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Abstract
As new applications of Schrödinger type inequalities appearing in Jiang (J. Inequal.
Appl. 2016:247, 2016), we first investigate the existence and uniqueness of a
Schrödingerean equilibrium. Next we propose a tritrophic Hastings-Powell model
with two different Schrödingerean time delays. Finally, the stability and direction of
the Schrödingerean Hopf bifurcation are also investigated by using the center
manifold theorem and normal form theorem.
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1 Introduction
A biological system is a nonlinear system, so it is still a public problem how to control the
biological system balance. Previously a lot of research was done. Especially, the research
on the predator-prey system’s dynamic behaviors has obtained much attention from the
scholars. There is also much research on the stability of predator-prey system with time
delays. The time delays have a very complex impact on the dynamic behaviors of the non-
linear dynamic system (see []). May and Odter (see []) introduced a general example of
such a generalized model, that is to say, they investigated a three species model and the
results show that the positive equilibrium is always locally stable when the system has two
equal time delays.

Hassard and Kazarinoff (see []) proposed a three species food chain model with chaotic
dynamical behavior in , and then the dynamic properties of the model were studied.
Berryman and Millstein (see []) studied the control of chaos of a three species Hastings-
Powell food chain model. The stability of biological feasible equilibrium points of the mod-
ified food web model was also investigated. By introducing disease in the prey population,
Shilnikov et al. (see []) modified the Hastings-Powell model and the stability of biological
feasible equilibria was also obtained.

In this paper, we provide a differential model to describe the Schrödinger dynamic of
a Schrödinger Hastings-Powell food chain model. In a three species food chain model x
represents the prey, y and z represent two predators, respectively. Based on the Holling
type II functional response, we know that the middle predator y feeds on the prey x and
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the top predator z preys upon y. We write the three species food chain model as follows:

dX
dT

≤ RX
(

 –
X
K

)
– C

AXY
B + X

,

dY
dT

≤ –DY +
AXY
B + X

–
AYZ
B + Y

,

dZ
dT

≤ –DZ + C
AYZ
B + Y

,

()

where X, Y , Z are the prey, predator, and top predator, respectively; B, B represent the
half-saturation constants; R and K represent the intrinsic growth rate and the carrying
capacity of the environment of the fish, respectively; C, C are the conversion factors of
prey-to-predator; and D, D represent the death rates of Y and Z, respectively. In this
paper, two different Schrödinger delays are incorporated into Schrödingerean tritrophic
Hastings-Powell (STHP) model which will be given in the following.

We next introduce the following dimensionless version of delayed STHP model:

dx
dt

≤ x( – x) –
ax

 + bx
y(t – τ),

dy
dt

≤ –dy +
ax

 + bx
y –

ax
 + bx

z(t – τ),

dz
dt

≤ –dz +
ax

 + bx
z,

()

where x, y, and z represent dimensionless population variables; t represents a dimension-
less time variable and all of the parameters ai, bi, di (i = , ) are positive; τ and τ repre-
sent the period of prey transitioned to predator and predator transitioned to top predator,
respectively.

2 Equilibrium and local stability analysis
Let ẋ = , ẏ =  and ż = . We introduce five non-negative Schrödinger equilibrium points
of the system as follows:

E = (, , ), E = (, , ),

E =
(

d

a – bd
,

a – bd – d

(a – bd) , 
)

,

and

E, = (x̄i, ȳi, z̄i) (i = , ),

where

x̄i =
b – 
b

+ (–)i–

√
(b + ) – abd

a–bd

b
(i = , ), ()

y = ȳ =
d

a – bd
, z̄i =

(a – bd)x̄i – d

(a – bd)( + bx̄i)
(i = , ). ()
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The Jacobian matrix for the Schrödinger system () at E∗ = (x∗, y∗, z∗) is as follows:

J
(
x∗, y∗, z∗) =

⎛
⎜⎜⎝

 – x – ay
(+bx) – ax

+bx 
ay

(+bx) –d + ax
+bx – az

(+by) – ay
+by

 az
(+by) –d + ay

+by

⎞
⎟⎟⎠ . ()

Let

A =  – x –
ay

( + bx) , A = –
ax

 + bx
,

B =
ay

( + bx) , B = –d +
ax

 + bx
–

az
( + by) ,

B = –
ay

 + by
, C =

az
( + by) , C = –d +

ay
 + by

.

Then we have

dx
dt

≤ Ax + Ay(t – τ),

dy
dt

≤ Bx + By + Bz(t – τ),

dz
dt

≤ Cy + Cz,

()

from the linearized form of Schrödinger systems (), (), (), and ().
The characteristic equation of the Schrödinger system () at E = (, , ) is given by the

transcendental Schrödinger equation

λ + Aλ
 + Aλ + A + (Aλ + A)e–λτ + (Aλ + A)e–λτ = , ()

where

A = –(A + B + C), A = AB + AC + BC, A = –ABC,

A = –AB, A = ABC, A = –BC,

and

A = ABC.

If τ = τ = , then the corresponding characteristic () is rewritten as follows:

λ + Aλ
 + (A + A + A)λ + A + A + A = . ()

Lemma . Suppose that the following conditions hold (see []):
. A > .
. A(A + A + A) > A + A + A.

Then the positive Schrödinger equilibrium E∗ of the Schrödinger system () is locally asymp-
totically stable for τ and τ.
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3 Existence of Schrödingerean Hopf bifurcation
Case I: τ = τ = τ �= .

The characteristic () reduces to

λ + Aλ
 + Aλ + A + (Bλ + B)e–λτ = , ()

where

B = A + A

and

B = A + A.

Let λ = iω (ω > ) be a root of (). And then we have

(iω) + A(iω) + Aiω + A + (Biω + B)e–iωτ = 

from ().
By separating the real and imaginary parts we know that

{
B cosωτ – Bω sinωτ = Aω

 – A,
Bω cosωτ + B sinωτ = ω – Aω.

()

From () we obtain

sinωτ = –
(AB – B)ω + (AB – AB)ω

B
ω

 + B


,

cosωτ =
Bω

 + (BA – AB)ω – AB

B
ω

 + B


,
()

which show that

aω + bω + cω + dω + k = , ()

where

a = B
, b = (AB – B) + (AB – AB),

c = –B
 + (AB – AB)(AB – B) – ABB + (AB – AB),

k = B
A

 – B
,

and

d = B
B

 + (AB – AB) – AB(AB – AB).
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Let z = ω. Then we have

az + bz + cz + dz + k = . ()

If we define H(z) = az + bz + cz + dz + k, then we have the following result from
H(+∞) = +∞.

Lemma . If H() < , then () has at least one positive root. Suppose that () has
four positive roots, which are defined by z, z, z, and z. Then () has four positive roots
ωk = √zk , where k = , , , .

It is easy to see that ±iω is a pair of purely imaginary roots of (). It follows from ()
that

τ
(j)
k =


ωk

[
arccos

(
Bω

 + (BA – AB)ω – AB

B
ω

 + B


)
+ jπ

]
, ()

where k = , , ,  and j = , , , . . . .
Put τ = τ

(j)
k = mink∈{,,,}{τ ()

k }. Let λ(τ ) = α(τ ) + iω(τ ) be the root of () near τ = τk ,
which satisfies α(τk) =  and ω(τk) = ω. Then we have the following result from Lemma .
and ().

Lemma . Suppose that H ′(z) �= . Then we have

[
d Reλ(τ )

dτ

]∣∣∣∣
τ=τk

�= .

Meanwhile, H ′(z) and d Reλ(τ )
dτ

have the same signs.

Proof Taking the derivative of λ with respect to τ in (), we have

[
dλ

dτ

]–

=
(λ + Aλ + A)eλτ

(Bλ + B)λ
+

B

(Bλ + B)λ
–

τ

λ
. ()

Substituting λ(τ ) = α(τ ) + iω(τ ) into (), we have

[(
λ + Aλ + A

)
eλτ

]∣∣
λ=iωk

=
(
A – ω) cosωτ – Aω sinωτ

+ i
[(

A – ω) sinωτ – Aω cosωτ
]

()

and

[
(Bλ + B)λ

]∣∣
λ=iωk

= –Bω
 + i[Bω]. ()
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For simplicity we define ωk = ω and τk = τ . From (), (), (), and () we have

[
d Reλ(τ )

dτ

]–

=
[

(λ + Aλ + A)eλτ + B

(Bλ + B)λ

]∣∣∣∣
λ=iω

= Re
{((

A – ω) cosωτ – Aω sinωτ + B

+ i
[(

A – ω) sinωτ – Aω cosωτ
])

/
(
–Bω

 + i[Bω]
)}

≤ 
�

{[(
A – ω) cosωτ – Aω sinωτ + B

](
–Bω

)

+
[(

A – ω) sinωτ – Aω cosωτ
]
Bω

}

≤ 
�

{
B

ω + 
[
(AB – B) + (AB – AB)

]
ω

+ 
[
(AB – AB)(AB – B) – B

 – ABB
]
ω

+ 
[
(AB – AB)]ω +

[
(AB – AB) + B

B
]ω

– AB(AB – AB)ω}

≤ z
�

{
B

z + 
[
(AB – B) + (AB – AB)

]
z

+ 
[
(AB – AB)(AB – B) – B

 – ABB
]
z

+ (AB – AB)z + (AB – AB) + B
B



– AB(AB – AB)
}

≤ z
�

H ′(z),

where � = B
ω

 + B
ω

.
Then we obtain

sign

[
d Reλ(τ )

dτ

]∣∣∣∣
τ=τk

= sign

[
d Reλ(τ )

dτ

]–∣∣∣∣
τ=τk

= sign

[
z
�

H ′(z)
]

�= .

This completes the proof of Lemma .. �

By applying Lemmas . and ., we have the following result.

Theorem . For the Schrödinger system (), the following results hold.
(i) For the equilibrium point E∗ = (x∗, y∗, z∗), the Schrödinger system () is

asymptotically stable for τ ∈ [, τ). It is unstable when τ > τ.
(ii) If the Schrödinger system () satisfies Lemmas . and ., then the Schrödinger Hopf

bifurcation will occur at E∗(x∗, y∗, z∗) when τ = τ.

Case II: τ �=  and τ = .
Let D = A + A, C = A + A and rewrite () as follows:

λ + Aλ
 + Dλ + C + (Aλ + A)e–λτ = . ()
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By letting λ = iω (ω > ) be the root of () we have

{
A cosωτ – Aω sinωτ = Aω

 – C,
Aω cosωτ + A sinωτ = ω – Dω.

()

Similarly we have

aω
 + bω

 + cω
 + dω

 + k = , ()

where

a = A
, b = (AA – A) + (AA – DA),

c = –A
 + (DA – CA)(AA – A) – CAA + (AA – DA),

k = A
C

 – A
,

and

d = A
A

 + (DA – CA) – CA(AA – DA).

If we define z = ω, then () shows that

az
 + bz

 + cz
 + dz + k = . ()

If we define H(z) = az
 + bz

 + cz
 + dz

 + k, then we have the following result from
() and H(+∞) = +∞.

Lemma . If H() < , then () has at least one positive root. Suppose that () has four
positive roots, which are defined by z, z, z, and z. Then we know that () has four
positive roots ωk = √zk , where k = , , , .

It is easy to see that ±iω is a pair of purely imaginary roots of (). From () and () we
know that

τ
(j)
k =


ωk

[
arccos

(
Aω

 + (AA – DA)ω – CA

A
ω

 + A


)
+ jπ

]
, ()

where k = , , ,  and j = , , , . . . .
Define τ = τ

(j)
k = mink∈{,,,}{τ ()

k },

P =
[(

λ + Aλ + D
)
eλτ

]
λ=iωk

=
(
D – ω) cosωτ – Aω sinωτ

+ i
[(

D – ω) sinωτ – Aω cosωτ
]

:= PR + iPI

and

Q =
[
(Aλ + A)

]
= –Aω

 + iAω := QR + iQI .
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Let λ(τ ) = α(τ ) + iω(τ ) be the root of () near τ = τ, which satisfies α(τ) =  and
ω(τ) = ω. Then we obtain the following result.

Lemma . Suppose that PRQR + PIQI �= . Then we have

[
d Reλ(τ)

dτ

]∣∣∣∣
τ=τk

�= .

Proof By taking the derivative of λ with respect to τ in (), we have (see [])

[
dλ

dτ

]–

= Re

[
(λ + Aλ + A)eλτ

(Aλ + A)λ
+

A

(Aλ + A)λ
–

τ

λ

]
. ()

By substituting λ = iω into () we have

[
d Reλ

dτ

]–

τ=τk

≤ Re

[
(λ + Aλ + A)eλτ

(Aλ + A)λ
+

A

(Aλ + A)λ
–

τ

λ

]
τ=τk

≤ PRQR + PIQI

P
R + P

I
.

Since PRQR + PIQI �= , we obtain
[

d Reλ(τ)
dτ

]∣∣∣∣
τ=τk

�= .

So we complete the proof of Lemma .. �

By applying Lemmas . and ., we prove the existence of the Schrödinger Hopf bifur-
cation.

Theorem . For the Schrödinger system (), the following results hold.
(i) For the equilibrium point E∗(x∗, y∗, z∗), the Schrödinger system () is asymptotically

stable for τ ∈ [, τ). And it is unstable for τ > τ.
(ii) If the Schrödinger system () satisfies Lemmas . and ., then the Schrödinger

system () undergoes the Schrödinger Hopf bifurcation at E∗(x∗, y∗, z∗) when τ = τ.

Case III: τ =  and τ �= .
Equation () can be written as (see [])

λ + Aλ
 + Dλ + C + (Aλ + A)e–λτ = , ()

where D = A + A and C = A + A.
By letting λ = iω (ω > ) be the root of () we have

{
A cosωτ – Aω sinωτ = Aω

 – C,
Aω cosωτ + A sinωτ = ω – Dω,

()

which shows that

aω
 + bω

 + cω
 + dω

 + k = , ()

RETRACTED A
RTIC

LE



Wang and Roncalver Journal of Inequalities and Applications  (2017) 2017:61 Page 9 of 12

where

a = A
, b = (AA – A) + (AA – DA),

c = –A
 + (DA – CA)(AA – A) – CAA + (AA – DA),

k = A
C

 – A
,

and

d = A
A

 + (DA – CA) – CA(AA – DA).

Let z = ω. It follows from () that

az
 + bz

 + cz
 + dz + k = . ()

If we define H(z) = az
 + bz

 + cz
 + dz + k, then we have the following result from

H(+∞) = +∞.

Lemma . If H() < , then () has at least one positive root. Suppose that () has four
positive roots, which are defined by z , z, z, and z. Then () has four positive roots
ωk = √zk , where k = , , , .

It is easy to see that ±iω is a pair of purely imaginary roots of (). Denote

τ
(j)
k =


ωk

[
arccos

(
Aω

 + (AA – DA)ω – CA

A
ω

 + A


)
+ jπ

]
, ()

where k = , , ,  and j = , , , . . . .
Define τ = τ

(j)
k = mink∈{,,,}{τ ()

k }. Let λ(τ ) = α(τ )+ iω(τ ) be the root of () near τ = τ,
which satisfies α(τ) =  and ω(τ) = ω. Then we obtain the following result from ()
and ().

Lemma . Suppose that z = ω. Then

[
d Reλ(τ)

dτ

]∣∣∣∣
τ=τk

�= .

Proof This proof is similar to the proof of Lemma ., so we omit it here. �

By applying Lemmas . and . to () we have the following result.

Theorem . For the Schrödinger system (), the following results hold.
(i) E∗(x∗, y∗, z∗) is asymptotically stable when τ ∈ [, τ) and unstable when τ > τ.

(ii) If the Schrödinger system () satisfies Lemmas . and ., then the Schrödinger Hopf
bifurcation occurs at E∗(x∗, y∗, z∗) when τ = τ.

Case IV: τ �= τ �= .
We consider () with τ in the stability range. Regarding τ as a parameter, and without

loss of generality, we only consider the Schrödinger system () under the case I.
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By letting λ = iω (ω > ) be the root of () we have

{
A cosωτ + Aω sinωτ ≤ Aω

 – A – (A cosωτ + Aω sinωτ),
Aω cosωτ + A sinωτ ≤ ω – Aω – (Aω cosωτ – A sinωτ).

()

It is easy to see from ()

y(ω) + y(ω) cosωτ + y(ω) sinωτ = . ()

Lemma . Suppose that equation () has at least finite positive roots, which are defined
by z, z, . . . , zk . So () also has four positive roots ωk = √zi, where i = , , . . . , k.

Put

τ
(j)
i =


ωi

[
arccos

(
ψ

ψ

)
+ jπ

]
, ()

where i = , , . . . , k, j = , , , . . . ,

ψ = Aω
 + (AA – AA)ω –

(
AA + AAω

) cosωτ

+ (AA – AA)ω sinωτψ

= Aω
 + A

.

It is obvious that ±iω is a pair of purely imaginary roots of (). Define τ = τ
(j)
i =

min{τ (j)
i |i = , , . . . , k, j = , , , . . .}. Let λ(τ ) = α(τ ) + iω(τ ) be the root of () near τ = τ,

which satisfies α(τ) =  and ω(τ) = ω.
Put

QR = –ω + A + (A – Aτ) cosωτ – Aωτ sinωτ

+ (A – Aτ) cosωτ – Aωτ sinωτ,

QI = Aω + (Aτ – A) sinωτ – Aωτ cosωτ

+ (Aτ – A) sinωτ – Aωτ cosωτ,

PR = –Aω
 cosωτ + Aω sinωτ,

and

PI = Aω
 sinωτ + Aω cosωτ.

From () and () we have the following result.

Lemma . Suppose that PRQR + PIQI �= . Then we have

[
d Reλ(τ)

dτ

]∣∣∣∣
τ=τi

�= .
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By applying Lemmas . and . to (), we have the following theorem based on the
Schrödingerean Hopf theorem for FDEs.

Theorem . Let τ ∈ [, τ). Then the following results for the Schrödinger system ()
hold.

(i) E∗(x∗, y∗, z∗) is asymptotically stable for τ ∈ [, τ) and unstable when τ > τ.
(ii) If Lemmas . and . hold, then the Schrödingerean Hopf bifurcation occurs at

E∗(x∗, y∗, z∗) when τ = τ.

4 Numerical simulations
In this section we give some numerical examples to verify above results. We consider the
Schrödinger system () with the following coefficients in the different cases:

dx
dt

≥ x( – x) –
x

 + .x
y(t – τ),

dy
dt

≥ –.y +
x

 + .x
y –

x
 + .x

z(t – τ),

dz
dt

≥ –.z +
x

 + .x
z.

()

Through a simple calculation, we have E∗ = (., ., .). Firstly, we get
τ = . when τ = τ = τ �= . Then we have τ = . when τ = . Next we obtain
τ = . when τ = . Finally, by regarding τ as a parameter and letting τ = . in
its stable interval, we prove that E∗ is locally asymptotically stable for τ ∈ (, τ) and
unstable for τ > τ.
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