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Abstract
In this paper we study the notion of statistical (A,λ)-summability, which is a
generalization of statistical A-summability. We study here many other related
concepts and its relations with statistical convergence and λ-statistical convergence
and provide some interesting examples.
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1 Introduction and preliminaries
The concept of statistical convergence was first introduced by Fast []. In  the concept
arose as an example of convergence in density as introduced by Buck []. Schoenberg []
studied statistical convergence as a summability method and Zygmund [] established a
relation between it and strong summability. This idea has grown a little faster after the pa-
pers of Šalát [] , Fridy [] , Connor [, ], Kolk [], Mursaleen [], Mursaleen and Edely
[, ], Mursaleen andMohiuddine [–] and many others. Its various generalizations,
extensions and variants have been studied by various authors so far. For example, lacu-
nary statistical convergence [], λ-statistical convergence [, –], A-statistical con-
vergence [], statistical summability (C, ) [–]; statistical λ-summability [], statisti-
cal lacunary summability [], statistical A-summability [] etc. For more details, related
concepts and applications, we refer to [–] and references therein. Here we define the
notion of statistical (A,λ)-summability as a λ-statistical convergence of A-transform of x
and prove some results on some related sets of sequences. The results of this paper extend
several ones obtained up to now and establish several inclusion relations, implications and
other properties.
Let K ⊆ N, the set of natural numbers. Then the natural density of K is defined by

δ(K) = lim
n


n

∣∣{k ≤ n : k ∈ K}∣∣
if the limit exists, where the vertical bars denote the cardinality of the enclosed set.
The idea of λ-statistical convergence was introduced in [] as follows:
Let λ = (λn) be a non-decreasing sequence of positive numbers tending to ∞ such

that

λn+ ≤ λn + , λ = .
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The generalized de la Vallée-Poussin mean is defined by

tn(x) =:

λn

∑
j∈In

xj,

where In = [n – λn + ,n].
Let K ⊆N. Then

δλ(K) = lim
n


λn

∣∣{n – λn +  ≤ j ≤ n : j ∈ K}∣∣
is said to be λ-density of K .
In case λn = n, λ-density reduces to the natural density. Also, since (λn/n) ≤ , δ(K) ≤

δλ(K) for every K ⊆N.
A sequence x = (xk) is said to be λ-statistically convergent to L if for every ε >  the set

Kε := {k ∈N : |xk – L| ≥ ε} has λ-density zero, i.e., δλ(Kε) = . That is,

lim
n


λn

∣∣{n – λn +  ≤ j ≤ n : |xk – L| ≥ ε
}∣∣ = .

In this case we write stλ- limx = L.
LetA = (ank) be an infinite matrix of real or complex numbers and x = (xk) be a sequence

of real or complex numbers. Then we write An(x) =
∑∞

k= ankxk , which is called the A-
transform of the sequence x = (xk) whenever the series on the right converges for each
n = , , . . . .
We assume throughout this paper that the symbols ω and c denote the spaces of all se-

quences (real or complex numbers) and the space of all convergent sequences, respectively.
Let X and Y be two nonempty subsets of the space ω. If x ∈ X implies Ax = (An(x)) ∈ Y ,
then we say that A defines a matrix transformation from X into Y , and we denote by
(X,Y ) the class of matrices A which transform X into Y . By (X,Y )reg we denote the subset
of (X,Y ) for which limit or sum is preserved.
A matrix A = (ank) is said to be conservative if Ax ∈ c for x = (xk) ∈ c, and we denote this

by A ∈ (c, c).
A matrix A = (ank) is said to be regular if it is conservative and limAx = limx, and we

denote this by A ∈ (c, c)reg.
The following arewell-known Silverman-Toeplitz [] conditions for the regularity ofA.
A matrix A = (ank) is regular, i.e., A ∈ (c, c)reg if and only if
(i) supn

∑
k |ank| < ∞;

(ii) limn→∞ ank = , for each k;
(iii) limn→∞

∑
k ank = .

Let A = (aij) be a non-negative regular matrix. A sequence x is said to be statistically
A-summable to L if, for every ε > , δ({i≤ n : |yi – L| ≥ ε}) = , i.e.,

lim
n


n

∣∣{i ≤ n : |yi – L| ≥ ε
}∣∣ = ,

where yi = Ai(x). Thus x is statistically A-summable to L if and only if Ax is statistically
convergent to L. In this case we write L = (A)st- limx = st- limAx.
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2 Statistical (A,λ)-summability
In [], Malafosse and Rakočević presented the following definition of statistically (A,λ)-
summable.

Definition . A sequence x is said to be statistically (A,λ)-summable to L if for every
ε > , δλ({n – λn +  ≤ i≤ n : |yi – L| ≥ ε}) = , i.e.,

lim
n


λn

∣∣{n – λn +  ≤ i≤ n : |yi – L| ≥ ε
}∣∣ = .

Thus x is statistically (A,λ)-summable to L if and only if Ax is λ-statistically convergent
to L. In this case we write L = (A,λ)st- limx = stλ- limAx. By (A,λ)st we denote the set of all
statistically (A,λ)-summable sequences.

We define the following.

Definition . A sequence x = (xk) is said to be strongly (A,λq)-convergent ( < q < ∞) to
the limit L if limn


λn

∑
i∈In |yi – L|q = , and we write it as xk −→ L[A,λ]q. In this case L is

called the [A,λ]q-limit of x.

Remarks .
(i) If A = I (the unit matrix), then the statistical (A,λ)-summability is reduced to the

λ-statistical convergence.
(ii) If λn = n, then the statistical (A,λ)-summability is reduced to the statistical

A-summability.
(iii) If λn = n and

aik =

⎧⎨
⎩


i+ ,  ≤ k ≤ i,

, otherwise,

then the statistical (A,λ)-summability is reduced to the statistical
(C, )-summability due to Moricz [].

(iv) If λn = n and

aik =

⎧⎨
⎩

pk
Pi
, ≤ k ≤ i,

, otherwise,

then the statistical (A,λ)-summability is reduced to the statistical
(N̄ ,p)-summability due to Moricz and Orhan [], where p = (pk) is a sequence of
nonnegative numbers such that p >  and

Pi =
i∑

k=

pk → ∞ (i→ ∞).

(v) If λn = n and

aik =

⎧⎨
⎩


kli
,  ≤ k ≤ i,

, otherwise,
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where li =
∑i

k=


(k+) , then the statistical (A,λ)-summability is reduced to the
statistical (H , )-summability due to Moricz [].

3 Main results
In this section, we establish the relation between statistical (A,λ)-summability and
A-statistical convergence.

Theorem . If a bounded sequence is A-statistically convergent to � and lim infn→∞ λn
n >

, then it is A summable to �, statistically A-summable to �, and hence statistically (A,λ)-
summable to � but not conversely.

Proof Let x be bounded and A-statistically convergent to L, and Kε = {k ≤ n : |xk –L| ≥ ε}.
Then

∣∣An(x) – L
∣∣ =

∣∣∣∣∣
∞∑
k=

ank(xk – L) + L

( ∞∑
k=

ank – 

)∣∣∣∣∣
≤

∞∑
k=

ank|xk – L| + |L|
∣∣∣∣∣

∞∑
k=

ank – 

∣∣∣∣∣
=

∑
k∈Kε

ank|xk – L| +
∑
k /∈Kε

ank|xk – L| + |L|
∣∣∣∣∣

∞∑
k=

ank – 

∣∣∣∣∣
≤ sup

k
|xk – L|

∑
k∈Kε

ank + ε
∑
k /∈Kε

ank + |L|
∣∣∣∣∣

∞∑
k=

ank – 

∣∣∣∣∣.
By using the definition of A-statistical convergence and the conditions of regularity of A,
we get

lim
∣∣An(x) – L

∣∣ =  since ε was arbitrary,

and hence st- lim |An(x) – L| = , i.e., x is statistically A-summable to L. Now, using Theo-
rem . of [], we get stλ- lim |An(x) – L| = , i.e., x is statistically (A,λ)-summable to L.
To see that the converse does not hold, we construct the following example.
Let λn = n and A be a Cesàro matrix, i.e.,

ank =

⎧⎨
⎩


n+ ,  ≤ n≤ k,

, otherwise.

Let

xk =

⎧⎨
⎩, if k is odd,

, if k is even.

Then x is A-summable to / (and hence statistically (A,λ)-summable to /) but not
A-statistically convergent.
This completes the proof of the theorem. �
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Theorem . If lim supn(n – λn) < ∞ and x is statistically (A,λ)-summable to L, then x is
statistically A-summable to L.

Proof Let lim supn(n – λn) < ∞. Then there exists M >  such that n – λn ≤ M for all n.
Since 

n ≤ 
λn

and

{
 ≤ i≤ n : |yi – L| ≥ ε

} ⊆ {
i ∈ In : |yi – L| ≥ ε

} ∪ {
 ≤ i≤ n – λn : |yi – L| ≥ ε

}
,

we have


n

∣∣{ ≤ i ≤ n : |yi – L| ≥ ε
}∣∣

≤ 
λn

∣∣{ ≤ i ≤ n : |yi – L| ≥ ε
}∣∣

≤ 
λn

∣∣{i ∈ In : |yi – L| ≥ ε
}∣∣ + 

λn

∣∣{i≤ n – λn : |yi – L| ≥ ε
}∣∣

≤ 
λn

∣∣{i ∈ In : |yi – L| ≥ ε
}∣∣ + M

λn
.

Now, taking the limit as n → ∞, we get the desired result. �

Theorem . Statistical (A,λ)-summability implies statistical A-summability if and only
if

lim inf
n→∞

λn

n
> . (.)

Proof For ε > , we have

{
i ∈ In : |yi – L| ≥ ε

} ⊂ {
i≤ n : |yi – L| ≥ ε

}
.

Therefore


n

∣∣{i ≤ n : |yi – L| ≥ ε
}∣∣ ≥ 

n
∣∣{i ∈ In : |yi – L| ≥ ε

}∣∣
≥ λn

n
· 
λn

∣∣{i ∈ In : |yi – L| ≥ ε
}∣∣.

Taking the limit as n→ ∞ andusing (.), we get that statistical (A,λ)-summability implies
statistical A-summability.
Conversely, suppose that

lim inf
n→∞

λn

n
= .

Choose a subsequence (n(j))j≥ such that λn(j)
n(j) <


j . Define a sequence x = (xk)k≥ such that

yi =

⎧⎨
⎩, for i ∈ In(j), j = , , , . . . ,

, otherwise.
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Then, as in Theorem . of [], we get that y = (yi) is not λ-statistically convergent, i.e.,
x is not statistically (A,λ)-summable. Hence (.) is necessary.
This completes the proof of the theorem. �

Theorem . (a) If  < q < ∞ and a sequence x = (xk) is strongly (A,λq)-convergent to the
limit L, then x is statistically (A,λ)-convergent to L.
(b) If x = (xk) is bounded and statistically (A,λ)-convergent to L, then xk −→ L[A,λ]q.

Proof (a) It follows easily from the following:


λn

∑
i∈In

|yi – L|q ≥ εq

λn

∣∣{i ∈ In : |yi – L| ≥ ε
}∣∣.

The following example shows that the inclusion is proper. Let x = (xn)n≥ be such that its
A-transform is given by

yi =

⎧⎨
⎩i, for n – [

√
λn] + ≤ i≤ n,

, otherwise.

Then Ax /∈ �∞ and for  < ε ≤ ,


λn

∣∣{i ∈ In : |yi – | ≥ ε
}∣∣ = [

√
λn]

λn
→  (n→ ∞),

i.e., x is statistically (A,λ)-convergent to . But


λn

∑
i∈In

|yi – |q � ,

i.e., x is not strongly (A,λq)-convergent to the limit .
(b) Suppose x = (xk) is bounded and statistically (A,λ)-convergent to L. Then |xk – L| ≤

M for all k, whereM > . For ε > , we have


λn

∑
k∈In

|yi – L|q =

λn

∑
i∈In

|yi–L|q≥ε

|yi – L|q + 
λn

∑
i∈In

|yi–L|q<ε

|yi – L|q

≤ M
λn

∣∣{i ∈ In : |yi – L| ≥ ε
}∣∣ + εq.

Hence xk −→ L[A,λ]q if x is statistically (A,λ)-convergent to L.
This completes the proof of the theorem. �
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