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1 Introduction

As it is known, fixed point theory is one of the oldest and most famous theory in math-
ematics, and it has become an important tool for other areas of science such as approxi-
mation theory, statistics, engineering and economics.

Among hundreds of fixed point theorems, the Banach contraction theorem [1] is par-
ticularly well known due to its simplicity and usefulness. It states that any contraction
mapping of a complete metric space has a unique fixed point.

In 2004, the Banach contraction principle were extended to metric space endowed with
partial order by Ran and Reuring [2]. They pointed out that the contractivity condition on
the nonlinear and monotone map is only assumed to hold on elements which are com-
parable in the partial order. Afterward, Nieto and Rodriguez-Lopez [3] extended results
of Ran and Reuring for non-decreasing mapping and studied existence and uniqueness of
first-order differential equations.

In 2006, by following the above mentioned trend, Bhaskar and Lakshmikantham [4] in-
troduced mixed monotone property and gave their coupled fixed point theorem for map-
pings with mixed monotone property. Also, they produced some applications related with
the existence and uniqueness of solution for a periodic boundary value problem. This work
of Bhaskar and Lakshmikantham has attracted the attention of many researchers. The con-
cept of coupled fixed point for various contractive type mappings was studied by several
authors [5-10]. Lakshmikantham and Ciric [11] extended the results of [4] for monotone
non-linear contractive mapping and generalized mixed monotone concept. Berinde and
Borcut [12] introduced tripled fixed point theorem for non-linear mapping in partially or-
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dered complete metric space as a generalization and extension of the coupled fixed point
theorem.

Motivated by these studies, the quadruple fixed point theorem was given for different
contractive type mappings [13-16].

In this paper, we generalize mentioned trend in the above for an arbitrary positive num-
ber n, that is, we introduce the concept of n-tuplet fixed point theorem and prove some
results.

2 Main results
Let us give new definitions for our aim.

Definition 1 Let (X, <) be partially ordered set and F : X" — X. We say that F has
the mixed monotone property if F(x1,%3,%3,...,%,) is monotone non-decreasing in its
odd argument and it is monotone non-increasing in its even argument. That is, for any
X1, X2, %35 .00,%, €X
ywaeX, n=<z
= F(h,%2,%3,...,%,) < F(z1,%2,%3,..., %),
y:22€X, =<2z

= F(x1,Y2,%3,...,%,) > F(x1,20,%3, ..., %),
(2.1)

Yszn €X, Yn =<2y
= F(x1,%0,%3,...,9n) < F(x1,%0,%3,...,2,) (if nis odd),
VnrZn eX, Yn = 2y
= F(x1,%0,%3,...,9n) > F(x1,%0,%3,...,2,) (if nis even).
Definition 2 Let X be a nonempty set and F : X” — X a given mapping. An element
(%01,%2,%3,...,%,) € X" is called a n-tuplet fixed point of F if
F(x1,%0,%3,...,%,) = X1,

F(xZ;xB, e ;xn’xl) =X2,
(2.2)

F(xn)xlle) oo xxn—l) =Xn.

Definition3 Let (X, <) be partially ordered setand F : X" — X and g : X — X. We say that
F has the mixed g-monotone property if F(x;, %2, %3,...,%,) is monotone g-non-decreasing
in its odd argument and it is monotone g-non-increasing in its even argument. That is, for
any x1,X2,%3,...,%,; € X
nwa€X, ghn)=<glz)
= F(y1,%2,%3,..., %) < F(21,%2,%3,..., %),
y2,22 € X, g(ya) <g(z2)

= F(x1,Y2,%3,...,%,) > F(x1,2,%3,..., %),
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(2.3)

Y Zn €X,  gn) < g(zu)
= F(x1,%2,%3,...,Y,) < F(x1,%,%3,...,2,) (if nis odd),
YnrZn € X, g(xn)fg(yn)

= F(x1,%0,%3,...,9,) = F(x1,%0,%3,...,2,) (if nis even).
Note that if g is the identity mapping, this definition reduces to Definition 1.

Definition 4 Let X be a nonempty set and F : X” — X a given mapping. An element
(%01, %2,%3,...,%,) € X" is called a n-tuplet coincidence point of F: X" — X and g : X — X if

F(xl,xg,Jng, .. "xn) :g(xl)r

F(%2,%3,...,%,,%1) = g(%2),
(2.4)

F(xn; X1,%25 ... yx}’l—l) = g(xl’l)'
Note that if g is the identity mapping, this definition reduces to Definition 2.

Definition 5 Let (X, <) be partially ordered set and F: X" — X andg: X — X. Fand g
called commutative if

&(Flo1, 0, %3, ..., %)) = F(g(%1), g(%2), g (x3), ..., g (%)) (2.5)
for all w1, %9,%3,...,%, € X.

Let @ denote the all functions ¢ : [0,00) — [0, 00), which are continuous and satisfy
that
(i) ¢(0) <t
(ii) lim,_,, ¢(r) <t for each r> 0.
Since we want to shorten expressions in the following theorem, consider Condition 1 in
the following for X an F.

Condition 1 Suppose either
(i) F is continuous, or
(i) X has the following property:
(a) if non-decreasing sequence x; — x, then x; < x for all k,

(b) if non-increasing sequence yx — y, then y; > y for all k.

Theorem 1 Let (X, <) be partially ordered set and suppose that (X,d) is complete met-
ric space. Assume F : X" — X and g : X — X are such that F has the mixed g-monotone
property and

d(F(xl,xz,xg, e Xn), FL, Y2, 3, - - ,y,,))
<4 (d(g(xl),g(yl)) +d(g(x2),g(2)) + - + d(g(xn):g()/n))>

n

(2.6)
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Sor all x1,%2,%3,...,%, € X for which g(x1) < gn), gx2) > gW2), ..., glx,) < gyn) (f mis
odd), g(x,) > g(,) (if n is even). Assume that F(X") C g(X) and g commutes with F. Also,
suppose that Condition 1 is satisfied. If there exist xy,x3,%3, ..., %4 € X such that

2(x0) = F(x0, %6, -»4),

2.7)
g(xf) < F(xf, 20,55, ...,x57")  (if nis odd),
g(xg) > F(xg,x(l),x%, . ..,xg_l) (if nis even)
then there exist x1,%x2,X3,...,%, € X such that

F(xler’x?n LR ’xn) = g(xl);

F(?Cz,x:;, oo xxmxl) :g(x2)7

F(n,%1,%2, ..., %n-1) = g(x),
that is, F and g have a n-tuplet coincidence point.

Proof Let x},x3,x3,...,x¢ € X be such that (2.7). Since F(X") C g(X), we construct the
sequence (x}(), (xi), ..., (%) as follows:

g(x) = F (1o %51,

g(xi) = F(xim ‘e ’x}l;[—l’xllel)’

(%) = Flag 210 1)
fork=1,2,3,.... We claim that
gia) =g
g(xia) =g
(2.9)
g() <g(x) (ifnisodd),
(x) (i nis even)

g(x,) =

for all k > 1. For this, we will use the mathematical induction. The inequalities in (2.9)
hold k =1 because of (2.7), that is, we have

o) = F(sbod o) ~ (),
o) = F o)

(x5 %0, %)

Page 4 of 19


http://www.journalofinequalitiesandapplications.com/content/2013/1/196

Ertlrk and Karakaya Journal of Inequalities and Applications 2013, 2013:196 Page 5 of 19
http://www.journalofinequalitiesandapplications.com/content/2013/1/196

g(x}) < F(x},x0,%5,....x5 ") =g(») (if nis odd),

F
g(x4) = F(x, x50, ..,x4") =g(x})  (if nis even).

Thus, our claim is true for k = 1. Now, suppose that the inequalities in (2.9) hold k = m. In

this case,
g(x-1) <g(x5),
g(x1) = g(3),

(2.10)

g y) < g(x:’n) (if n is odd),
g

g(x”m_l) > (x’:,,) (if n is even).

Now, we must show that the inequalities in (2.9) hold k = m + 1. If we consider (2.8) and

mixed g-monotone property of F together with (2.10), we have

g(xi,,) = F(xin_l,xfn_l, ... ,x:’n_l)

g(x:'n) = F(x:ln—l’xm 0 »x:ln_—ll)
o o CAE Ry
< F(x” ,xin,xfn_l, . ..,x”m__ll)

< F(xL,%,x, a2, am )

WXy e
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<F(l,ahy..ni ) =g(x,)  (if nis odd),

g(x:’n) = F(x”m_l,xin_l, ... ,x:’n__ll)
z F(x:ln’xin—l""’x:ln_—ll)

> F(xlL, %y, % )

> F (XL Xy Koo X 2 X0 )
> F(xL .00 ") = g(xh,,)  (if nis even).

Thus, (2.9) is satisfied for all kX > 1. So, we have,

2g) 2 gwa) = = g(x) = g(x%),
=g() =g(i) = =g(x) =g(x),
(2.11)
> g(%k) =gl y) = 2 g(+)) = g(xg) (if nisodd),
c<g(x) <g(f) = <g()) <g(xf) (fniseven).
For the simplicity, we define
8 = d(g(xk) g (%)) + (g (x2), (%)) + -+ + d(g (7). g (x1))-
We will show that
S <1 ¢(‘l—k>. (2.12)
By (2.6), (2.8) and (2.11), we get
d(g(xllﬁl)’g(x}GZ))
= d(F (03 23, .. %), F(%h10 X015 -2 X001
- d)(d(g((xi),g(x}m))) +d(g(x7), g7, ) + - + d(g(x,’?)yg(x,’?ﬂ)))
- n
)
=9 (;k) (2.13)

d(g(xiﬂ)’g(xiﬂ))
= d(F(x5 . %0 ), F (671 K10 %01))

(d(g(xi),g(x§+1)) +o +d(gly) glwg,1)) + d(g(xi),g(x,ﬁ“)))

IA

¢

n

" (‘lk) (2.14)
n
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d(e()).¢(.2)
= A{F (e ) F (6 e 51)

- ¢<d(g((x,’i),g(xz+1))) +d(g(x) gl )+ + d(g(x,’il),g(xﬁ})))

n

= ¢<5—k> (2.15)
n

Due to (2.13)-(2.15), we conclude that

A(g(%11),8(¥1.12)) + A(g (1) 8 (¥.2)) + -
" n S
+d(g(x%),8(%12)) < ”¢(;)- (2.16)
Hence, we get (2.12).
Since ¢(¢) < t for all £ > 0, then 8,1 < nqb(%k) <n- %" =8 for all k € N. So, (§;) is mono-
tone decreasing. Since it is bounded below, there is some § > 0 such that

lim 8 = 5+. (2.17)

k— o0

We want to show that § = 0. Suppose that § > 0. Then taking the limit as §x — 6+ of both
sides of (2.12) and keeping in mind that we assume that lim,_,,, ¢(r) < ¢ for all £ > 0, we

have
. . Ok . Sk 1)
§ = lim 8,1 < lim n~¢><—> =n lim ¢(—) <n—=34§ (2.18)
k—o00 k—o00 n Sx—>d+ n n
which is a contradiction. Thus, § = 0, that is
lim (d(g(x),8(xi1)) + d(g(x7), g (x51)) + -+ + d(g(x%),£(x,1))) = 0- (219)

k—o00

Now we prove that g(x}),g(x7), ...,g(x}) are Cauchy sequences. Suppose that at least one
of g(x;),g(x7),...,g(x}) is not Cauchy. So, there exists an & > 0 for which we can find sub-
sequence of integer j(k), [(k) with j(k) > (k) > k such that

b = (g (%) & (x1)) + (e (50). 8 (¥iw)) + -+ + dle () 8 (i) z . (2:20)

Additionally, corresponding to j(k), we can choose (k) such that it is the smallest integer
satisfying (2.20) and j(k) > /(k) > k. Thus,

d(g (% 1) 8 (i) + (€ (p 1) & (Wiwy)) + -+ + (g (X 1) & (7)) < & (2.21)

By using triangle inequality and having (2.20) and (2.21) in mind
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o0+ d(g (W) & (Wi 1)) + (e (i) & (%1ix))
< d(g(xiw) & (Wiw1)) + d(e (i) g (1))
o+ d(g (W) & (W) + &
< Sjy1 + £ (2.22)

Letting k — o0 in (2.22) and using (2.20)

Jim g = lim [d(g(xg0). 8 (%)) + (e (i), (i) + - + (e (i), (i) ]

=&+, (2.23)

We apply triangle inequality to (2.20) as the following.

te = d(g(xj) &) + (e (%0 (%ice)))
+ o+ d(g (%) € ()
< d(g(%jw) & (®iw1)) + A€ (K1) & (1)) + (& (¥igy.1), 8 (%ige)))
+d(g ()8 (%)) + A& (iay1) i) + (e (¥ie)1)- & (¥i))

+d(g (%), 8(en)) + A& (xfn) & (xiwyn)) + A€ (o). (i)
)

< 81 + S + d(g (x;l ,g( )) d(g (xj(k)+1)’g(xl(k)+1))
+d(g (%) & Xy 1)) - (2.24)
Since j(k) > I(k), then

(2.25)

g(xi(k)) z g(xl(k)) (if n is odd),

n

g(xj(k)) fg(xl(k)) (if 7 is even).
So, from (2.25), (2.8) and (2.6), we get
d(€(%jay1) & (*igy))
= d(F (x4, %1y - - %10 F (Xaop X1y - ¥liay))

< ¢(§[d<g<x}<k)>,g< )+l glot) -+ dlelef )¢ )])

(

SHES

) 229
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(2 (®e) & (%))
n 1

= d(F (x> % X0 F (Kl -+ ¥l 100
<o Slleloh)¢lste) + -+ el eloto) + dleloto)elsho)]

?>, (2.27)
n

d(g (x,”(km),g (x?'(k)n))

= d(F(xﬁk)'x}<k)"wxjn@)l)’F(x?(k)’x}(k)’""x;q(l)l))

= ¢<%[d(g(xjn(k))’g(x7(k))) +d(g(xiw) &(xi)) + - + d(g(xﬁk;)’g(xﬁk}))])

_¢ (t—k> (2.28)
n
Combining (2.24) with (2.26)-(2.29), we get

b < jky+1 + Siry+1
+d(g(%j40.1) & (¥l 1)) + A€ (1) & (¥ 1))
Tt d(g(x/’;k)+1)’g(x7(k)+1))

173
< 841 + Qi1 HEx + 1 ¢(;>
173
< Sjk)+1 + Supye1 + 11 - e (2.29)

Letting k — 00, we obtain a contradiction. This show that g(x}), g(x7), .. .,g(x}) are Cauchy
sequences. Since X is complete metric space, there exist x',x2,...,x" € X such that

li 1) = &1, li 2) =42, li ") = & 2.30
i) . st = fm ) - 030
Since g is continuous, (2.30) implies that

Jim gle(e) =a(e), i g(e() () .o

(2.31)
Jim g(g(x¢)) = g(+")-
From (2.10) and by regarding commutativity of F and g
2(8(®kn)) = (F (%o 0a7)) = Fe(xi) g(%2), -2 (%)),
2(e(xin)) = g(F %)) = Flg (@), 8(x7). (1)),
(2.32)
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We shall show that

F(x"a,..,x") = g(+").
Suppose now, (i) holds. Then by (2.8), (2.32) and (2.30), we have

g(x) = kgrgog(g(x}ﬁl)) = kli)rgog(l-"(x,l(,x,%,...,x,’j))
= lim F(g(x),g (), 8(%7))
- F(kli)n;og(x,l(),kli)n;og(xﬁ), B ’klglc}og(x;z»
= F(xl,xz, . ..,x"). (2.33)

Analogously,

2(**) =g(e(xt,1)) = Jim g(F (..o %))
= lim F(g(x7),...,g (%) 8(x1))
B F(klirrgog(x,%), o klingog(xﬁ), kl;n;()g(x,ﬂ))

=F(x*,...,x" "), (2.34)

g(x") =g(e(x.)) = Jim g(F(«",x',...,.2"™))
= lim F(g(x),g(xk),-- - 8(%7))

:F( lim g(xZ),klirglog(xi),...,klirgog(xz_l)>

k— 00

=F(x",x',...,x"). (2.35)

Thus, we have

g(*") = F(«",%',...,a" ).

Suppose now the assumption (b) holds. If # is odd since g(xi), @), g(x}) are non-
decreasing and g(x7), g(x7),...,g(x}") are non-increasing, if 7 is even since g(x}), g(x3), . ..,
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g(x") are non-decreasing and g(x7), g(x7), ..., g(x}) are non-increasing and by considering

glxp) = xb, gxf) — &%, ..., g(x}) — " we have
glxg) =" g(xf) <%, v gg) =& (if nisodd), (.36
g(xZ) >x" (if nis even)
for all k. Thus, by triangle inequality and (2.32)
d(g(xl),F(xl,xz, ,x"))
<d(g(x').g(g(¥in)))
+d(g(glon) Fl o, 4")))
=d(e(+').g(g(xin)))
o ;llelelot) ) + dlele(sD) )
o valele(e)e)]) @37

Letting k — oo implies that d(g(x!), F(x!,x2,...,%")) < 0. Hence, g(x!) = F(x',4%,...,x").

Analogously, we can get that

Thus, we proved that F and g have a n-tuplet coincidence point. d

Corollary 1 The above theorem reduces to Theorem 2.1 of [2] for n =1 and g(x) = x if (i) is
satisfied and ¢(t) = ct where c € (0,1).

The following corollary is a generalization of Corollary 2.1 in [11] and Theorem 2.11in [4].

Corollary 2 Let (X, <) be a partially ordered set and suppose that (X, d) is complete metric
space. Suppose F : X" — X and there exist ¢ € ® such that F has the mixed g-monotone
property and there exist a m € [0,1) with

o (F(x'x%,....8"), F(¥",57% ... 0"))
= Z[d(e(x).(") +d(g(+).8(") + - +d(g(").g("))] (238)
Sorall x',x%,...,x", y%,9%,...,9" € X for which g(x') < g(b"), gx?) > g(¥?), ..., gx") < g(y")

(if n is odd), g(x") > g(y") (if n is even). Assume also Condition 1 holds, and assume that

F(X™) C g(X), g is continuous and commutes with F. If there exist z',7%,...,2" € X such
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()= F(&,....,2"%7"),
g(#") <F(".2,....2" ") (ifnisodd),
g(zn) > F(z”,zl, . ,.,z”’l) (if n is even)

then there exist x1,x2,...,x" € X such that

g(*") = F(«",%',...,2" 1),

that is, F and g have a n-tuplet coincidence point.

Proof 1t is sufficient to take ¢ = mt with m € [0,1) in previous theorem.

3 Uniqueness of n-tuplet fixed point
For all (x%,%2,...,4"), (%, %%,...,y") € X",

(% x") < (090
—= <y, x>y ey x" <y" (ifnisodd),

x">9y" (if niseven).

We say that (x},x2,...,x") is equal to (¥, 5?,...,y") ifand only if x* = y!, x> = 2, ...

Theorem 2 In addition to hypothesis Theorem 1, assume that for all (x',%%,...,x"),

092, 9" € X" there exist (4, 72,...,2") € X" such that
(F(e',2%....2"),F(,....,2"2"),....F(¢",2',...,2" "))
is comparable to
(F(xh 2, .., x"), (%, .oa '), F (a2l 2" h)
and

(F(yl,yz,...,y”),F(yz, B0 o IO o (AR ...,y”’l)).

» X

(2.39)

1

(3.1)

:y.

M
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Then F and g have a unique n-tuplet common fixed point, that is, there exist (x, x%, ..., x") €
X" such that

x"=g(x") = F(x”,xl, . ,.,x”_l).

Proof From the Theorem 1, the set of n-tuplet coincidences is non-empty. We will show
that if (x',42,...,4") and (y%,5?,...,¥") are n-tuplet coincidence points, that s, if

(3.2)
g(x") =g(")
By assumption there is (z,7z2,...,2") € X" such that
(F(e,2%....2"),F(&,...,2"2"),....,F (", 2}, ...,2" ")) (3.3)
is comparable with
(F(xh a2, a), F(x2, o aat),  F (2, a2 (3.4)

and

(F(yl,yz,...,y”),F(yz, o)), ..,F(y”,yl, ...,y”’l)). (3.5)
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Define sequences (g(z;)), (g(27)), ..., (g(2})) such that 2! =z, 22 = 25, ..., 2" = z§ and

g(le() = F(Z/va/zep e ’2271)’

g(Zi) = F(Z12<—1’ . "’ZZ—vzlz-l)’

8(#) = F(&@ 2k 200)-

Since (3.4) and (3.5) comparable with (3.3), we may assume that

(€(x').g(x),....g(+")) = (g(z).&(2°). - .(2")) = (¢(=0).8(25), - &(

By using (2.11), we get that

(€(').g(x).....g(") = (g(zi).£(2k), -8 (=))

for all k. From (3.1), we have

g(x") <g(z) (ifnisodd),

g(x") = g(zf) (ifniseven).
By (3.7) and (2.6), we have
d(g(+')&(zk.1))
=d(F(x', %% ....x"),F(2.23>...,2}))
< (S dlel).¢(e) +dlel) ) + -+ dlele)g(@)])

d(g(x*).&(2.1))

=d(F(x*,....x"%"),F(2},....20,2))

< ¢(%[d(g(x2), g(@)) + -+ dlg(*").g(z)) + d(g(xl),g(zi))]),

d(¢(x").& ()
=d(F(x",x"....&" ), F(, 25,20 "))

< ¢>(%[d(g(x”), 2(#)) +d(e(+).g(z)) + -+ d(g(x”‘l)»g(z’k“‘l))])

(3.6)

3.7)

(3.8)

(3.9)

(3.10)
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Adding (3.8)-(3.10), we get

dg(x'),g(zi,1) + d(g®), g(z,,) + - - + dg”), g(2},0)
n

< ¢(%[d(g(x2),g(zi)) +oord(e@).g(w) + d(g(xl),g(Zi))])-

Hence, it follows

d(g(x'), g(z;,) + dgx?),g(z7, ) + - - - + d(g(x"), g(z},))
n

< (Lllel?) g(aD) +-+-+ ) leh)) + el e(eD)])

Page 15 0of 19

(3.11)

(3.12)

for each k > 1. It is known that ¢(¢) < ¢ and lim,_,;+ ¢(r) < ¢ imply limg_, o #*(¢) = O for

each ¢ > 0. Thus, from (3.12)

lim d(g(x'),g(24,1)) = 0,

k—00

lim d(g(x*),g(z7,1)) = 0,

k— 00
Jim d(g(+*).g(z¢)) = 0.

Analogously, we can show that

lim d(g(y'),¢(zk,1)) = 0,

k—00

lim d(¢(»*),¢(,1)) =0,

k— 00

Jlim d(g(y).¢(%,1)) = 0.

Combining (3.13) and (3.14) and by using the triangle inequality
d(g(+').0/)) = d((*").8(zn)) + A(2().g(z)) = 0 ask — oo,
d(g(+").£()) = d(e(+").£(2n)) + d(€(r”) 8(2k)) > 0 ask— oo,

d(g(x").g(")) = d(g(x").&(zk.1)) +d(g(v").&(2k1)) = 0 ask — oo.

(3.13)

(3.14)

(3.15)

Hence, we get g(x') = g(y!), g(*?) = g(»?), ..., g(x") = g(y"). Thus, we proved claim of theo-

rem.


http://www.journalofinequalitiesandapplications.com/content/2013/1/196

Ertlrk and Karakaya Journal of Inequalities and Applications 2013, 2013:196
http://www.journalofinequalitiesandapplications.com/content/2013/1/196

By commutativity of F and g,

(3.16)
la) = (B .1 = Fle(e) ) ()
Denote g(x!) = w!, g(x?) = w?, ..., g(x") = w". Since (3.16), we get
g(Wh) =F(whw?,...,w"),
£(7) = E o),
(3.17)

gw") =F(w", wh..., w”_l).

Thus, (W', w?,...,w") is a n-tuplet coincidence point. Then from assumption in theorem

with y! = wh, ..., " = w" it follows g(w') = g(x!), g(W?) = g(x?), ..., g(W") = g(x"), that is

g(wl) =wh, e g(w") =w". (3.18)

Therefore, (Wh, w?,...,w") is n-tuplet common fixed point of F and g. To prove the unique-

2

ness, assume that (u!, 42, ..., u") is another n-tuplet common fixed point. Then by assump-

tion in theorem we have

u' =g(u") =g(w"). O

Corollary 3 Let (X, <) be partially ordered set and suppose that (X, d) is complete metric
space. Suppose F : X" — X and there exist ¢ € ® such that F has the mixed g-monotone
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property and
d(F(x', 2% 5%, ..,6"), F(y" 9% 9", ...9"))

- ¢<d(g(x1),g(yl)) +d(g(x*),g(0*) + - + d(g(ﬁt”%g(y”)))

n

(3.19)

Sorall x',x%,%3,...,x", 91, 95,93, ..., 9" € X forwhichx* <y', x> > y?,...,x" <y" (ifnisodd),
x" > y" (if n is even). Suppose there exist xy, x5, %y, ..., %4 € X such that

xp < F(x0, %5, %3, %)
xg zF(x%,xg,...,xg,xl),
xly < F(x,%0,%5,...,%5 ") (if n is odd), (3.20)

Xy > F(xg,x%),x%, . ..,xg”l) (if n is even).
Assume also that Condition 1 holds. Then there exist x*,x,x°,...,x" such that

xt =F(x1,x2,x3,...,x”),

X2 F(xz,xs,...,x”,xl),

(3.21)

X" = F(x”,xl,xz,...,x”’l).
That is F has a n-tuplet fixed point.

Proof Take g(x) = x, then the assumption in Theorem 1 are satisfied. Thus, we get the
result. O

Corollary 4 Let (X, <) be partially ordered set and suppose that (X, d) is complete metric
space. Suppose F : X" — X and there exist ¢ € ® such that F has the mixed g-monotone
property and there exist m € [0,1) with

¢ (F(x' 4% ...x"),F(y" 9. .9"))

= " ale().20") + dle().g(?) + -+ de(").07)] 3:22)

Sor all x',5%,...,x", Y, 9%, ...,y" € X for which x' < y', x> > 9%, ..., x" < y" (if n is odd),

x" > y" (if n is even). Suppose there exist xy,x3, %3, ..., %8 € X such that

1 1.2 .3 n
xo SF(xony;xoyon;x())x
2 2 .3 n 1
xg = F (g, %05 - » X0, %)
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xy < F(x,%0,%5,...,%5")  (if n is odd),

F
x> F (x5, %0, %5, ...,%5 ") (if n is even).
Assume also that Condition 1 holds. Then there exist x*,x,x°,...,x" such that

xt =F(x',2%,%°, ..., %"),

&% = F(x3,%5, .., %0, %0 )
(3.23)

x" = F(x”,xl,xz, . ,x”_l).
That is F and g have n-tuplet coincidence point.

Proof Taking ¢(t) = m - ¢t with m € [0,1) in above corollary we obtain this corollary. O
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