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1 Introduction

We first introduce the definition of the Rosenthal type maximal inequality, which is one
of the most interesting inequalities in probability theory and mathematical statistics. Sup-
pose that {Y,,, n > 1} is a sequence of random variables satisfying E|Y;|" < co for r > 2, then

there exists a positive constant C(r) depending only on r such that

r

E max
1<j<n

n n r/2
< C(r)[ZEm —EY(| + (ZE|Yk—EYk|2) ] (L1)

k=1 k=1

j
> (Y- EYi)
k=1

Equation (1.1) can be satisfied by many dependent or mixing sequences. Peligrad [2],
Zhou [3], Wang and Lu [4], Utev and Peligrad [5] established the above inequality for
p-mixing sequence, ¢-mixing sequence, p~-mixing sequence, and p-mixing sequence, re-
spectively. We also refer to Shao [6], Stoica [7], Shen [8], Yuan and An [9] for negatively
associated sequence (NA), martingale difference sequence, extended negatively depen-
dent sequence (END), and asymptotically almost negatively associated random sequence
(AANA), respectively.

The following definitions will be useful in this paper. The first one can be found in Kucz-
maszewska [10].
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Definition 1.1 A sequence {Y;, —00 < i < 00} of random variables is said to satisfy a weak
dominating condition with a dominating random variable Y if

j+n
> P{IYil>x} < CnP{|Y|>x}, x>0,-c0<j<oo,n>1,
i=j+1

where C is a positive constant.

Definition 1.2 A real valued function /(x), positive and measurable on [0, 00), is said to

be slowly varying at infinity if for each A > 0, lim,_, » % =1

Throughout the paper, let {Y;,—00 < i < 0o} be a sequence of random variables with
zero means and {a;,—00 < i < 00} be a sequence of real numbers with Y _ |a;| < oo,
and the moving average process {X,,, n > 1} is defined by X, = Z;’:_oo a;Yiin. The complete
moment convergence of moving average process {X,, #n > 1} has been widely investigated
by many authors. We list some results as follows.

Li and Zhang [11] established the following complete moment convergence of moving
average processes under NA assumptions.

Theorem A Suppose that {X,, = fo_oo ai€iiyyn > 1}, where {a;, —00 < i < 00} is a sequence
of real numbers with Y ;= |a;| < 00 and {e;,—00 < i < 00} is a sequence of identically dis-
tributed NA random variables with Ee; = 0, Ee? < 0o. Let h be a function slowly varying at
infinity, 1 <q<2,r>1+q/2. Then E|e1|"h(|e1]7) < oo implies

N
—enl/q] <00

Z nr/q—Z—l/qh(n)E:
n=1

n
X
j=1

foralle>0.

Later on, the following complete moment convergence of moving average processes gen-
erated by p-mixing sequence was proved by Zhou and Lin [12].

Theorem B Let i be a function slowly varying at infinity, p > 1, pa > 1, and o > 1/2. Sup-
pose that {X,,,n > 1} is a moving average process based on a sequence {Y;,—00 < i < 00} of
identically distributed p-mixing random variables. If EY; = 0 and E|Y1|P*°h(|Y1]Y%) < 00
for some § > 0, then for all € > 0,

k

>

J=1

Z n""‘2"‘h(n)E{ max

1<k<n

N
—sn"’} < 00.

n=1

Recently, Ko [1] obtained the complete moment convergence of moving average processes
generated by a class of random variable.

Theorem C Let h be a function slowly varying at infinity, p > 1, pa > 1, and o > 1/2. As-
sume that {a;,—00 < i < 00} is an absolutely summable sequence of real numbers and that
{Y;, —00 < i < 00} is a sequence of mean zero random variables satisfying a weak mean dom-
inating condition with a mean dominating random variable Y and E|Y|Ph(|Y|"%) < oo.
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Suppose that {X,,n > 1} is a moving average process based on the sequence {Y;,—00 < i <

oo}. Assume that the Rosenthal type maximal inequality of Y,; = —xI{Y; < —x} + Y;I{|Y}| <

x} +xI{Y; > x} holds for any q > 2 and x > 0. Then, for all & > 0,

+
—&n } < Q.

ZX

o0
Z np"_Z_ah(n)E{ max
1<k<n

n=1

The aim of this paper is to study the complete moment convergence of moving aver-

age process of random sequence under the assumption that the random variables satisfy

the Rosenthal type maximal inequality and the weak mean dominating condition. The pa-

per is organized as follows. In Section 2 we describe the main results, Sections 3 and 4

provide some lemmas and the details of the proofs, respectively. Throughout the sequel,

C represents a positive constant although its value may change from one place to the next,
a, = O(b,) means |a,/b,| < C and I{A} stands for the indicator function of the set A.

2 Main results

Theorem 2.1 Let [ be a function slowly varying at infinity. Suppose that {a;,—00 < i < 00}

is an absolutely summable sequence of real numbers. Let {g(n),n > 1} and {f(n),n > 1} be

two sequences of positive constants such that, for some r > max{2,p}, p > 1,
Q) f(m) 1 Oo’fp — 0
(C2) Y log(5 ;(”,;; ) Yo s (f” 1<k)l(k>)
(C3) okl om+ 1) -1 ’(m) Z’” (ﬂ’ r k)l(k))
(C4) Zm flm+1) —f(m)] 300, ngf(n) O(fp (k)U(

(C5) Yoo, [F " m + 1) = (m)fHm + D) Y0 % < 00, where
t = max{0,2 — p}r/2;

(C6) X [fm+1)—fm)ff (m+1) 3", nPgln) 00, where t' = —min{2, p}r/2.

Sn)

Assume that {X,, = Z;’im a;Yin,n > 1} is a moving average process generated by a se-

quence of random variables {Y;, —oo < i < 0o} with mean zeros and satisfying a weak dom-

inating condition with a dominating random variable Y and E|Y|P(1 v I(f71(|Y]))) < oo,

where f~! is the inverse function of f.

Assume that the Rosenthal type maximal inequality of Yy = —xI{Y; < —x} + V;I{|Y}]| <

x} +xI{Y; > x} holds for the above r and all x > 0. Then, for all ¢ > 0,

o g(m)l(n)
; f(n) E{lrglfléﬂ

k
> X
j=1

—sf(n)} <00

Corollary 2.2 If we replace conditions (C2)- (C6) by the following:

(2.1)

(C7) S5y 200 = O ()UK, 052, bl < o0, 3750, M — O ()U(K)).

The other assumptions of Theorem 2.1 also hold, then, for all ¢ > 0, we have

>ef(n }

ZX

[e¢]
L { e,

(2.2)

Conditions (C1)-(C7) can be satisfied by many sequences, we list some as the following

remarks.
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Remark 2.3 Let g(n) = n?*2, f(n) = n* for pa >1,and 1/2 < a < 1, assume that (1.1) holds
true for {Y,;} and

r>2, 1<p<2,

2(pa-1)

r> 2a-1 "’

p>2,

then conditions (C1)-(C7) can be verified easily by Lemma 3.1, therefore we know

00 k +

pPo—o—2 e
Zn l(n)E{lr&aE(H ZX, en } < 00, (2.3)
n=1 j=1
o) k

P*=2]()P X; o . 2.4
,12:1:” (n) {1211?;121: ,>8n}<oo (2.4)

Obviously, Theorem 3.1 and Corollary 3.2 from Ko [1] are the same as (2.3) and (2.4),
respectively, so we extend the known results. If we take ap =1, 4, = 0,i #0, I(x) = 1, let
{Y,Y;,—00 < i < o0} be a sequence of i.i.d. random variables, then ) -, P IP{Y] > n®) <
oo is equivalent to E|Y|? < oo, which implies (2.4), so we can obtain Remark 1.1 from
Chen [13].

Remark 2.4 If we take g(n) = n*2, f(n) = n*’? for s > p > 1, suppose that (1.1) holds true for

{Y,} and
r> 2, 1 <p < 2’
r> 26bp p>2,

2s—p ’
then conditions (C1)-(C7) can be verified easily by Lemma 3.1, so we can obtain

k

2%

j=1

Z ns_S/p_zl(n)E{ max

1<k<n
n=1

N
- enS/p} < 00,

k

>X

j=1

Z nszl(n)P: max

1<k<n
n=1

> snS/”I < 00.

_ logn

===, f(n) = (nlog m)"? for 1 < p < 2, assume that (1.1) holds
true for {Y,;} and r > 4, it is easy to see that conditions (C1)-(C7) can be satisfied by
Lemma 3.1, so we can obtain

Remark 2.5 If we set g(n)

k
X

i (log Ll_l/pl(u)E{ max

—¢e(nlog n)”p} < 00,

n1+l/p 1<k<n|4
n=1 j=1
> (log n)i(n) k
Zgip max ZX, > e(nlogm)'? } < co.
—t n 1sksn|

Remark 2.6 Denote g(n) = @,f(n) = (nloglogn)'? for 1 < p < 2, assuming that (1.1)
holds true for {Y,;} and r > 2, it is easy to prove that conditions (C1)-(C7) can be satisfied
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by Lemma 3.1, hence the following hold:

> X

> I(n) '
n
E — e(nloglog n)™? ,
; n*1r (log n)(log log m)!/» {1<k<n s(nloglogn) } <0

k

x 2%

j-1

> g(nloglog n)l/p} < 00.

Theorem 2.7 Let | be a function slowly varying at infinity. Suppose that {X, =
3% o @iYien, 1 > 1} is a moving average process generated by a sequence of random vari-
ables {Y;, —00 < i < 0o} with mean zeros, where {a;, —00 < i < 00} is an absolutely summable
sequence of real numbers. Let {g(n),n > 1} and {f(n),n > 1} be two sequences of positive
constants with f(n) 1 oo and {V,(t),n > 1} ba a sequence of even and nonnegative func-

tions such that, for each n > 1, V,,(t) > 0 as t > 0. Assume that

W, (I21) W (l2])

|£]7 t ||

booas|e? (2.5)

forsomel<p<q<2,and

j+n j+n

EW,(Y;) Ew(Y3)
) , .6
Zg(” 2 Ty < 2w % ST (20

i=j+1

Sfor any j > 0. Assume that the Rosenthal type maximal inequality of Yy,; = V;I{|Y}| < f(n)}
holds true for r = 2. Then, for all € > 0,

ZX

oo
Zg( { max >ef(n } (2.7)
1<k<n
3 Preliminary lemmas
In order to prove the main results, we shall need the following lemmas.

Lemma 3.1 (Zhou [3]) If!is slowly varying at infinity, then
Q) Y0 n¥l(n) < Cm*l(m) for s > -1 and positive integer m,
(2) Y02, wl(n) < Cm**l(m) for s < —1 and positive integer m.

Lemma 3.2 (Gut [14]) Let {Y,,n > 1} be a sequence of random variables satisfy a weak
dominating condition with a dominating random variable Y. For any b > 0, set

Y/ =via{|vi<b), Y/ =Yi{lYil>b),

=YI{|Y| <b}, Y" =YI{|Y|>b}.

Then for any a > 0 and some constant C
(1) ifE|Y|* <00, then n™' Y I E|Y;|* < CE|Y|%
T L EWY]I < CEIY'| + b*PAIY | > bY);
(3) w L EIY/ | < CEY' |
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4 Proofs

Proof of Theorem 2.1 Obviously that Y ;_ Xx = Y. a Z,H:qn 7. Noting that
Yo o lail <00, EY; = 0, E|YIP(1 v I(f7(]Y]))) < 00, then by Lemma 3.2 and condition

(C1), for any x > f (1), we conclude

i+n

EZa,ZYx,

=—00 j=i+l

—1

i+n

UE Z aiy (Y- Yy)

=—00 j=i+l

=X

i+n
<cxt Z @il Y EIGI{1Y] > 2} < Cx ' nE V{1 > x)

i=— J=i+l

<CnxPE|YPI{|Y|>x} < CmE|Y|1’I{|Y| >x}— 0, asx— oc.

Therefore, one can get
i+n

EZa,ZYx,

=—00 j=i+l

xL <el4,

for any € > 0 and x > f () large enough. Hence it follows that
k
2%

— g(n)(n)
Z f(n) E{glfl; —

o g(ml(n) [
SZ ;(n)n /e {max

—Sf(n)}

ZX

f(n) | 1=k=n

>x}dx

X g(mln) [ .

=2 " /MP {EE‘;‘H/ZIXJ’
>\ g(n)l(n)

< C; o f {1<k<n ;Oa,JXH:l(Y Y)

— g(m)i(n) [
+an 7(n) /f P {fé‘/f‘é‘n

zsx}dx

i+k

> sx/Z} dx

00 i+k

Z ﬂiZ(ij—Eij)

i=—00  j=i+l

(n)

> sx/4} dx

=2[1 +12. (41)

Now we want to estimate /; < oo. It is obvious that |Y; - Y,;| < |Y}|I{|Y;| > x}, then it follows
by Markov’s inequality, Lemma 3.2 and conditions (C1) and (C2) that

00 00 i+k
g(n)l(n) o ‘
BECL Gy B 2w - )

i+n

ng(n /( -1Z|at > Y, - Yyldx

o] j=i+l
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< Cz%l(:x‘lﬂﬂl{lﬂ > x) dx

n=1

=\ ngml(n) o= [/
=C - - E\Y|I1|Y d
,,Xﬂ: f(n) ;/f(m) EYIHY]> 5 d

o ng(ml(n) o, flm+1)
5C;W;10g Fom E|YI{Y] > f(m)}

(m)

_ 2 ng(m)l(n)
CZI f( ) Dyt v > fon I o

n=1

S flm+1)
=C;|:log ;’Z"’) Z f() :|ZE|Y|[{f(k <|Y|<f(k+1)}

- CZE|Y|I{f(k) <|Y| <f(k+1)} Z[ f(}q(q +)1) Z ngf?r)ql) }

<CY fRUREIYII{f(K) < |Y| <f(k+1)}
k=1

< CE|YPIUFf(IY1)) < oo. (4.2)

Hence it remains to show that I < co. By Markov’s inequality, the Holder inequality and

the Rosenthal type maximal inequality, for » > max{2, p}, it is easy to see that

i+k

Z a; Z(ij EYx])

i=—00  j=i+l

dx

o g(n)l(n) / .
I E
’ SC; S Jrw 12k
i+k

> (Y- EYy)

j=i+1

i=—00 -

gln) % LS (15 ,
CZ S Jrw E|:Z(|“i| ’ )<|ﬂi|” max

)|
)

i+k

> (Y, - EYy)

1 i+1

g(n)l(n) <
Z n(n)rl f(n) <i§O|di|) (Z |a; |E maX

[e%e) g(l’l)l(}’l) B i+n
<C 4 |a;| E|Y, —EY,| dx
= f(n) f(n Z Z 7 7

i=—00 j=i+l

+n r/2
")/ -’Z i (ZE|Yx, EY,| ) dx

Jy=i+1

=1121 +122. (43)

For I, it follows by C, inequality, Lemma 3.2 and conditions (C1), (C3), and (C4) that

i+n

f(n) / "Zla,lZE|Y|’I Y| <x} +2"P(1Y] > x)] dx

J=i+1

I <

ng(n)i(n) B . r
C; f(n) /f(n) [EYTI{IY| < x} +«"P(|Y| > )] da
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e gl o e
_c; o Z/M) [x"ElYI"T{|Y] <%} + P(1Y] > x) ] dx

m=n

cZ ”g}’Z l>(n S IO+~ ) EYI{IY] <o+ D)

m=n

o0 l o0
sy ng}y(';)q)(") S [fom+ 1) = fm)]P(1Y 1> f(m))

n=1 m=n
l
SN+ ) O EYTI{IY < fom £ 1)} D J(::q ()
m=1 —

m

CY [fm+1)-f(m)]P

m=1 n=1

=CZi[fl "(m+1)-f"(m )]Z f() }ZE|Y|’I{f(k)<|Y| <flk+1))

* CZ{V(’” -]y f?)l(n) } S P{f(K) < Y] <flk + 1))
m=1 n=1

= CZHYV[{f(k) <|Y|=<flk+ 1)} Z< [fl_r(m +1) —fl‘r(m)] Z ngj((’zl)ql)(”) }
k=1 — =

+CZP{f(k)<IYI Sf(k+1)}Z{ [f(m +1) —f(m )]an](;z’)q)(n)}
k=1 — 1

oo

<O PPTRUREIYTI{f(k) < Y] <f(k +1))
k=1

+CY fPUIKP{f (k) < |Y] < f(k +1)}

k=1

< CE|YPI(f(IY1)) < oo. (4.4)

Finally we want to show that I, < 00, by C, inequality, Lemma 3.2 and conditions (C1),
(C5), and (C6), it follows that

I < CZ gt )/f(ojx-'[(E|Y|21{|Y| <x})? + 2 P(1Y] > 2)] dx

fn)
n=1
r/2 ( f(m+1 - , ;
SC; ﬁ(n) Z/ (EYPI{IYI <)) + P(1Y| > x) ] da

r/2
ey }gfi ;l( DSl e )~ )| EY 1Y < fon 1))

n=1 m=n

r/2

4 CZ z ?E ;l Z[f(m+1) —fm)|P2(|Y ] > f(m))

m=n

S ’ r/2 l
Y+ ) (B PI{IY] < om D)) fEZ’ =
e n=1
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r/2 }’l)l

+Z[f(m+1) ~fm)P(1Y| > f(m Z o

m=1

r/2 n)l

SCZ[ fl r(m+1) fl r( ) Z f( ) fmax 02—19}7’/2(m+1)}

> (E|Y|min{p,2})r/2
3 — 3 M —min{2,p}r/2 min{p,2}\"/2
+CY fm+ 1) —fm)] > o (m) ¢ (E|Y|™nt2)
n=1

< 00. (4.5)

m=1

Hence the proof of (2.1) is completed by combining (4.1)-(4.5). O

Proof of Theorem 2.7 Clearly Z X =) a Z}l:ﬁl Y;. Noting that Y ;° _|a;| < o0
and EY; = 0, then by (2.5) and (2.6), we know

i+k
X |E a; Y,
f(n) (n) e ;o 121;1 "
1 0 i+n
= > lail Y EIi{|v] > f(m)}
f n i=—00 j=i+l
=< lail ) EIGIPI{IY)| > f(m} <C ) lail
ff’()zoo ,;1 Zoo ,;1 ‘I’W)
— 0, asun— oo.
Hence for n large enough and any ¢ > 0, we obtain
i+k
x |E Y, 4.
(n) hipes :Zo:oal;;:l w| <l
Then one can get
[ k
Zg(n)z(n)P:gka; 2% > sf(n)]
n=1 j=1
00 ) i+k
<
_C;g( {11315234 qu,];l (Y; = Yo)| > ef ( )/2}
i+k
+CY g(n)l(n)p= max Z a;i Yy (Y~ EYy) >8f(n)/4}
n=1 =—00 j=i+l

=N+
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By Markov’s inequality, (2.5), and (2.6), it is easy to check that

i+k

CX:gf(n) 1</?<xn ,Za’Z(Y Y)

=—00 j=i+l
g n)l Vl) i+n
CZ Z| | Y EWI{1Y] > £(m)}
i=—00 J=i+l
CZ Z| Z|ZE|Y|P1 Y| > f(n)}
fp( ) i=—00 J=i+l
oo i+n \IJ (Y)
=C ) lail E——=
2 g
It follows from Markov’s inequality, the Holder inequality, the Rosenthal type inequality,
(2.5), and (2.6) that
g(l’l)l I’l) 00 i+k 2
ax a; (Y, — EY,)
Z £2(n) 1<k<n igo };} Y j
(m)i(n) ¢ <
Zg DTS ad [ S BN, - EYP
f( ) i=—00 =i+l
(Vl)l I’l) i+n
Zg O S el BV Iy < f)
f( ) i=—00 =i+l
g(n)l(n) -
CZ D lail| Y EIU{1Y < f(m)
i=—00 =i+l

i+n

<C Z |al|Zg(n)l(n)ZE ](f( ))

J=i+1

Thus we have completed the proof of Theorem 2.7. O
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