
)
.

Case II: We suppose ωq = |yq|, ωp = |yp|, similar to the proof of Theorem , the qth equa-
tions in () imply

∣
∣σ  – |aqq|

∣
∣ωq ≤ |aqq|

n∑

j=,j �=q

|ajq||yj| + σ

n∑

j=,j �=q

|aqj||xj|

≤
(

|aqq|
n∑

j=,j �=q

|ajq| + σ

n∑

j=,j �=q

|aqj|
)

ωp. ()

Similarly, the pth equations in () imply

∣
∣σ  – |app|

∣
∣ωp ≤

(

|app|
n∑

j=,j �=p

|ajp| + σ

n∑

j=,j �=p

|apj|
)

ωq. ()

Multiplying inequalities () with (), we have

∣
∣σ  – |app|

∣
∣
∣
∣σ  – |aqq|

∣
∣ ≤ (|app|cp(A) + σ rp(A)

)(|aqq|cq(A) + σ rq(A)
)
.
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Case III: We suppose ωq = |yq|, ωp = |xp|, similar to the proof of Theorem , the qth
equations in () imply

∣
∣σ  – |aqq|

∣
∣ωq ≤ |aqq|

n∑

j=,j �=q

|ajq||yj| + σ

n∑

j=,j �=q

|aqj||xj|

≤
(

|aqq|
n∑

j=,j �=q

|ajq| + σ

n∑

j=,j �=q

|aqj|
)

ωp. ()

Similarly, the pth equations in () imply

∣
∣σ  – |app|

∣
∣ωp ≤

(

|app|
n∑

j=,j �=p

|apj| + σ

n∑

j=,j �=p

|ajp|
)

ωq. ()

Multiplying inequalities () with (), we have

∣
∣σ  – |app|

∣
∣
∣
∣σ  – |aqq|

∣
∣ ≤ (|app|rp(A) + σ cp(A)

)(|aqq|cq(A) + σ rq(A)
)
.

Case IV: We suppose ωq = |xq|, ωp = |yp|, similar to the proof of Cases I, II, III, we can
get

∣
∣σ  – |app|

∣
∣
∣
∣σ  – |aqq|

∣
∣ ≤ (|app|cp(A) + σ rp(A)

)(|aqq|cq(A) + σ rq(A)
)
.

Thus, we complete the proof. �

Remark  Since

(|aii|ri(A) + σ ci(A)
)(|ajj|rj(A) + σ cj(A)

) ≤ (|aii| + σ
)(|ajj| + σ

)
sisj,

(|aii|ci(A) + σ ri(A)
)(|ajj|cj(A) + σ rj(A)

) ≤ (|aii| + σ
)(|ajj| + σ

)
sisj,

(|aii|ri(A) + σ ci(A)
)(|ajj|cj(A) + σ rj(A)

) ≤ (|aii| + σ
)(|ajj| + σ

)
sisj

and

(|aii|ri(A) + σ ci(A)
)(|ajj|cj(A) + σ rj(A)

) ≤ (|aii| + σ
)(|ajj| + σ

)
sisj,

the results in Theorem  are always better than the results in Theorem (ii).

We now establish comparison results between �(A) and �(A).

Theorem  If a matrix A = (aij) ∈Cn×n, then

σ (A) ∈ �(A) ⊆ �(A).

Proof Let z be any point of �(A). Then there are i, j ∈ N , i �= j, such that z ∈ �(A), i.e.,

∣
∣z – |aii|

∣
∣
∣
∣z – |ajj|

∣
∣ ≤ (|aii|ri(A) + zci(A)

)(|ajj|cj(A) + zrj(A)
)
. ()
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If (|aii|ri(A) + zci(A))(|ajj|cj(A) + zrj(A)) = , then

∣
∣z – |aii|

∣
∣ = 

or

∣
∣z – |ajj|

∣
∣ = .

Therefore, z ∈ �(A) ∪ �(A). Moreover, if (|aii|ri(A) + zci(A))(|ajj|cj(A) + zrj(A)) > , then
from inequality (), we have

|z – |a
ii||

|aii|ri(A) + zci(A)
|z – |a

jj||
|ajj|cj(A) + zrj(A)

≤ . ()

Hence, from inequality (), we have that

|z – |a
ii||

|aii|ri(A) + zci(A)
≤ 

or

|z – |a
jj||

|ajj|cj(A) + zrj(A)
≤ .

That is, z ∈ �(A) or z ∈ �(A), i.e., z ∈ �(A).
Similarly, if z is any point of �(A) or �(A), we can get

σ (A) ∈ �(A) ⊆ �(A)

and

σ (A) ∈ �(A) ⊆ �(A).

Thus, we complete the proof. �

3 Numerical example
Example  Let

A =

[
 

. .

]

.

The singular values of A are σ = . and σ = .. From Figure , it is easy to see
that Theorem  is better than Theorem  for certain examples. In Figure , we can see that
the results in Theorem  are tighter than the results in Theorem , which is analyzed in
Theorem .
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Figure 1 Comparisons of Theorem 1(i), Theorem 1(ii) and Theorem 2 for Example 1.

Figure 2 Comparisons of Theorem 2 and Theorem 3 (�3) for Example 1.

4 Conclusion
In this paper, some new inclusion sets for singular values are given. Theoretical analysis
and numerical example show that these estimates are more efficient than recent corre-
sponding results in some cases.
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