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Abstract

The estimates for the second Hankel determinant a,a, — a% of the analytic function
f(2)=z+ a7 +a3z> + - - -, for which either zf'(2)/f(2) or 1 + zf”(2)/f'(2) is subordinate
to a certain analytic function, are investigated. The estimates for the Hankel
determinant for two other classes are also obtained. In particular, the estimates for the
Hankel determinant of strongly starlike, parabolic starlike and lemniscate starlike
functions are obtained.

MSC: 30C45;30C80

1 Introduction

Let A denote the class of all analytic functions
f@)=z+az* +a3z> +--- )

defined on the open unit disk D := {z € C: |z| < 1}. The Hankel determinants H,(n) (n =
1,2,...,49=1,2,...) of the function f are defined by

ay Aps1 Apig-1
Apsl Apy2  * - Apig
H,(n):= i ) . (a1 =1).
Apig-1  OAniqg Aps2g-2

Hankel determinants are useful, for example, in showing that a function of bounded char-
acteristic in D, i.e., a function which is a ratio of two bounded analytic functions with its
Laurent series around the origin having integral coefficients, is rational [1]. For the use of
Hankel determinants in the study of meromorphic functions, see [2], and various prop-
erties of these determinants can be found in [3, Chapter 4]. In 1966, Pommerenke [4]
investigated the Hankel determinant of areally mean p-valent functions, univalent func-
tions as well as of starlike functions. In [5], he proved that the Hankel determinants of

univalent functions satisfy

|Hq(n)| < K (3+P)a+3 n=12,...,4=2,3,...),
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where 8 >1/4000 and K depends only on g. Later, Hayman [6] proved that |H,(1)| < An'/?
(n=1,2,...; A an absolute constant) for areally mean univalent functions. In [7-9], the es-
timates for the Hankel determinant of areally mean p-valent functions were investigated.
ElHosh obtained bounds for Hankel determinants of univalent functions with a positive
Hayman index o [10] and of k-fold symmetric and close-to-convex functions [11]. For
bounds on the Hankel determinants of close-to-convex functions, see [12—14]. Noor stud-
ied the Hankel determinant of Bazilevic functions in [15] and of functions with bounded
boundary rotation in [16—19]. In the recent years, several authors have investigated bounds
for the Hankel determinant of functions belonging to various subclasses of univalent and
multivalent functions [20-27]. The Hankel determinant H,(1) = a3 — a3 is the well-known
Fekete-Szego functional. For results related to this functional, see [28, 29]. The second
Hankel determinant H,(2) is given by Hy(2) = ayas — a3.

An analytic function f is subordinate to an analytic function g, written f (z) < g(z), if there
is an analytic function w: D — D with w(0) = 0 satisfying f(z) = g(w(z)). Ma and Minda
[30] unified various subclasses of starlike (5*) and convex functions (C) by requiring that
either of the quantity zf’(z)/f(z) or 1 + zf”(2)/f'(z) is subordinate to a function ¢ with a
positive real part in the unit disk D, ¢(0) = 1, ¢’(0) > 0, ¢ maps D) onto a region starlike
with respect to 1 and symmetric with respect to the real axis. He obtained distortion,
growth and covering estimates as well as bounds for the initial coefficients of the unified
classes.

The bounds for the second Hankel determinant H(2) = aya4 — a3 are obtained for func-
tions belonging to these subclasses of Ma-Minda starlike and convex functions in Sec-
tion 2. In Section 3, the problem is investigated for two other related classes defined by
subordination. In proving our results, we do not assume the univalence or starlikeness of
¢ as they were required only in obtaining the distortion, growth estimates and the convo-
lution theorems. The classes introduced by subordination naturally include several well-
known classes of univalent functions and the results for some of these special classes are
indicated as corollaries.

Let P be the class of functions with positive real part consisting of all analytic functions
p: D — C satisfying p(0) =1 and Rep(z) > 0. We need the following results about the
functions belonging to the class P.

Lemma 1 [31] Ifthe function p € P is given by the series

p@)=l+cz+cz? +c32° +---, (2)
then the following sharp estimate holds:

leal <2 (n=1,2,...). 3)
Lemma 2 [32] Ifthe function p € P is given by the series (2), then

20 =} +x(4-c}), (4)

deg=c} +2(4-c})ax—c(4-c)x* +2(4 - ) (1 - 1)z (5)

for some x, z with |x| <1and |z| <1.
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2 Second Hankel determinant of Ma-Minda starlike/convex functions

Subclasses of starlike functions are characterized by the quantity zf’(z)/f (z) lying in some
domain in the right half-plane. For example, f is strongly starlike of order g if zf'(z)/f (z)
lies in a sector |argw| < Bmr/2, while it is starlike of order « if zf’(z)/f(2) lies in the half-
plane Rew > .. The various subclasses of starlike functions were unified by subordination
in [30]. The following definition of the class of Ma-Minda starlike functions is the same

as the one in [30] except for the omission of starlikeness assumption of ¢.

Definition 1 Let ¢ : D — C be analytic, and let the Maclaurin series of ¢ be given by
9(2)=1+Biz+Byz* + B3z’ +--+  (B,B, €R,B;>0). (6)

The class S*(¢) of Ma-Minda starlike functions with respect to ¢ consists of functions
f € A satistying the subordination

zf'(2)

@ v

For the function ¢ given by ¢, (z) := (1 + 1 — 20)z)/(1 — 2) , 0 < ¢ <1, the class S*(«) :=
S*(¢y) is the well-known class of starlike functions of order «. Let

(et 2 (1 Lt Vz >
z):=1+—1lo .
PPAR 72 gl—ﬁ

Then the class

Sp = S*(ppar) = {f eA: Re(zf/(z)> >

f(2)

#'(2) 1‘ }
f@)

is the parabolic starlike functions introduced by Renning [33]. For a survey of parabolic
starlike functions and the related class of uniformly convex functions, see [34]. For
0 < B <1, the class

ss(22)) - el 5]

is the familiar class of strongly starlike functions of order . The class

/ 2
S;=8"(V1+2)= {feA: ‘(ij:(g)) _1‘ <1}

is the class of lemniscate starlike functions studied in [35].

Theorem 1 Let the function f € S*(¢) be given by (1).
1. If By, By and Bs satisfy the conditions

|Bo| <By,  |4B\Bs-B{-3B3|-3B; <0,
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then the second Hankel determinant satisfies

ey -] < 2.
2. If By, By and Bs satisfy the conditions
|By| > By, |4B,Bs — B — 3B3| — By|B,| - 2B} > 0,
or the conditions
|B,| < By, |4B,B; — B} — 3B3| - 3B} > 0,
then the second Hankel determinant satisfies
|azas — a3 < é |4B,B; - B} - 3B3|.
3. If By, By and Bs satisfy the conditions
|By| > By, |4B\B; - Bf - 3B3| - By|B,| - 2B? <0,

then the second Hankel determinant satisfies

s — 2| < zif 3|4B,B; — Bf —3B3| — 4B,|B,| + 4B} — B3
1= 12 |4B,B3 — B —3B3| — 2B, |B,| - B?

Proof Since f € S*(¢), there exists an analytic function w with w(0) = 0 and |w(z)| <1in D

such that
')
= . ,
f) v (w2) 7)
Define the functions p; by
1
pi(2) = +wie) =l+cz+ez+--,
1-w(z)

or, equivalently,

— 2
W(Z):Zg+i :%(Cl“ (CZ‘CEI)Z“'“)- (8)

Then p; is analytic in D with p1(0) = 1 and has a positive real part in D. By using (8) together
with (6), it is evident that

pi(z) -1 1 1 d\ 1, 5\,
———— ) =1+ =Biaz+ | =Bilca— = )|+ =By |Jz" +---. 9
(p<p1(Z)+1 AR PRGNS M ©
Since
zf'(z
/@ _ 1+ asz + (=aj3 +2a3)z* + (3as — 3azas +a3)z> + -+, (10)

f(2)
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it follows by (7), (9) and (10) that

o = B
N
@ = LBl =B+ B2)G + 2B1cs)
1

as= ¢ [(=4B> + 2By + B} - 3B} + 3B, B, + 2B3)c}

+2(3B} — 4B, +4B)cic; + 8Bics .

Therefore

B B} B 3B2
ardy — a% = i I:c;L <——1 + 22 — By +2B3 — —2> + ZCch(Bz —B1) +8Bjcic3 — 6Blc%:|.

2 2 2B;
Let
dl = 831, dg = 2(32 —Bl),
B B 3B2
d3=-6B),  dy=——+——By+2B3— —=2, 11
3 1 4 ) + 5 2 + 2D3 2B, (11)
B
T=22,
96
Then
|ﬂz(l4 - 6l§| = T|d1C1C3 + dzC%Cz + dgC% + d4Cf|. (12)

Since the function p(e?z) (6 € R) is in the class P for any p € P, there is no loss of gener-
ality in assuming ¢; > 0. Write ¢; = ¢, ¢ € [0, 2]. Substituting the values of ¢, and c3 respec-
tively from (4) and (5) in (12), we obtain

|azas - a3| = £|c4(d1 +2dy + ds + 4dy) + 2xc* (4 — ¢*)(dy + d + ds)

+ (4 - c2)x2 (—d1c2 +d3 (4 - cz)) + 2d1c(4 - cz)(l - |x|2)z|.

Replacing |x| by i and substituting the values of d;, ds, d3 and d, from (11) yield

2

B
2B} + 8B; — 63—2 +4|By|uc* (4 - )
1

T
lazas - a2 < 2[64

+u*(4 - *)(2B1c* +24B,) +16Bic(4 - ¢*) (1 - ,ﬁ)}

4 B2
= T|:CZ —2B? + 8B3 — 63% +4Bic(4 - cz) + B (4 - cz),uc2
1
B
+ 71,3(4 ~*)(c-6)(c- 2)}

= F(c, ). 13)
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Note that for (¢, 1) € [0,2] x [0,1], differentiating F(c, 1) in (13) partially with respect to
W yields

% =T[I1B2](4 - ¢*) + Bin(4 - ) (c - 2)(c - 6)]. (14)

Then, for 0 < ¢ < 1 and for any fixed ¢ with 0 < ¢ < 2, itis clear from (14) that % > 0, that is,
F(c, 1) is an increasing function of u. Hence, for fixed ¢ € [0, 2], the maximum of F(c, )
occurs at u =1, and

max F(c, u) = F(c,1) = G(c).

Also note that

B [c* 3 B% 2
Glc) = — [Z (‘—231 +8B3 — 6B— —4|By| - 2B1> +4c*(IBy| - By) + 2431].
1

T 96
Let
1 3 B)
P==(|-2B} +8B; - 6=2| - 4|B,| - 2B, ),
4 B,
Q= 4(|Bz| —Bl): (15)
R =24B;.
Since
Q.
R; QSOyPS_Zy
max (Pt*+ Qt+R) = {16P+4Q+R, Q=0,P=-JorQ=0,P=-%; (16)
T 4PR-Q? Q
4P ’ Q>O:P§__;
we have
R, Q=<0,r<-%
B
aas~a3] < S 116P+4Q+R, Qz0,P=-%0rQ=0,P=-%
4PR-Q* Q
P Q>0,P<-3,
where P, Q, R are given by (15). |

Remark 1 When B; = B, = B3 =2, Theorem 1 reduces to [24, Theorem 3.1].

Corollary 1
L. Iff € S*(a), then |azas — a3| < (1-«a)>.
2. Iff €S, then |ayas — a?| <1/16 = 0.0625.
3. Iff €S;, then |ayay — a3| <16/n* ~ 0.164255.
4. Iff € S}, then |azas — a3| < p*.

Page 6 of 17
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Definition 2 Let ¢ : D — C be analytic, and let ¢(z) be given as in (6). The class C(¢) of
Ma-Minda convex functions with respect to ¢ consists of functions f satisfying the subor-

dination

Zf” ( Z) .

@ ¢(2).

1+

Theorem 2 Let the function f € C(¢) be given by (1).
1. If By, By and Bs satisfy the conditions

B? +4|B,| - 2B, <0, |6B1B3 + B{B, — Bf —4B3| - 4B} <0,

then the second Hankel determinant satisfies

e -] = 20
2. If B1, By and Bs satisfy the conditions
B} +4|By|-2B; >0,  2|6BB; + B{By - B} — 4B3| - B} — 4B,|B,| - 6B} > 0,
or the conditions
B} +4|B,| -2B; <0, |6B1B; + BiB, — Bf — 4B3| - 4B} > 0,

then the second Hankel determinant satisfies

|azas — aj| < ﬁ|68133 + BB, — B} - 4B3|.

3. If By, By and Bs satisfy the conditions
B} +4|By| -2B, >0,  2|6BiBs + BB, - B — 4B3| - B} - 4By|B,| - 6B; <0,
then the second Hankel determinant satisfies
16|6B1B3 + BiBy — B} — 4B3| — 12B} — 48B,|B,|
B? —36B? - Bf — 8B?|B,| — 16B3

2 1
ardy —as| < ——
24— | = |6B,B; + B*B, — B — 4B%| — B} — 4B, |B,| - 2B

Proof Since f € C(g), there exists an analytic function w with w(0) = 0 and |w(z)| <1in D

such that
Zf”(Z)
1+ =" = p(w(z)). (17)
f(@ (W)
Since
1"
7@ =1+2ayz + (—461% + 6a3)z2 + (86{3 —18aya3 + 12614)23 e, (18)

)

Page 7 of 17
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equations (9), (17) and (18) yield

a4 = Blcl
2= 4 )
1
as = ﬂ[(B% —Bl +B2)C% + 231C2],

ay = 192[( 4By + 2B, + B} = 3B} + 3B\ B, + 2B3)c}
+ 2(33% - 4-31 + 4BZ)C162 + 831C3].
Therefore
2 B ct 2B+ 2B 133 132 L g8, 428, — B2
axds — Az = —— =By + - = —Bi + + - =
2 a3 = geg |\ T3 T3 T3 T 3 T g 3331
2 16
+ gcch (Bf —4B; + 4-32) + 8Bjcic3 — EBIC§:|.
By writing

2
dl = 831, dg = g(B% — 431 + 432),

d 163 d 43 23 13 32 BB 2B 4B; (19)
=-—2~5y, =——By+ B - + + - ==
3 3 1 4 3 2 3 1 3 3 3 1D2 3 3B1
- 768’
we have
| 2| _ 2 2 4
aradyg — 6l3| = T|d1C1C3 + d2C1C2 + dng + d4C1 | (20)

Similar as in Theorems 1, it follows from (4) and (5) that

|azas — a3| = £|c4(d1 +2dy + ds + 4dy) + 2x¢* (4 — ¢*)(dy + d + ds)
+ (4 - cz)x2 (—d162 +d3 (4 - 62)) + 2dlc(4 - 02) (1 - |x|2)z’.
Replacing |x| by i and then substituting the values of d;, ds, ds and dj4 from (19) yield

4 . 4 16 B3
B + Ble+833———
3 3 3 B

T
s —ad] < |

2 , 8
+2uc*(4-c) <§B% +3 |Bz|)
+u*(4-c%) (231& + 63—431> +16Byc(4 - c*)(1- MZ)]

A
=T —
E

+ ;,uc ( )(BZ+4|BZ|)

3 B;
_Bl + BlB2 + 633 —-4—=
B,

+ 4Blc(4 - c2)

Page 8 of 17
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2B;

+ ?uZ(ZL - cz)(c—4)(c— 2)]

= F(c, ). (21)

Again, differentiating F(c, 1) in (21) partially with respect to u yields

2

OF _ T[%(AL—CZ)(Bf +4[By|) + %Blu(él —cz)(c—4)(c—2):|. (22)

@_

It is clear from (22) that % > 0. Thus F(c, ) is an increasing function of p for 0 < u <1

and for any fixed ¢ with 0 < ¢ < 2. So, the maximum of F(c, 1) occurs at u =1 and

max F(c, u) = F(c,1) = G(c).

Note that
ct B?
_7| < 3 Dy 2
G(C)—T|:3 (‘_Bl +BIBZ+6B3_4B —Bl—4|B2|—2Bl)
1
4 64
+=c*(B} +4|By| - 2By) + —B |.
3 3
Let

L s B
P=- —Bl+BlBg+6Bg—4—
3 B,

—B%—4|Bz|—2Bl>,

4

Q=3 (Bi +4IBy| - 2By), (23)
64

R=—2~;.
3

By using (16), we have

R, Q=<0,P<-%
B
a2a4—a§ Eﬁ 16P +4Q + R, QzO,Pz—%ongO,Pz—%;
4PR-Q> Q
4P ) Q>01P§_§1
where P, Q, R are given in (23). O

Remark 2 For the choice of ¢(z) = (1+2z)/(1-2z), Theorem 2 reduces to [24, Theorem 3.2].

3 Further results on the second Hankel determinant
Definition 3 Let ¢ : D — C be analytic, and let ¢(z) be as given in (6). Let 0 <y <1and
7 € C\ {0}. A functionf € Aisin the class R, () if it satisfies the following subordination:

1+ %(f’(z) +yzf"(2) - 1) < p(2).

Page9of 17
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Theorem3 Let0 <y <1,7 € C\ {0}, and let the function f as in (1) be in the class R, ().
Also, let

8 (1L+y)1+3y)
T9 (1+2y)2

1. If B1, By and Bs satisfy the conditions
2(B,|(1-p) +Bi(1-2p) <0,  |BiBs—pB3| - pB} <0,

then the second Hankel determinant satisfies

2 |T|ZB%
arays —as| < ——————.
| 20 3| 9(1+2y)?

2. If By, By and Bs satisfy the conditions
21By|(1-p) + Bi1-2p) >0,  2|BiBs - pB3| - 2(1- p)Bi|By| - B; > 0,
or the conditions
2|By|(1-p) + Bi1-2p) <0,  |BiBs—pB3|-B} >0,

then the second Hankel determinant satisfies

2
|a2a4 —a§| < ngBl —pB§|.
8(1+y)1+3y)

3. If B, By and Bs satisfy the conditions
21B;|(1-p) + Bi(1-2p) >0, 2|BiB; - pB3| - 2(1-p)Bi|By| - B} <0,
then the second Hankel determinant satisfies

st = B
2T =30+ y)1+ 3y)

4p|B3B; - pB3| — 4(1 - p)Bi[|B,|(3 - 2p) + B1]
- 4B%(1-p)> - B}(1-2p)*
|B3By — pB3| - (1 - p)B1(2|B,]| + By)

Proof For f € R}, (¢), there exists an analytic function w with w(0) = 0 and [w(z)| <1in D
such that

1+ %(f/(z)+yzf//(z)—1) =(p(w(z)), (24)

Page 10 of 17
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Since f has the Maclaurin series given by (1), a computation shows that

1+ %(f’(z) +yzf"(z) - 1)

2a5(1+y) 3as(1+2y) , 4as(1+3y)
+ zZ+ z°+
T T T

e, (25)

It follows from (24), (9) and (25) that

‘L’BICI
a) = s
T4+ y)
B B
a3 = —— 2c) + ¢ 2_1)|,
12(1 +2y) B
T
as = ——[Bi(4cs — deien + S3) + 2Bocy (2¢5 — ) + B 3.
4 32(1+3y)[ 1( 3 1C2 1) 21( 2 1) 31]
Therefore
a2a4—a§
‘C2B101
= By (4cs — 4deren + &3 + 2Byci (2¢5 — ¢2) + B3
128(1+y)(1+3y)[ 146 —dares +6) + 2Brr (262~ ¢7) + Bycy
2p2 B 2 B
S - 4¢3 + ¢} 21 +4cyc 21
144(1 + 2y)? B, By
72B? 2B,c? B
- 1 (4cies —4cier +¢f) + 21(202—cf)+—3c‘1L
8(1+y)1+3 B 2 B
——M 4ea + ¢t 21 +4cyc? 21 )
9 (1+2]/)2 Bl Bl
which yields

B B > B
’a2ﬂ4 —a§| =T|4cic3 +cf|:1—ZB—j —p<B—j —1) + B—j] —4pc§

B, B,
—dce|1- = +p| - -1) ||, 26
0162[ B +p(31 ﬂ (26)
where
|t|>B} 8(1+y)1+3y)
= and p=-——F"——-=
128(1 +y)(1 +3y) 9 (1+2y)?
It can be easily verified that p € [%, %] for0<y <1
Let
B, B,
dy=4, dy=-4[1-— —-1)|,
' ’ |: B p(Bl >]
(27)

Page 11 of 17
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Then (26) becomes
’ﬂ2ﬂ4 - a§| = T|d16103 + dgcfcz + dgC% + d;;cﬂ. (28)
It follows that

|ﬂz(l4 - 6l§| = £|C4(d1 + 2d2 + d3 + 4d4) + 29662(4 - 62)(d1 + dz + dg)

+ (4 - cz)x2 (—d162 +d3 (4 - 62)) + 2dlc(4 - 02)(1 - |x|2)z’.

Application of the triangle inequality, replacement of |x| by « and substituting the values
of dy, dy, d3 and d, from (27) yield

B B2 B
B ’B|"°B

|a2a4 - a§| < g |:4c4 ,(,ch (4 - c2) 1-p)

b (4 )u2(ac + dp(4 - ) + 8e(d - ) (1 - MZ)}

= T|:c4

s (a- ) - p)(C—a)(C—ﬂ)}

B; 2
B 'R

+2c(4-c%) + Zu’% F(4-c)1-p)

1

= F(c, 1), (29)
wherea =2, 8=2p/(1-p) > 2.
Similarly as in the previous proofs, it can be shown that F(c, 1) is an increasing function

of u for 0 < u < 1. So, for fixed c € [0, 2], let

max F(c, u) = F(c,1) = G(¢),

which is
Bg B2 BZ
Glo) =T |=-p=2|-1-p)2]=]|+1
a-riel[5 vz -0 (5]
2 B,
+4c 2E(I—p)+1—2p +16p;.
1
Let
B _ B a-p(2/22] 1
=|— —=—-p—| — - — | + N
B Ip P\,
B,
Q:4|:2‘B— (1—p)+1—2p], (30)
1

R =16p.
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Using (16), we have

R, Q=<0,P=<-%

|asas —a3| <T{16P+4Q+R, Q=0,P>-20rQ<0,P>-%
4PR-Q? Q
4D ’ Q>O)PS_§:

where P, Q, R are given in (30).

O

Remark 3 For the choice ¢(z) := (1 +Az)/(1 + Bz) with -1 < B< A <1, Theorem 3 reduces

to [36, Theorem 2.1].

Definition 4 Let ¢ : D — C be analytic, and let ¢(z) be as given in (6). For a fixed real

number ¢, the function f € Ais in the class G, (¢) if it satisfies the following subordination:

1-a)f'(z) + a(l + i;{/(i?) < ¢(2).

Al-Amiri and Reade [37] introduced the class G, := G,((1 + 2)/(1 — 2z)) and they showed
that G, C S for « < 0. Univalence of the functions in the class G, was also investigated in

[38, 39]. Singh et al. also obtained the bound for the second Hankel determinant of func-

tions in G,. The following theorem provides a bound for the second Hankel determinant

of the functions in the class G, (¢).

Theorem 4 Let the function f given by (1) be in the class G,(p), 0 <« < 1. Also, let

_§(1+2a)
P=y Ql+a)’

1. If B1, By and Bs satisfy the conditions

B2a(3-2p) + 2|By|(1 + @ — p) + Bi(1 + o — 2p) < 0,

|B‘fa(2a -1-pa)+ aB%Bg(S —2p) + (@ +1)B1B3 —pB% —pr <0,

then the second Hankel determinant satisfies

B}

2 1
ardy —a3| < ————.
[azas 3|—9(1+o¢)2

2. If Bi, By and Bs satisfy the conditions
Bfa(3 -2p) +2|By|(1+a —p) + Bi(1 +a —2p) >0,
2|Bia(20 — 1 - par) + aBIBy(3 — 2p) + (o + 1)B1 B3 — pB3 | — Bl (3 - 2p)
—2(1+a—-p)By|By| — (@ + 1)B? > 0,
or

Bla(3-2p) +2|By|(1+ @ —p) + Bi(1 + a — 2p) <0,

|Bia(2a =1 - pat) + aB}B,(3 - 2p) + (a + 1)B1B3 — pB3| - pB} > 0,

Page 13 of 17


http://www.journalofinequalitiesandapplications.com/content/2013/1/281

Lee et al. Journal of Inequalities and Applications 2013, 2013:281 Page 14 of 17
http://www.journalofinequalitiesandapplications.com/content/2013/1/281

then the second Hankel determinant satisfies

|Bia(2a —1 - par) + aBIBy(3 - 2p) + (a + 1)ByBs — pB3|
8(1+a)(1 +2a) '

|ﬂ2ﬂ4 - ﬂ%’ =
3. If By, By and Bs satisfy the conditions

Bia(3-2p) +2|By|(1+a —p) + Bi(1 + @ —2p) >0,
2|Bfa(2e — 1 - par) + B} By (3 - 2p) + ( + 1)B1 B3 — pB3| — Bjat(3 - 2p)

-2(1+a - p)Bi|By| — (@ +1)B} <0,
then the second Hankel determinant satisfies

@z - |
2
B
T 32(1 + )1 + 2a)

A [B2a(3-2p) +2|Ba|(1 + o — p) + Bi(1 +  — 2p)]?
X p—
|Bla(2a —1 - pa) + aB2B,(3 — 2p) + (o + 1)B1 B3 — pB3|
- B}a(3-2p) — (1+a —p)Bi(2|B,]| + By)

Proof For f € G, (), a calculation shows that

P

= T|4(1 + &)Bycics + ¢} [—san +a(2a —1)B? + Bi(1 + a) + 3aB,B,

B? — B + B,)?
+(1+ a)(Bs —2B,) —p%] — 4pBlc§
1
+2cica[-2(1 + &)By + 3aB} +2(1 + a)By — 2p(aB} - By + By) ]|, (31)
where
B; 8 (1+2x)

To— ' and p== .
1280+a)1+20) ¢ PR 0 )

It can be easily verified thatfor 0 <o <1,p e [%, %]. Let

di =41 +a)By,

dy = 2[—2(1 +o)By + BaB% +2(1+a)By - 2p(aB% — B + Bz)],
ds = —4pBy, (32)
dy = -3aB} + a(2a —1)B} + B;(1 + &) + 3aB, B,

(aB? — By + By)?

+(1+(X)(Bg—232)—p B
1
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Then
|a2a4 - a§| = T|d1€1C3 + dzC%Cz + dgc% + d4cf|.
Similarly as in earlier theorems, it follows that

’ﬂ2ﬂ4 - a§| = £|C4(d1 +2dy +ds + 4dy) + 2xcz(4 - 02)((,11 +dy +d3)
+(4 =) (—dic® + d3(4 - 2)) + 2drc(4 - ) (1 - |x*)z]

< T[c4 Bla(20 — 1 - pa) + aB1By(3 - 2p)

2

B
+ (a +1)Bs —pB—2 +uc*(4-c*)[Bia(3 -2p)
1

+2[Bo|(1+ & = p)] +2¢(4 - *)Bi(1 + )
+u1*(4-)Bi(l + o —p)(c - 2)<c_ 2—17)}
l+ta-p

= F(c, ),

and for fixed ¢ € [0, 2], max F(c, 1) = F(c,1) = G(c) with

2

B
Bfa(2a —1-pa)+aBiBy(3-2p) + (o +1)B; —p—2

Glc) = T|:c4|: B,

—Bla(3-2p) - (1 +a—p)(2|By| + Bl):| + 4c2[Bfa(3 - 2p)
+2[By|(L+a —p) + Bi(1+ o —2p)] + 16pBl:|.

Let

BZ
P= Bfoz(Zoz —1-pa)+aBBy(3-2p) + (o +1)Bs —pB—2
1

- Bia(3-2p) - (1+a - p)(2|By| + By),
Q=4[Bja(3-2p) +2[Bs|(1 +a - p) + Bi(1 + & — 2p)],

R =16pB.

By using (16), we have

R, Q=<0,P<-%

aray —a3| <T {16P+4Q+R, Q=0,P>-%0rQ=<0,P>-%
4PR-Q? Q
Ty Q>07P§_§7

where P, Q, R are given in (35).

(33)

(34)
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Remark 4 For « =1, Theorem 4 reduces to Theorem 2. For 0 <a <1, let ¢(z) :== (1 + (1 -
2a)z)/(1 — z). For this function ¢, B; = B, = B3 = 2(1 — ). In this case, Theorem 4 reduces
to [40, Theorem 3.1].
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