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Abstract
Based on the Padé approximation method, we determine the coefficients aj and bj
(1 ≤ j ≤ k) such that

�(x + 1)√
2πx(x/e)x

=
xk + a1xk–1 + · · · + ak
xk + b1xk–1 + · · · + bk

+ O
( 1
x2k+1

)
, x → ∞,

where k ≥ 1 is any given integer. Based on the obtained result, we establish new
bounds for the gamma function.
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1 Introduction
Stirling’s formula

n! ∼ √
πn

(
n
e

)n

, n ∈N := {, , . . .} (.)

has many applications in statistical physics, probability theory and number theory. Ac-
tually, it was first discovered in  by the French mathematician Abraham de Moivre
(-) in the form

n! ∼ constant · √n(n/e)n

when he was studying the Gaussian distribution and the central limit theorem. Afterwards,
the Scottish mathematician James Stirling (-) found the missing constant

√
π

when he was trying to give the normal approximation of the binomial distribution.
Stirling’s series for the gamma function is given (see [], p., Eq. (..)) by

�(x + ) ∼ √
πx

(
x
e

)x

exp

( ∞∑
m=

Bm

m(m – )xm–

)
(.)
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as x → ∞, where Bn (n ∈N := N∪{}) are the Bernoulli numbers defined by the following
generating function:

z
ez – 

=
∞∑

n=

Bn
zn

n!
, |z| < π . (.)

The following asymptotic formula is due to Laplace:

�(x + ) ∼ √
πx

(
x
e

)x(
 +


x

+


x –


,x –


,,x + · · ·
)

(.)

as x → ∞ (see [], p., Eq. (..)).
The expression (.) is sometimes incorrectly called Stirling’s series (see [], pp.-).

Stirling’s formula is in fact the first approximation to the asymptotic formula (.). Stir-
ling’s formula has attracted much interest of many mathematicians and has motivated a
large number of research papers concerning various generalizations and improvements
(see [–] and the references cited therein). It is interesting to note that the aforemen-
tioned mathematicians represent many nationalities. So the topic is of interest for math-
ematicians from diverse cultural background.

Using the Maple software, we find, as x → ∞,

�(x + )√
πx(x/e)x

=
x + 



x – 


+ O
(


x

)
(.)

and

�(x + )√
πx(x/e)x

=
x + 

 x + 
,

x – 
 x + 

,
+ O

(

x

)
. (.)

Based on the Padé approximation method, in this paper we develop the approximation
formulas (.) and (.) to produce a general result. More precisely, we determine the co-
efficients aj and bj ( ≤ j ≤ k) such that

�(x + )√
πx(x/e)x

=
xk + axk– + · · · + ak

xk + bxk– + · · · + bk
+ O

(


xk+

)
, x → ∞,

where k ≥  is any given integer. Based on the obtained result, we establish new bounds
for the gamma function.

The numerical values given in this paper have been calculated via the computer program
MAPLE .

2 Lemmas
The following lemmas are required in our present investigation.

Lemma . ([]) Let r be a given nonzero real number. The gamma function has the fol-
lowing asymptotic formula:

�(x + ) ∼ √
πx

(
x
e

)x
(

 +
∞∑
j=

bj

xj

)/r

, x → ∞, (.)
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with the coefficients bj = bj(r) (j = , , . . .) given by

bj =
∑

k+k+···+jkj=j

rk+k+···+kj

k!k! · · ·kj!

(
B

 · 

)k( B

 · 

)k

· · ·
(

Bj+

j(j + )

)kj

, (.)

where Bn (n ∈ N := N ∪ {}) are the Bernoulli numbers defined in (.), summed over all
nonnegative integers kj satisfying the equation k + k + · · · + jkj = j.

Laplace formula (.) can be rewritten as

�(x + ) ∼ √
πx

(
x
e

)x
( ∞∑

j=

cj

xj

)
, x → ∞, (.)

with the coefficients cj given by

c = ,

cj =
∑

k+k+···+jkj=j


k!k! · · ·kj!

(
B

 · 

)k( B

 · 

)k

· · ·
(

Bj+

j(j + )

)kj

for j ≥ .
(.)

Lemma . ([], Theorem ) Let n ≥  be an integer. The functions

Fn(x) = ln�(x) –
(

x –



)
ln x + x –




ln(π ) –
n∑
j=

Bj

j(j – )xj–

and

Gn(x) = – ln�(x) +
(

x –



)
ln x – x +




ln(π ) +
n+∑
j=

Bj

j(j – )xj–

are completely monotonic on (,∞). Here Bn (n ∈N := N∪{}) are the Bernoulli numbers.

Remark . Lemma . can be stated as follows: for every m ∈ N, the function

Rm(x) = (–)m

[
ln�(x) –

(
x –




)
ln x + x – ln

√
π –

m∑
j=

Bj

j(j – )xj–

]

is completely monotonic on (,∞).
In , Koumandos [] presented a simpler proof of complete monotonicity of the

functions Rm(x). In , Koumandos and Pedersen [], Theorem ., strengthened this
result.

From F ′
n(x) <  and G′

n(x) <  for x > , we obtain

n∑
j=

Bj

jxj < ln x – ψ(x) –


x
<

n+∑
j=

Bj

jxj , x > , (.)
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where ψ(x) = �′(x)/�(x) is the psi (or digamma) function. Noting that

ψ(x + ) = ψ(x) +

x

holds, we obtain from (.) that for x > ,

–


x +


x –


x +


x –


x < ψ(x + ) – ln x –


x

< –


x +


x –


x +


x –


x +


,x . (.)

3 Approximations to the gamma function
For our later use, we introduce Padé approximant (see [–]). Let f be a formal power
series

f (t) = c + ct + ct + · · · . (.)

The Padé approximation of order (p, q) of the function f is the rational function, denoted
by

[p/q]f (t) =
∑p

j= ajtj

 +
∑q

j= bjtj
, (.)

where p ≥  and q ≥  are two given integers, the coefficients aj and bj are given by (see
[–])

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = c,

a = cb + c,

a = cb + cb + c
...

ap = cbp + · · · + cp–b + cp,

 = cp+ + cpb + · · · + cp–q+bq,
...

 = cp+q + cp+q–b + · · · + cpbq,

(.)

and the following holds:

[p/q]f (t) – f (t) = O
(
tp+q+). (.)

Thus, the first p + q +  coefficients of the series expansion of [p/q]f are identical to those
of f . Moreover, we have (see [])

[p/q]f (t) =

∣∣∣∣∣∣∣

tqfp–q(t) tq–fp–q+(t) ··· fp(t)
cp–q+ cp–q+ ··· cp+

...
...

. . .
...

cp cp+ ··· cp+q

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

tq tq– ··· 
cp–q+ cp–q+ ··· cp+

...
...

. . .
...

cp cp+ ··· cp+q

∣∣∣∣∣∣∣

, (.)
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with fn(x) = c + cx + · · · + cnxn, the nth partial sum of the series f in (.) (fn is identically
zero for n < ).

Let

f (x) =
�(x + )√
πx(x/e)x

. (.)

It follows from (.) that, as x → ∞,

f (x) ∼
∞∑
j=

cj

xj =  +


x
+


x –


,x –


,,x + · · · , (.)

with the coefficients cj given by (.). In what follows, the function f is given in (.).
Based on the Padé approximation method, we now give a derivation of formula (.). To

this end, we consider

[/]f (x) =
∑

j= ajx–j

 +
∑

j= bjx–j
.

Noting that

c = , c =



, c =




, c = –


,
, c = –


,,

(.)

holds, we have, by (.),

⎧
⎪⎪⎨
⎪⎪⎩

a = ,

a = b + 
 ,

 = 
 + 

 b,

that is,

a = , a =



, b = –




.

We thus obtain that

[/]f (x) =
 + 

x

 – 
x

=
x + 



x – 


, (.)

and we have, by (.),

�(x + )√
πx(x/e)x

=
x + 



x – 


+ O
(


x

)
.

We now give a derivation of formula (.). To this end, we consider

[/]f (x) =
∑

j= ajx–j

 +
∑

j= bjx–j
.
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Noting that (.) holds, we have, by (.),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = ,

a = b + 
 ,

a = b + 
 b + 

 ,

 = – 
, + 

 b + 
 b,

 = – 
,, – 

, b + 
 b,

that is,

a = , a =



, a =


,

, b = –



, b =


,

.

We thus obtain that

[/]f (x) =
 + 

x + 
,x

 – 
x + 

,x
=

x + 
 x + 

,

x – 
 x + 

,
, (.)

and we have, by (.),

�(x + )√
πx(x/e)x

=
x + 

 x + 
,

x – 
 x + 

,
+ O

(

x

)
.

From the Padé approximation method and the expansion (.), we now present a general
result given by Theorem ..

Theorem . The Padé approximation of order (p, q) of the Laplace asymptotic formula
of the function f (x) = �(x+)√

πx(x/e)x (at the point x = ∞) is the following rational function:

[p/q]f (x) =
 +

∑p
j= ajx–j

 +
∑q

j= bjx–j
= xq–p

(
xp + axp– + · · · + ap

xq + bxq– + · · · + bq

)
, (.)

where p ≥  and q ≥  are any given integers, the coefficients aj and bj are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = b + c,

a = b + cb + c,
...

ap = bp + · · · + cp–b + cp,

 = cp+ + cpb + · · · + cp–q+bq,
...

 = cp+q + cp+q–b + · · · + cpbq,

(.)

and cj is given in (.), and the following holds:

f (x) – [p/q]f (x) = O
(


xp+q+

)
, x → ∞. (.)
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Moreover, we have

[p/q]f (x) =

∣∣∣∣∣∣∣∣


xq fp–q(x) 

xq– fp–q+(x) ··· fp(x)
cp–q+ cp–q+ ··· cp+

...
...

. . .
...

cp cp+ ··· cp+q

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣


xq


xq– ··· 

cp–q+ cp–q+ ··· cp+

...
...

. . .
...

cp cp+ ··· cp+q

∣∣∣∣∣∣∣∣

, (.)

with fn(x) =
∑n

j=
cj
xj , the nth partial sum of the asymptotic series (.).

Remark . Using (.), we can also derive (.) and (.). Indeed, we have

[/]f (x) =

∣∣∣ 
x f(x) f(x)

c c

∣∣∣
∣∣∣ 

x 
c c

∣∣∣
=

∣∣∣∣

x + 

x







∣∣∣∣
∣∣∣∣


x 







∣∣∣∣
=

x + 


x – 


and

[/]f (x) =

∣∣∣∣


x f(x) 
x f(x) f(x)

c c c
c c c

∣∣∣∣
∣∣∣∣


x


x 

c c c
c c c

∣∣∣∣
=

∣∣∣∣∣∣


x


x (+ 

x ) + 
x + 

x





 – 
,


 – 

, – 
,,

∣∣∣∣∣∣
∣∣∣∣∣∣


x


x 





 – 

,


 – 
, – 

,,

∣∣∣∣∣∣

=
x + 

 x + 
,

x – 
 x + 

,
.

Setting (p, q) = (k, k) in (.), we obtain the following corollary.

Corollary . As x → ∞,

�(x + )√
πx(x/e)x

=
xk + axk– + · · · + ak

xk + bxk– + · · · + bk
+ O

(


xk+

)
, (.)

where k ≥  is any given integer, the coefficients aj and bj ( ≤ j ≤ k) are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = b + c,

a = b + cb + c,
...

ak = bk + · · · + ck–b + ck ,

 = ck+ + ckb + · · · + cbk ,
...

 = ck + ck–b + · · · + ckbk ,

(.)

and cj is given in (.).
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Setting k =  and k =  in (.), respectively, yields

�(x + )√
πx(x/e)x

=
x + 

 x + ,
, x + ,,

,,

x – 
 x + ,

, x – ,,
,,

+ O
(


x

)
(.)

and

�(x + )√
πx(x/e)x

=
x + 

 x + ,,
,, x + ,,,

,,, x + ,,,,
,,,,

x – 
 x + ,,

,, x – ,,,
,,, x + ,,,,

,,,,
+ O

(


x

)
.

(.)

In view of (.), (.), (.) and (.), we pose the following conjecture.

Conjecture . The coefficients aj and bj ( ≤ j ≤ k) in (.) satisfy the following relation:

aj = (–)jbj, j = , , . . . , k. (.)

4 Inequalities for the gamma function
Formulas (.) and (.) motivate us to establish the following theorem.

Theorem . The following inequalities hold:

U(x) <
�(x + )√
πx(x/e)x

< V (x), (.)

where

U(x) =
x + 

 x + ,,
,, x + ,,,

,,, x + ,,,,
,,,,

x – 
 x + ,,

,, x – ,,,
,,, x + ,,,,

,,,,
(.)

and

V (x) =
x + 

 x + ,
, x + ,,

,,

x – 
 x + ,

, x – ,,
,,

. (.)

The left-hand side inequality holds for x ≥ , while the right-hand side inequality is valid
for x ≥ .

Proof It suffices to show that

F(x) >  for x ≥  and G(x) <  for x ≥ ,

where

F(x) = ln�(x + ) –
(

x +



)
ln x + x – ln

√
π – ln U(x)

and

G(x) = ln�(x + ) –
(

x +



)
ln x + x – ln

√
π – ln V (x).
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Differentiating F(x) and applying the second inequality in (.) yield

F ′(x) = ψ(x + ) – ln x –


x
–

U ′(x)
U(x)

< –


x +


x –


x +


x –


x +


,x –
U ′(x)
U(x)

= –
P(x – )

,xP(x)
,

where

P(x) = ,,,,,,,,,,,,

+ ,,,,,,,,,,,,x

+ ,,,,,,,,,,,,x

+ ,,,,,,,,,,,,x

+ ,,,,,,,,,,,,x

+ ,,,,,,,,,,,,x

+ ,,,,,,,,,,,x

+ ,,,,,,,,,,,x

+ ,,,,,,,,,,,x

+ ,,,,,,,,,,,x

+ ,,,,,,,,,,x

and

P(x) =
(
,,,,x + ,,,,x

+ ,,,,x + ,,,,x

+ ,,,,
)(

,,,,x

– ,,,,x + ,,,,x

– ,,,,x + ,,,,
)
.

Hence, F ′(x) <  for x ≥ , and we have

F(x) > lim
t→∞ F(t) =  for x ≥ .

Differentiating G(x) and applying the first inequality in (.) yield

G′(x) = ψ(x + ) – ln x –


x
–

V ′(x)
V (x)

> –


x +


x –


x +


x –


x –
V ′(x)
V (x)

=
Q(x – )

,xQ(x)
,
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where

Q(x) = ,,,,,,, + ,,,,,,,x

+ ,,,,,,,x

+ ,,,,,,,x + ,,,,,,,x

+ ,,,,,,,x + ,,,,,,,x

+ ,,,,,,x + ,,,,,,x

and

Q(x) =
(
,,x + ,,x + ,,x + ,,

)

× (
,,x – ,,x + ,,x – ,,

)
.

Hence, G′(x) >  for x ≥ , and we have

G(x) < lim
t→∞ G(t) =  for x ≥ .

The proof is complete. �

Remark . Following the same method as the one used in the proof of Theorem ., we
can prove the double inequality

x + 
 x + 

,

x – 
 x + 

,
<

�(x + )√
πx(x/e)x

<
x + 



x – 


(.)

for x ≥ . We here omit it. Some computer experiments indicate that inequalities (.) and
(.) are valid for x ≥ .

In view of (.) and (.), we pose the following conjecture.

Conjecture . If k is odd, then for x ≥ ,

�(x + )√
πx(x/e)x

<
xk + axk– + · · · + ak

xk + bxk– + · · · + bk
, (.)

where the coefficients aj and bj ( ≤ j ≤ k) are determined in (.). If k is even, then in-
equality (.) is reversed.

5 Comparison
In , Mortici [] showed by numerical computations that his formula

n! ∼ √
πn

(
n
e

)n

exp

(


n + 
n

)
= μn (.)

is much stronger than other known formulas such as:

n! ∼ √
π

(
n + /

e

)n+/

= βn (Burnside []), (.)
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Table 1 Comparison among approximation formulas (5.6)-(5.8)

n λn–n!
n!

Un–n!
n!

n!–Vn
n!

10 1.7686× 10–9 3.6355× 10–11 3.5843× 10–13

100 1.7855× 10–14 3.7108× 10–18 3.7317× 10–22

1,000 1.7857× 10–19 3.7115× 10–25 3.7332× 10–31

10,000 1.7857× 10–24 3.7115× 10–32 3.7333× 10–40

n! ∼
√

πe–nnn+
√

n – /
= δn (Batir []), (.)

n! ∼
√

π

(
n +




)(
n
e

)n

= γn (Gosper []), (.)

n! ∼ √
π

(
n
e

)n(
n + n + n +




)/

= ρn (Ramanujan [], p.). (.)

In , Mahmoud et al. [] showed numerically that their formula

n! ∼ √
πn

(
n
e

)n

exp

(


n
+




ζ (, n + /)
)

= λn (.)

has a superiority over Mortici’s formula (.). Here ζ (s, a) denotes the Hurwitz (or gener-
alized) zeta function defined by

ζ (s, a) :=
∞∑

k=


(k + a)s

(�(s) > ; a /∈ Z–

)
,

Z–
 being the set of nonpositive integers.
From (.) and (.), we obtain

n! ∼ √
πn

(
n
e

)n n + 
 n + ,

, n + ,,
,,

n – 
 n + ,

, n – ,,
,,

= Un (.)

and

n! ∼ √
πn

(
n
e

)n n + 
 n + ,,

,, n + ,,,
,,, n + ,,,,

,,,,

n – 
 n + ,,

,, n – ,,,
,,, n + ,,,,

,,,,

= Vn. (.)

We here offer some numerical computations (see Table ) to show the superiority of our
sequences (Un)n≥ and (Vn)n≥ over the sequence (λn)n≥.
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