RESEARCH Open Access

An eigenvalue localization set for tensors and its applications

Jianxing Zhao* o and Caili Sang

*Correspondence: zjx810204@163.com College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang, Guizhou 550025, P.R. China

Abstract

A new eigenvalue localization set for tensors is given and proved to be tighter than those presented by Li *et al.* (Linear Algebra Appl. 481:36-53, 2015) and Huang *et al.* (J. Inequal. Appl. 2016:254, 2016). As an application of this set, new bounds for the minimum eigenvalue of \mathcal{M} -tensors are established and proved to be sharper than some known results. Compared with the results obtained by Huang *et al.*, the advantage of our results is that, without considering the selection of nonempty proper subsets S of $N = \{1, 2, ..., n\}$, we can obtain a tighter eigenvalue localization set for tensors and sharper bounds for the minimum eigenvalue of \mathcal{M} -tensors. Finally, numerical examples are given to verify the theoretical results.

MSC: 15A18; 15A69; 65F10; 65F15

Keywords: \mathcal{M} -tensors; nonnegative tensors; minimum eigenvalue; localization set

1 Introduction

For a positive integer n, $n \ge 2$, N denotes the set $\{1, 2, ..., n\}$. $\mathbb C$ (respectively, $\mathbb R$) denotes the set of all complex (respectively, real) numbers. We call $\mathcal A = (a_{i_1 \cdots i_m})$ a complex (real) tensor of order m dimension n, denoted by $\mathbb C^{[m,n]}(\mathbb R^{[m,n]})$, if

$$a_{i_1\cdots i_m}\in\mathbb{C}(\mathbb{R})$$
,

where $i_j \in N$ for j = 1, 2, ..., m. \mathcal{A} is called reducible if there exists a nonempty proper index subset $\mathbb{J} \subset N$ such that

$$a_{i_1i_2\cdots i_m} = 0$$
, $\forall i_1 \in \mathbb{J}, \forall i_2, \ldots, i_m \notin \mathbb{J}$.

If A is not reducible, then we call A irreducible [3].

Given a tensor $\mathcal{A} = (a_{i_1 \cdots i_m}) \in \mathbb{C}^{[m,n]}$, if there are $\lambda \in \mathbb{C}$ and $x = (x_1, x_2, \dots, x_n)^T \in \mathbb{C} \setminus \{0\}$ such that

$$\mathcal{A}x^{m-1} = \lambda x^{[m-1]},$$

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

then λ is called an eigenvalue of \mathcal{A} and x an eigenvector of \mathcal{A} associated with λ , where $\mathcal{A}x^{m-1}$ is an n dimension vector whose ith component is

$$\left(\mathcal{A}x^{m-1}\right)_i = \sum_{i_2,\dots,i_m \in \mathbb{N}} a_{ii_2\cdots i_m} x_{i_2} \cdots x_{i_m}$$

and

$$x^{[m-1]} = (x_1^{m-1}, x_2^{m-1}, \dots, x_n^{m-1})^T.$$

If λ and x are all real, then λ is called an H-eigenvalue of \mathcal{A} and x an H-eigenvector of \mathcal{A} associated with λ ; see [4, 5]. Moreover, the spectral radius $\rho(\mathcal{A})$ of \mathcal{A} is defined as

$$\rho(\mathcal{A}) = \max\{|\lambda| : \lambda \in \sigma(\mathcal{A})\},\$$

where $\sigma(\mathcal{A})$ is the spectrum of \mathcal{A} , that is, $\sigma(\mathcal{A}) = \{\lambda : \lambda \text{ is an eigenvalue of } \mathcal{A}\}$; see [3, 6]. A real tensor \mathcal{A} is called an \mathcal{M} -tensor if there exist a nonnegative tensor \mathcal{B} and a positive number $\alpha > \rho(\mathcal{B})$ such that $\mathcal{A} = \alpha \mathcal{I} - \mathcal{B}$, where \mathcal{I} is called the unit tensor with its entries

$$\delta_{i_1\cdots i_m} = \begin{cases} 1 & \text{if } i_1 = \cdots = i_m, \\ 0 & \text{otherwise.} \end{cases}$$

Denote by $\tau(\mathcal{A})$ the minimal value of the real part of all eigenvalues of an \mathcal{M} -tensor \mathcal{A} . Then $\tau(\mathcal{A}) > 0$ is an eigenvalue of \mathcal{A} with a nonnegative eigenvector. If \mathcal{A} is irreducible, then $\tau(\mathcal{A})$ is the unique eigenvalue with a positive eigenvector [7–9].

Recently, many people have focused on locating eigenvalues of tensors and using obtained eigenvalue inclusion theorems to determine the positive definiteness of an even-order real symmetric tensor or to give the lower and upper bounds for the spectral radius of nonnegative tensors and the minimum eigenvalue of \mathcal{M} -tensors. For details, see [1, 2, 10–14].

In 2015, Li *et al.* [1] proposed the following Brauer-type eigenvalue localization set for tensors.

Theorem 1 ([1], Theorem 6) Let $A = (a_{i_1 \cdots i_m}) \in \mathbb{C}^{[m,n]}$. Then

$$\sigma(\mathcal{A})\subseteq\Delta(\mathcal{A})=\bigcup_{i,j\in N, j
eq i}\Delta_i^j(\mathcal{A})$$
 ,

where

$$\Delta_{i}^{j}(\mathcal{A}) = \left\{ z \in \mathbb{C} : \left| (z - a_{i \dots i})(z - a_{j \dots j}) - a_{ij \dots j} a_{ji \dots i} \right| \le |z - a_{j \dots j}| r_{i}^{j}(\mathcal{A}) + |a_{ij \dots j}| r_{j}^{i}(\mathcal{A}) \right\},$$

$$r_{i}(\mathcal{A}) = \sum_{\substack{\delta_{ii_{2} \dots i_{m}} = 0 \\ \delta_{ji_{2} \dots i_{m}} = 0}} |a_{ii_{2} \dots i_{m}}|, \qquad r_{i}^{j}(\mathcal{A}) = \sum_{\substack{\delta_{ii_{2} \dots i_{m}} = 0, \\ \delta_{ji_{2} \dots i_{m}} = 0}} |a_{ii_{2} \dots i_{m}}| = r_{i}(\mathcal{A}) - |a_{ij \dots j}|.$$

To reduce computations, Huang *et al.* [2] presented an *S*-type eigenvalue localization set by breaking *N* into disjoint subsets *S* and \bar{S} , where \bar{S} is the complement of *S* in *N*.

Theorem 2 ([2], Theorem 3.1) Let $A = (a_{i_1 \cdots i_m}) \in \mathbb{C}^{[m,n]}$, S be a nonempty proper subset of N, \bar{S} be the complement of S in N. Then

$$\sigma(\mathcal{A}) \subseteq \Delta^{S}(\mathcal{A}) = \left(\bigcup_{i \in S, j \in \bar{S}} \Delta_{i}^{j}(\mathcal{A})\right) \cup \left(\bigcup_{i \in \bar{S}, j \in S} \Delta_{i}^{j}(\mathcal{A})\right).$$

Based on Theorem 2, Huang *et al.* [2] obtained the following lower and upper bounds for the minimum eigenvalue of \mathcal{M} -tensors.

Theorem 3 ([2], Theorem 3.6) Let $A = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]}$ be an M-tensor, S be a nonempty proper subset of N, \bar{S} be the complement of S in N. Then

$$\min \left\{ \min_{i \in S} \max_{j \in \bar{S}} L_{ij}(\mathcal{A}), \min_{i \in \bar{S}} \max_{j \in S} L_{ij}(\mathcal{A}) \right\} \leq \tau(\mathcal{A}) \leq \max \left\{ \max_{i \in S} \min_{j \in \bar{S}} L_{ij}(\mathcal{A}), \max_{i \in \bar{S}} \min_{j \in S} L_{ij}(\mathcal{A}) \right\},$$

where

$$L_{ij}(\mathcal{A}) = \frac{1}{2} \left\{ a_{i\cdots i} + a_{j\cdots j} - r_i^j(\mathcal{A}) - \left[\left(a_{i\cdots i} - a_{j\cdots j} - r_i^j(\mathcal{A}) \right)^2 - 4a_{ij\cdots j} r_j(\mathcal{A}) \right]^{\frac{1}{2}} \right\}.$$

The main aim of this paper is to give a new eigenvalue inclusion set for tensors and prove that this set is tighter than those in Theorems 1 and 2 without considering the selection of S. And then we use this set to obtain new lower and upper bounds for the minimum eigenvalue of \mathcal{M} -tensors and prove that new bounds are sharper than those in Theorem 3.

2 Main results

Now, we give a new eigenvalue inclusion set for tensors and establish the comparison between this set with those in Theorems 1 and 2.

Theorem 4 Let $A = (a_{i_1 \cdots i_m}) \in \mathbb{C}^{[m,n]}$. Then

$$\sigma(\mathcal{A}) \subseteq \Delta^{\cap}(\mathcal{A}) = \bigcup_{i \in N} \bigcap_{j \in N, j \neq i} \Delta_i^j(\mathcal{A}).$$

Proof For any $\lambda \in \sigma(A)$, let $x = (x_1, ..., x_n)^T \in \mathbb{C}^n \setminus \{0\}$ be an associated eigenvector, i.e.,

$$\mathcal{A}x^{m-1} = \lambda x^{[m-1]}. (1)$$

Let $|x_p| = \max\{|x_i| : i \in N\}$. Then $|x_p| > 0$. For any $j \in N, j \neq p$, then from (1) we have

$$\lambda x_p^{m-1} = \sum_{\substack{\delta_{pi_2 \dots i_m} = 0, \\ \delta_{ii...i..} = 0}} a_{pi_2 \dots i_m} x_{i_2} \dots x_{i_m} + a_{p \dots p} x_p^{m-1} + a_{pj...j} x_j^{m-1}$$

and

$$\lambda x_j^{m-1} = \sum_{\substack{\delta_{ji_2 \dots i_m} = 0, \\ \delta_{ni_2 \dots i_m} = 0}} a_{ji_2 \dots i_m} x_{i_2} \dots x_{i_m} + a_{j \dots j} x_j^{m-1} + a_{jp \dots p} x_p^{m-1},$$

equivalently,

$$(\lambda - a_{p \cdots p}) x_p^{m-1} - a_{pj \cdots j} x_j^{m-1} = \sum_{\substack{\delta_{pi_2 \cdots i_m} = 0, \\ \delta_{ji_2 \cdots i_m} = 0}} a_{pi_2 \cdots i_m} x_{i_2} \cdots x_{i_m}$$
(2)

and

$$(\lambda - a_{j...j})x_j^{m-1} - a_{jp...p}x_p^{m-1} = \sum_{\substack{\delta_{ji_2...i_m} = 0, \\ \delta_{pi_2...i_m} = 0}} a_{ji_2...i_m}x_{i_2} \cdots x_{i_m}.$$
 (3)

Solving x_p^{m-1} from (2) and (3), we get

$$\begin{split} & \big((\lambda - a_{p \cdots p})(\lambda - a_{j \cdots j}) - a_{pj \cdots j} a_{jp \cdots p} \big) x_p^{m-1} \\ & = (\lambda - a_{j \cdots j}) \sum_{\substack{\delta_{pi_2 \cdots i_m} = 0, \\ \delta_{ji_2 \cdots i_m} = 0}} a_{pi_2 \cdots i_m} x_{i_2} \cdots x_{i_m} + a_{pj \cdots j} \sum_{\substack{\delta_{ji_2 \cdots i_m} = 0, \\ \delta_{pi_2 \cdots i_m} = 0}} a_{ji_2 \cdots i_m} x_{i_2} \cdots x_{i_m}. \end{split}$$

Taking absolute values and using the triangle inequality yields

$$\begin{aligned} \left| (\lambda - a_{p \dots p})(\lambda - a_{j \dots j}) - a_{p j \dots j} a_{j p \dots p} \right| |x_p|^{m-1} \\ &\leq |\lambda - a_{j \dots j}| r_p^j(\mathcal{A}) |x_p|^{m-1} + |a_{p j \dots j}| r_j^p(\mathcal{A}) |x_p|^{m-1}. \end{aligned}$$

Furthermore, by $|x_p| > 0$, we have

$$\left| (\lambda - a_{p\cdots p})(\lambda - a_{j\cdots j}) - a_{pj\cdots j} a_{jp\cdots p} \right| \le |\lambda - a_{j\cdots j}| r_p^j(\mathcal{A}) + |a_{pj\cdots j}| r_p^p(\mathcal{A}),$$

which implies that $\lambda \in \Delta_p^j(\mathcal{A})$. From the arbitrariness of j, we have $\lambda \in \bigcap_{j \in N, j \neq p} \Delta_p^j(\mathcal{A})$. Furthermore, we have $\lambda \in \bigcup_{i \in N} \bigcap_{j \in N, j \neq i} \Delta_p^j(\mathcal{A})$. The conclusion follows.

Next, a comparison theorem is given for Theorems 1, 2 and 4.

Theorem 5 Let $A = (a_{i_1 \cdots i_m}) \in \mathbb{C}^{[m,n]}$, S be a nonempty proper subset of N. Then

$$\Delta^{\cap}(\mathcal{A}) \subseteq \Delta^{\mathcal{S}}(\mathcal{A}) \subseteq \Delta(\mathcal{A}).$$

Proof By Theorem 3.2 in [2], $\Delta^S(\mathcal{A}) \subseteq \Delta(\mathcal{A})$. Here, only $\Delta^{\cap}(\mathcal{A}) \subseteq \Delta^S(\mathcal{A})$ is proved. Let $z \in \Delta^{\cap}(\mathcal{A})$, then there exists some $i_0 \in N$ such that $z \in \Delta^j_{i_0}(\mathcal{A}), \forall j \in N, j \neq i_0$. Let \bar{S} be the complement of S in N. If $i_0 \in S$, then taking $j \in \bar{S}$, obviously, $z \in \bigcup_{i_0 \in \bar{S}, j \in \bar{S}} \Delta^j_{i_0}(\mathcal{A}) \subseteq \Delta^S(\mathcal{A})$. If $i_0 \in \bar{S}$, then taking $j \in S$, obviously, $z \in \bigcup_{i_0 \in \bar{S}, j \in S} \Delta^j_{i_0}(\mathcal{A}) \subseteq \Delta^S(\mathcal{A})$. The conclusion follows.

Remark 1 Theorem 5 shows that the set $\Delta^{\cap}(A)$ in Theorem 4 is tighter than those in Theorems 1 and 2, that is, $\Delta^{\cap}(A)$ can capture all eigenvalues of A more precisely than $\Delta(A)$ and $\Delta^{S}(A)$.

In the following, we give new lower and upper bounds for the minimum eigenvalue of \mathcal{M} -tensors.

Theorem 6 Let $A = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]}$ be an irreducible M-tensor. Then

$$\min_{i\in N} \max_{j\neq i} L_{ij}(\mathcal{A}) \leq \tau(\mathcal{A}) \leq \max_{i\in N} \min_{j\neq i} L_{ij}(\mathcal{A}).$$

Proof Let $x = (x_1, x_2, ..., x_n)^T$ be an associated positive eigenvector of A corresponding to $\tau(A)$, i.e.,

$$\mathcal{A}x^{m-1} = \tau(\mathcal{A})x^{[m-1]}. (4)$$

(I) Let $x_q = \min\{x_i : i \in N\}$. For any $j \in N, j \neq q$, we have by (4) that

$$\tau(\mathcal{A})x_{q}^{m-1} = \sum_{\substack{\delta_{qi_{2}\cdots i_{m}}=0,\\ \delta_{ji_{2}\cdots i_{m}}=0}} a_{qi_{2}\cdots i_{m}}x_{i_{2}}\cdots x_{i_{m}} + a_{q\cdots q}x_{q}^{m-1} + a_{qj\cdots j}x_{j}^{m-1}$$

and

$$\tau(\mathcal{A})x_{j}^{m-1} = \sum_{\substack{\delta_{ji_{2}\cdots i_{m}}=0,\\ \delta_{gi_{2}\cdots i_{m}}=0}} a_{ji_{2}\cdots i_{m}}x_{i_{2}}\cdots x_{i_{m}} + a_{j\cdots j}x_{j}^{m-1} + a_{jq\cdots q}x_{q}^{m-1},$$

equivalently,

$$(\tau(\mathcal{A}) - a_{q \cdots q}) x_q^{m-1} - a_{qj \cdots j} x_j^{m-1} = \sum_{\substack{\delta_{qi_2 \cdots i_m} = 0, \\ \delta_{ji_2 \cdots i_m} = 0}} a_{qi_2 \cdots i_m} x_{i_2} \cdots x_{i_m}$$
 (5)

and

$$(\tau(A) - a_{j \dots j}) x_j^{m-1} - a_{jq \dots q} x_q^{m-1} = \sum_{\substack{\delta_{ji_2 \dots i_m} = 0, \\ \delta_{qi_2 \dots i_m} = 0}} a_{ji_2 \dots i_m} x_{i_2} \dots x_{i_m}.$$
 (6)

Solving x_q^{m-1} by (5) and (6), we get

$$\begin{split} & \big(\big(\tau(\mathcal{A}) - a_{q \cdots q} \big) \big(\tau(\mathcal{A}) - a_{j \cdots j} \big) - a_{qj \cdots j} a_{jq \cdots q} \big) x_q^{m-1} \\ & = \big(\tau(\mathcal{A}) - a_{j \cdots j} \big) \sum_{\substack{\delta_{qi_2 \cdots i_m} = 0, \\ \delta_{ji_2 \cdots i_m} = 0}} a_{qi_2 \cdots i_m} x_{i_2} \cdots x_{i_m} + a_{qj \cdots j} \sum_{\substack{\delta_{ji_2 \cdots i_m} = 0, \\ \delta_{qi_2 \cdots i_m} = 0}} a_{ji_2 \cdots i_m} x_{i_2} \cdots x_{i_m}. \end{split}$$

From Theorem 2.1 in [9], we have $\tau(A) \leq \min_{i \in N} a_{i \cdots i}$ and

$$\begin{split} & \big(\big(a_{q \cdots q} - \tau(\mathcal{A}) \big) \big(a_{j \cdots j} - \tau(\mathcal{A}) \big) - a_{qj \cdots j} a_{jq \cdots q} \big) x_q^{m-1} \\ &= \big(a_{j \cdots j} - \tau(\mathcal{A}) \big) \sum_{\substack{\delta_{qi_2 \cdots i_m} = 0, \\ \delta_{ji_2 \cdots i_m} = 0}} |a_{qi_2 \cdots i_m}| x_{i_2} \cdots x_{i_m} + |a_{qj \cdots j}| \sum_{\substack{\delta_{ji_2 \cdots i_m} = 0, \\ \delta_{qi_2 \cdots i_m} = 0}} |a_{ji_2 \cdots i_m}| x_{i_2} \cdots x_{i_m}. \end{split}$$

Hence,

$$\begin{split} & \big(\big(a_{q \cdots q} - \tau(\mathcal{A}) \big) \big(a_{j \cdots j} - \tau(\mathcal{A}) \big) - |a_{qj \cdots j}| |a_{jq \cdots q}| \big) x_q^{m-1} \\ & \geq \big(a_{j \cdots j} - \tau(\mathcal{A}) \big) \sum_{\substack{\delta_{qi_2 \cdots i_m} = 0, \\ \delta_{ji_2 \cdots i_m} = 0}} |a_{qi_2 \cdots i_m}| x_q^{m-1} + |a_{qj \cdots j}| \sum_{\substack{\delta_{ji_2 \cdots i_m} = 0, \\ \delta_{qi_2 \cdots i_m} = 0}} |a_{ji_2 \cdots i_m}| x_q^{m-1}. \end{split}$$

From $x_a > 0$, we have

$$(a_{q\cdots q} - \tau(\mathcal{A}))(a_{j\cdots j} - \tau(\mathcal{A})) - |a_{qj\cdots j}||a_{jq\cdots q}|$$

$$\geq (a_{j\cdots j} - \tau(\mathcal{A})) \sum_{\substack{\delta_{qi_2\cdots i_m} = 0, \\ \delta_{ji_2\cdots i_m} = 0}} |a_{qi_2\cdots i_m}| + |a_{qj\cdots j}| \sum_{\substack{\delta_{ji_2\cdots i_m} = 0, \\ \delta_{qi_2\cdots i_m} = 0}} |a_{ji_2\cdots i_m}|$$

$$= (a_{i\cdots j} - \tau(\mathcal{A})) r_a^j(\mathcal{A}) + |a_{qi\cdots j}| r_i^q(\mathcal{A}),$$

equivalently,

$$(a_{q\cdots q} - \tau(\mathcal{A}))(a_{j\cdots j} - \tau(\mathcal{A})) - (a_{j\cdots j} - \tau(\mathcal{A}))r_a^j(\mathcal{A}) - |a_{qj\cdots j}|r_j(\mathcal{A}) \ge 0,$$

that is,

$$\tau(\mathcal{A})^2 - \left(a_{q\cdots q} + a_{j\cdots j} - r_q^j(\mathcal{A})\right)\tau(\mathcal{A}) + a_{q\cdots q}a_{j\cdots j} - a_{j\cdots j}r_q^j(\mathcal{A}) + a_{qj\cdots j}r_j(\mathcal{A}) \ge 0.$$

Solving for $\tau(A)$ gives

$$\tau(\mathcal{A}) \leq \frac{1}{2} \left\{ a_{q\cdots q} + a_{j\cdots j} - r_q^j(\mathcal{A}) - \left[\left(a_{q\cdots q} - a_{j\cdots j} - r_q^j(\mathcal{A}) \right)^2 - 4a_{qj\cdots j} r_j(\mathcal{A}) \right]^{\frac{1}{2}} \right\} = L_{qj}(\mathcal{A}).$$

For the arbitrariness of j, we have $\tau(A) \leq \min_{j \neq q} L_{qj}(A)$. Furthermore, we have

$$\tau(\mathcal{A}) \leq \max_{i \in N} \min_{j \neq i} L_{ij}(\mathcal{A}).$$

(II) Let $x_p = \max\{x_i : i \in N\}$. Similar to (I), we have

$$\tau(\mathcal{A}) \geq \min_{i \in N} \max_{j \neq i} L_{ij}(\mathcal{A}).$$

The conclusion follows from (I) and (II).

Similar to the proof of Theorem 3.6 in [2], we can extend the results of Theorem 6 to a more general case.

Theorem 7 Let $A = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]}$ be an M-tensor. Then

$$\min_{i \in N} \max_{j \neq i} L_{ij}(\mathcal{A}) \leq \tau(\mathcal{A}) \leq \max_{i \in N} \min_{j \neq i} L_{ij}(\mathcal{A}).$$

By Theorems 3, 6 and 7 in [13], the following comparison theorem is obtained easily.

Theorem 8 Let $A = (a_{i_1 \cdots i_m}) \in \mathbb{R}^{[m,n]}$ be an M-tensor, S be a nonempty proper subset of N, \bar{S} be the complement of S in N. Then

$$\min_{i \in N} R_i(\mathcal{A}) \leq \min_{j \neq i} L_{ij}(\mathcal{A}) \leq \min \left\{ \min_{i \in S} \max_{j \in \bar{S}} L_{ij}(\mathcal{A}), \min_{i \in \bar{S}} \max_{j \in S} L_{ij}(\mathcal{A}) \right\} \leq \min_{i \in N} \max_{j \neq i} L_{ij}(\mathcal{A})$$

$$\leq \max_{i \in N} \min_{j \neq i} L_{ij}(\mathcal{A}) \leq \max \left\{ \max_{i \in S} \min_{j \in \bar{S}} L_{ij}(\mathcal{A}), \max_{i \in \bar{S}} \min_{j \in S} L_{ij}(\mathcal{A}) \right\},$$

where
$$R_i(A) = \sum_{i_2,...,i_m \in N} a_{ii_2...i_m}$$
.

Remark 2 Theorem 8 shows that the bounds in Theorem 7 are shaper than those in Theorem 3, Theorem 2.1 of [9] and Theorem 4 of [13] without considering the selection of *S*, which is also the advantage of our results.

3 Numerical examples

In this section, two numerical examples are given to verify the theoretical results.

Example 1 Let $A = (a_{ijk}) \in \mathbb{R}^{[3,4]}$ be an irreducible \mathcal{M} -tensor with elements defined as follows:

$$\mathcal{A}(:,:,1) = \begin{pmatrix} 62 & -3 & -4 & -2 \\ -4 & -2 & -2 & -1 \\ -3 & -1 & -3 & -3 \\ -3 & -3 & -2 & -2 \end{pmatrix}, \qquad \mathcal{A}(:,:,2) = \begin{pmatrix} 0 & -4 & -3 & -3 \\ -1 & 28 & -2 & -2 \\ -1 & -2 & -2 & -4 \\ -2 & -2 & -3 & -1 \end{pmatrix},$$

$$\begin{pmatrix} -2 & -1 & -2 & -1 \\ \end{pmatrix}, \qquad \begin{pmatrix} -4 & -2 & -2 & -1 \\ \end{pmatrix}$$

$$\mathcal{A}(:,:,3) = \begin{pmatrix} -2 & -1 & -2 & -1 \\ -1 & -1 & -1 & -2 \\ -2 & -4 & 63 & -4 \\ -4 & -4 & -2 & -2 \end{pmatrix}, \qquad \mathcal{A}(:,:,4) = \begin{pmatrix} -4 & -2 & -2 & -1 \\ -1 & -2 & -3 & -1 \\ -2 & -3 & -3 & -2 \\ -2 & -2 & -4 & 61 \end{pmatrix}.$$

By Theorem 2.1 in [9], we have

$$2 = \min_{i \in N} R_i(\mathcal{A}) \le \tau(\mathcal{A}) \le \min \left\{ \max_{i \in N} R_i(\mathcal{A}), \min_{i \in N} a_{i \cdots i} \right\} = 28.$$

By Theorem 4 in [13], we have

$$\tau(\mathcal{A}) \geq \min_{i \neq i} L_{ij}(\mathcal{A}) = 2.3521.$$

By Theorem 3, we have

if
$$S = \{1\}, \bar{S} = \{2, 3, 4\}, \quad 3.6685 \le \tau(\mathcal{A}) \le 24.2948;$$

if
$$S = \{2\}$$
, $\bar{S} = \{1, 3, 4\}$, $3.6685 \le \tau(A) \le 19.7199$;

if
$$S = \{3\}, \bar{S} = \{1, 2, 4\}, \quad 2.3569 \le \tau(A) \le 27.7850;$$

if
$$S = \{4\}, \bar{S} = \{1, 2, 3\}, 2.3521 < \tau(A) < 27.8536;$$

if
$$S = \{1, 2\}, \bar{S} = \{3, 4\}, \quad 2.3569 < \tau(A) < 27.7850;$$

if
$$S = \{1, 3\}, \bar{S} = \{2, 4\}, \quad 3.6685 \le \tau(A) \le 23.0477;$$

if
$$S = \{1, 4\}, \bar{S} = \{2, 3\}, \quad 3.6685 \le \tau(A) \le 23.9488.$$

By Theorem 7, we have

$$3.6685 \le \tau(A) \le 19.7199.$$

In fact, $\tau(A) = 14.4049$. Hence, this example verifies Theorem 8 and Remark 2, that is, the bounds in Theorem 7 are sharper than those in Theorem 3, Theorem 2.1 of [9] and Theorem 4 of [13] without considering the selection of *S*.

Example 2 Let $A = (a_{iikl}) \in \mathbb{R}^{[4,2]}$ be an \mathcal{M} -tensor with elements defined as follows:

$$a_{1111} = 6$$
, $a_{1222} = -1$, $a_{2111} = -2$, $a_{2222} = 5$,

other $a_{ijkl} = 0$. By Theorem 7, we have

$$4 \le \tau(\mathcal{A}) \le 4$$
.

In fact, $\tau(A) = 4$.

4 Conclusions

In this paper, we give a new eigenvalue inclusion set for tensors and prove that this set is tighter than those in [1, 2]. As an application, we obtain new lower and upper bounds for the minimum eigenvalue of \mathcal{M} -tensors and prove that the new bounds are sharper than those in [2, 9, 13]. Compared with the results in [2], the advantage of our results is that, without considering the selection of S, we can obtain a tighter eigenvalue localization set for tensors and sharper bounds for the minimum eigenvalue of \mathcal{M} -tensors.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11361074, 11501141), the Foundation of Guizhou Science and Technology Department (Grant No. [2015]2073) and the Natural Science Programs of Education Department of Guizhou Province (Grant No. [2016]066).

Received: 15 January 2017 Accepted: 27 February 2017 Published online: 09 March 2017

References

- 1. Li, CQ, Chen, Z, Li, YT: A new eigenvalue inclusion set for tensors and its applications. Linear Algebra Appl. 481, 36-53 (2015)
- 2. Huang, ZG, Wang, LG, Xu, Z, Cui, JJ: A new S-type eigenvalue inclusion set for tensors and its applications. J. Inequal. Appl. 2016, 254 (2016)
- 3. Chang, KQ, Zhang, T, Pearson, K: Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci. **6**, 507-520 (2008)
- 4. Qi, LQ: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302-1324 (2005)
- Lim, LH: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. CAMSAP, vol. 05, pp. 129-132 (2005)
- 6. Yang, YN, Yang, QZ: Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl. 31, 2517-2530 (2010)
- 7. Ding, WY, Qi, LQ, Wei, YM: \mathcal{M} -tensors and nonsingular \mathcal{M} -tensors. Linear Algebra Appl. 439, 3264-3278 (2013)
- 8. Zhang, LP, Qi, LQ, Zhou, GL: \mathcal{M} -tensors and some applications. SIAM J. Matrix Anal. Appl. 35, 437-452 (2014)
- 9. He, J, Huang, TZ: Inequalities for \mathcal{M} -tensors. J. Inequal. Appl. 2014, 114 (2014)

- 10. Li, CQ, Li, YT, Kong, X: New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 21, 39-50 (2014)
- 11. Li, CQ, Li, YT: An eigenvalue localization set for tensor with applications to determine the positive (semi-)definiteness of tensors. Linear Multilinear Algebra 64(4), 587-601 (2016)
- 12. Li, CQ, Jiao, AQ, Li, YT: An S-type eigenvalue location set for tensors. Linear Algebra Appl. 493, 469-483 (2016)
- Zhao, JX, Sang, CL: Two new lower bounds for the minimum eigenvalue of M-tensors. J. Inequal. Appl. 2016, 268 (2016)
- 14. He, J: Bounds for the largest eigenvalue of nonnegative tensors. J. Comput. Anal. Appl. 20(7), 1290-1301 (2016)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com