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Abstract
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1 Introduction and preliminaries
The concept of statistical convergence was first introduced by Fast [1] which was

extended for double sequences in [2,3]. In particular, active researches on this topic

were started after the study of Fridy [4]. Many of the results of the theory of ordinary

convergence have been extended to the theory of statistical convergence by using the

notion of density. For instance, Fridy [5] introduced the concept of statistical limit

points and Fridy and Orhan [6] introduced the statistical analogs of limit superior and

limit inferior of a sequence of real numbers. Recently, statistical convergence and some

of its related concepts for fuzzy numbers have been studied in [7-9]. Quite recently,

the idea of statistical convergence in intuitionistic fuzzy normed spaces for single

sequences has been studied in [10,11]; and for double sequences by Mursaleen and

Mohiuddine [12,13].

Recently, Saadati and Park [14] introduced the notion of intuitionistic fuzzy normed

space and quite recently, in [15,16] the concepts of intuitionistic fuzzy 2-normed and

intuitionistic fuzzy 2-metric spaces have been introduced and studied. Certainly there

are some situations where the ordinary norm does not work and the concept of intui-

tionistic fuzzy norm seems to be more suitable in such cases.

In this article, we study the concept of statistical limit superior and statistical limit

inferior in intuitionistic fuzzy normed spaces. An example is demonstrated to deter-

mine these points in intuitionistic fuzzy normed space. We observe that our results are

analogous to the results of Fridy and Orhan [6] but proofs are somewhat different

when we deal with these concepts in intuitionistic fuzzy normed spaces.
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We recall some basic definitions and notations.

Definition 1.1 [14]. A binary operation *: [0, 1] × [0, 1] ® [0, 1] is said to be a

continuous t-norm if it satisfies the following conditions:

(a) * is associative and commutative,

(b) * is continuous,

(c) a * 1 = a for all a Î [0, 1],

(d) a * b ≤ c * d whenever a ≤ c and b ≤ d for each a, b, c, d Î [0, 1].

For example, a*b = max{a+b-1, 0}, a*b = ab and a*b = min{a, b} on [0,1] are

t-norms.

A binary operation ◊: [0, 1] × [0, 1] ® [0, 1] is said to be a continuous t-conorm if it

satisfies the conditions (a), (b), (d) as above and a◊0 = a for all a Î[0, 1].
For example, a◊b = min{a + b, 1} and a◊b = max{a, b} on [0,1] are t-conorms.

Definition 1.2 [14]. The five-tuple (X, μ, ν, *, ◊) is said to be an intuitionistic fuzzy

normed space (for short, IFNS) if X is a vector space,* is a continuous t-norm, ◊ is a

continuous t-conorm, and μ, ν are fuzzy sets on X × (0, ∞) satisfying the following

conditions. For every x, y Î X and s, t >0,

(a) μ(x, t) + ν(x, t) ≤ 1,

(b) μ(x, t) >0,

(c) μ(x, t) = 1 if and only if x = 0,

(d) μ(αx, t) = μ(x, t
|α| ) for each a ≠ 0,

(e) μ(x, t) * μ(y, s) ≤ μ(x + y, t + s),

(f) μ(x, ·): (0, ∞) ® [0, 1] is continuous,

(g) lim
t→∞ μ(x, t) = 1 and lim

t→0
μ(x, t) = 0 ,

(h) ν (x, t) <1,

(i) ν (x, t) = 0 if and only if x = 0,

(j) ν(αx, t) = ν(x, t
|α| ) for each a ≠ 0,

(k) ν (x, t)◊ν(y, s) ≥ ν(x + y, t + s),

(l) ν (x, ·): (0, ∞) ® [0, 1] is continuous,

(m) lim
t→∞ ν(x, t) = 0 and lim

t→0
ν(x, t) = 1 .

In this case (μ, ν) is called an intuitionistic fuzzy norm.

Example. Suppose that (X, || ||) is a normed space and let a*b = ab and a◊b = min

{a+b, 1} for all a, b Î [0, 1]. For all x Î X and every t >0, consider

μ(x; t) :=
t

t + ‖x‖ and v(x; t) :=
‖x‖

t + ‖x‖ .

Then (X, μ, ν, *, ◊) is an intuitionistic fuzzy normed space.

Definition 1.3 [14]. Let (X, μ, ν, *, ◊) be an intuitionistic fuzzy normed space. Then

a sequence x = (xn) is said to be convergent to L Î X with respect to the intuitionistic

fuzzy norm (μ, ν) if for every � >0 and t >0, there exists a positive integer ko such that
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μ(xn - L; t) >1 - � and ν(xn - L; t) < �, whenever n ≥ ko. In this case, we write (μ, ν)-lim

x = L or xn
(μ,ν)→ L as n ® ∞.

Definition 1.4 [14]. Let (X, μ, ν, *, ◊) be an intuitionistic fuzzy normed space. Then

a sequence x = (xn) is said to be a Cauchy sequence with respect to the intuitionistic

fuzzy norm (μ, ν) if for every � >0 and t >0, there exists a positive integer ko such that

μ(xn - xm; t) >1 - � and ν(xn - xm; t) < � for all n, m ≥ ko.

Definition 1.5 [17]. If K is a subset of N, then the natural density of K denoted by

δ(K), is defined as

δ(K) := lim
n

1
n

|{k ≤ n : k ∈ K}| ,

where the vertical bars denote the cardinality of the enclosed set.

Definition 1.6 [4,18]. A sequence x = (xn) of numbers is said to be statistically

convergent to L if

δ ({k ≤ n : |xk − L| ≥ ε}) = 0

for every � > 0. In this case we write st-lim x = L.

Definition 1.7 [5,6]. A sequence x = (xn) of numbers is said to be statistically

bounded if there is a number B such that

δ ({k ≤ n : |xk| ≥ B}) = 0.

Definition 1.8 [5]. If {xk(j)} is a subsequence of x = (xk) and K: = {k(j): j Î N}, then

we abbreviate {xk(j)} by {x}K . If δ(K) = 0 then {x}K is called a subsequence of density

zero or a thin subsequence. On the other hand, {x}K is a nonthin subsequence of x if K

does not have density zero.

Definition 1.9 [10,12]. Let (X, μ, ν, *, ◊) be an intuitionistic fuzzy normed space. We

say that a sequence x = (xk) is statistically convergent to L Î X with respect to the

intuitionistic fuzzy normed (μ, ν) provided that for every t >0 and b Î (0, 1)

δ
({
k ≤ n : μ(xk − L; t) < 1 − b or ν(xk − L; t) > b

})
= 0.

In this case we write st(μ, ν)- lim x = L.

2 Statistical limit superior and inferior in IFNS
In this section, we define limit point, statistical limit point, statistical cluster point, sta-

tistical limit superior, and statistical limit inferior in intuitionistic fuzzy normed spaces

and demonstrate through an example how to compute these points in a IFN-spaces.

Definition 2.1. A sequence x in an intuitionistic fuzzy normed space (X, μ, ν, *, ◊) is

said to be statistically bounded if there exists some to >0 and b Î (0, 1) such that δ({k:

μ(xk; to) > 1 - b or ν(xk; to) <b}) = 0.

Definition 2.2. Let (X, μ, ν,*,◊) be an intuitionistic fuzzy normed space. Then l Î X

is called a limit point of the sequence x = (xk) with respect to the intuitionistic fuzzy

norm (μ, ν) provided that there is a subsequence of x that converges to l with respect

to the intuitionistic fuzzy norm (μ, ν). Let L(μ, ν)(x) denotes the set of all limit points of

the sequence x with respect to the intuitionistic fuzzy norm (μ, ν).

Definition 2.3. Let (X, μ, ν,*,◊) be an intuitionistic fuzzy normed space. Then ξ Î X

is called a statistical limit point of the sequence x = (xk) with respect to the
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intuitionistic fuzzy norm (μ, ν) provided that there is a nonthin subsequence of x that

converges to ξ with respect to the intuitionistic fuzzy norm (μ, ν). In this case we say ξ

is a st(μ, ν)-limit point of sequence x = (xk). Let Λ(μ, ν)(x) denotes the set of all st(μ, ν)-

limit points of the sequence x.

Definition 2.4. Let (X, μ, ν,*,◊) be an intuitionistic fuzzy normed space. Then h Î X

is called a statistical cluster point of the sequence x = (xk) with respect to the intuitio-

nistic fuzzy norm (μ, ν) provided that for every to >0 and a Î (0, 1),

δ̄
({
k ≤ n : μ(xk − η; to) > 1 − aor v(xk − η; to) < a

})
= 0.

In this case we say h is a st(μ, ν)-cluster point of the sequence x. Let Γ(μ, ν)(x) denotes

the set of all st(μ, ν)-cluster points of the sequence x.

Definition 2.5. For a sequence x in an intuitionistic fuzzy normed space (X, μ, ν,*,◊),

we define the sets B(μ,ν)
x and A(μ,ν)

x by

B(μ,ν)
x :=

{
b ∈ (0, 1) : δ

({
k : μ(xk; t) < 1 − bor ν(xk; t) > b

}) �= 0
}

A(μ,ν)
x :=

{
a ∈ (0, 1) : δ

({
k : μ(xk; t) > 1 − aor ν(xk; t) < a

}) �= 0
}

If x is a real number sequence then the statistical limit superior of x with respect to

the intuitionistic fuzzy norm (μ, ν) is defined by

st(μ,ν) - lim sup x :=

{
sup B(μ,ν)

x if B(μ,ν)
x �=� 0,

0 if B(μ,ν)
x �=� 0.

And the statistical limit inferior of x with respect to the intuitionistic fuzzy norm

(μ, ν) is defined by

st(μ,ν) − lim inf x :=

{
inf A(μ,ν)

x if A(μ,ν)
x �=� 0,

1 if A(μ,ν)
x �=� 0.

Example. A simple example will help to illustrate the concepts just defined. Let the

sequence x = (xk) be defined by

xk :=

⎧⎪⎪⎨
⎪⎪⎩
2k, if k is anodd square,
−1, if k is an even square,
1/2, if k is anodd nonsquare,
0, if k is an even nonsquare.

Let μ(xk; t) = t
t+|xk| and ν(xk; t) =

|xk|
t+|xk| .

The above sequence is clearly unbounded with respect to (μ, ν). On the other hand,

it is statistically bounded with respect to (μ, ν). For this,

δ
({
k ≤ n : μ(xk; to) < 1 − bor ν(xk; to) > b

})
= δ

({
k ≤ n :

to
to + |xk| < 1 − bor

|xk|
to + |xk| > b

})
,

= δ

({
k ≤ n : |xk| >

bto
1 − b

})
.
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Since 0 < b < 1, 1b − 1 > 0 . Choose to = 1−b
3b . Then to >0 and

δ
({
k ≤ n : μ(xk; to) < 1 − bor ν (xk; to) > b

})
= δ

({
k ≤ n : |xk| >

b
1 − b

× 1 − b
3b

=
1
3

})

= δ

({
k ≤ n : |xk| >

1
3

})
= lim

n→∞
1
n

× √
n = 0

Hence it is statistically bounded with respect to (μ, ν).

To find B(μ,ν)
x , we have to find those b Î (0, 1) such that

δ ({k ≤ n : μ (xk; t) < 1 − b or ν (xk; t) > b}) �= 0.

Now,

δ
({
k ≤ n : μ(xk; t) < 1 − bor ν(xk; t) > b

})
= δ

({
k ≤ n :

t
t + |xk| < 1 − bor

|xk|
t + |xk| > b

})
,

= δ

({
k ≤ n : |xk| >

bt
1 − b

})
.

We can easily choose any t >0 as t < 1
3 (

1
b − 1) for 0 < b <1, so that

0 <
bt

1 − b
<

b
1 − b

× 1 − b
3b

=
1
3
.

Therefore

δ

({
k ≤ n : |xk| >

bt
1 − b

})
= δ

({
k ≤ n : |xk| > r =

bt
1 − b

})
,

and by the above condition r Î (0, 1). Now the number of members of the sequence

which satisfy the above condition is always greater than n − n
2 or n − n−1

2 for the case

n is even or odd, respectively. Therefore

δ

({
k ≤ n : |xk| > r =

bt
1 − b

})
> lim

n→∞
1
n

× n
2
=
1
2
or lim

n→∞
1
n

× n + 1
2

=
1
2
.

Thus

δ

({
k ≤ n : |xk| > r =

bt
1 − b

})
�= 0 for all b ∈ (0, 1).

Hence

B(μ,ν)
x = (0, 1),

and

st(μ,ν) − lim sup x = 1.

The above sequence has two subsequences

x = (xni) where xni = 1 for each ni ∈ {3, 5, 7, 11, 13, ...} ,
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and

x = (xnj) where xnj = 0 for each nj ∈ {2, 6, 8, 10, 12, ...} ,

i, j Î N; which are of positive density and clearly convergent to 1 and 0, respectively.

Therefore, x is not statistically convergent. Similarly, we have

A(μ,ν)
x = (0, 1),

and

st(μ,ν) − lim inf x = 0.

Hence the set of statistical cluster points of x is {0, 1}, where st(μ,ν)- lim inf x = least

element and st(μ,ν)- lim sup x = greatest element of the above set.

This observation suggests the main idea of our first theorem of the following section.

3 Main results
The following results are analogs of the results due to Fridy and Orhan [6], while the

proofs are different which show the technique to work with IFN-spaces. We observe

that in contrast to the real case here from the definition limit sup cannot be infinite,

as it can be at most 1.

Theorem 3.1. Let b = st(μ,ν)- lim sup x. Then for every positive numbers t and g

δ ({k : μ (xk; t) < 1 − b + γ or v (xk; t) > b − γ }) �= 0, and

δ ({k : μ (xk; t) < 1 − b + γ or v (xk; t) > b + γ }) �= 0.

}
(1)

Conversely, if (1) holds for every positive t and g then b = st(μ,ν)- lim sup x.

Proof. Let b = st(μ,ν)-lim sup x, where b be finite. Then

δ({k : μ(xk; t) < 1 − bor ν(xk; t) > b}) �= 0. (2)

Since μ(xk; t) <1 - b + g or ν(xk; t) > b - g for every k and for any t, g >0,

δ
({
k ≤ n : μ(xk; t) < 1 − b + γ or ν(xk; t) > b − γ

}) �= 0.

Now applying the definition of st(μ,ν)- lim sup x we have 1 - b as the least value and

b as the greatest value satisfying (2).

Now if possible,

μ(xk; t) < 1 − b − γ or ν(xk; t) > b + γ for some γ > 0.

Then 1 - b - g and b + g are another values with 1 - b - g <1 - b and b + g > b which

satisfies (2). This observation contradicts the fact that 1 - b and b are least and greatest

values, respectively, which satisfies the above condition.

Hence,

δ
({
k ≤ n : μ(xk; t) < 1 − b − γ or ν(xk; t) > b + γ

})
= 0 for every γ > 0.

Conversely, if (1) holds for every positive t and g, then

δ
({
k ≤ n : μ(xk; t) < 1 − b + γ or ν(xk; t) > b − γ

}) �= 0.
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and

δ ({k ≤ n : μ (xk; t) < 1 − b − γ or ν (xk; t) > b + γ }) = 0.

Therefore

δ ({k ≤ n : μ (xk; t) ≤ 1 − b or ν (xk; t) ≥ b}) �= 0

and

δ ({k ≤ n : μ (xk; t) = 1 − b or ν (xk; t) = b}) = 0.

That is

δ ({k ≤ n : μ (xk; t) < 1 − b or ν (xk; t) > b}) �= 0 for every t > 0.

Hence b = st(μ,ν)- lim sup x.

This completes the proof of the theorem.

The dual statement for st(μ,ν)- lim inf x can also be proved similarly.

Theorem 3.1’. Let a = st(μ,ν)- lim inf x. Then for every positive number t and g

δ({k ≤ n : μ (xk; t) > 1 − a − γ or ν (xk; t) < a + γ }) �= 0, and

δ(k ≤ n : μ (xk; t) > 1 − a + γ or ν (xk; t) < a − γ ) = 0.

}
(1A)

Conversely, if (1’) holds for every positive t and g then a = st(μ,ν)- lim inf x.

Remark. From the definition of statistical cluster points we see that Theorems 3.1

and 3.1’ can be interpreted as saying that st(μ,ν)- lim sup x and st(μ,ν)- lim inf x are the

greatest and the least statistical cluster points of x, respectively.

Theorem 3.2. For any sequence x, st(μ,ν)- lim inf x ≤ st(μ,ν)- lim sup x.

Proof. First consider the case in which st(μ,ν)- lim sup x = 0, which implies that

B(μ,ν)
x = ∅.

Then for every b Î (0, 1),

B(μ,ν)
x = δ ({k : μ (xk; t) < 1 − b or ν (xk; t) > b}) = 0,

that is

δ ({k : μ (xk; t) ≥ 1 − b or ν (xk; t) ≤ b}) = 1.

Also for every a Î (0, 1), we have

δ ({k : μ (xk; t) > 1 − a or ν (xk; t) < a}) �= 0.

Hence, st(μ,ν)- lim inf x = 0.

The case in which st(μ,ν)- lim sup x = 1, is trivial.

Suppose that b = st(μ,ν)- lim sup x, and a = st(μ,ν)- lim inf x; where a and b are finite.

Now for given any g, we show that 1 − b − γ ∈ A(μ,ν)
x .
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By Theorem 3.1,

δ
({

k : μ (xk; t) < 1 − b − γ

2
or ν (xk; t) > b +

γ

2

})
= 0, where 1−b = least upper bound of B(μ,ν)

x .

Therefore

δ
({

k : μ (xk; t) ≥ 1 − b − γ

2
or ν (xk; t) ≤ b +

γ

2

})
= 1,

which in turn gives

δ ({k : μ (xk; t) > 1 − b − γ or ν (xk; t) < b + γ }) = 1.

Hence, 1 − b − γ ∈ A(μ,ν)
x .

By definition

a = inf A(μ,ν)
x ,

so we conclude that

1 − b − γ ≤ 1 − a,

and since g is arbitrary,

1 − b ≤ 1 − a,

that is

−b ≤ −a,

a ≤ b.

This completes the proof of the theorem.

Theorem 3.3. In an intuitionistic fuzzy normed space (X, μ, ν, *, ◊), the statistically

bounded sequence x is statistically convergent if and only if

st(μ,ν) − lim inf x = st(μ,ν) − lim sup x.

Proof. Let a, b be st(μ, ν)- lim inf x and st(μ, ν)- lim sup x, respectively. Now we

assume that st(μ,ν)- lim x = L. Then for every � >0 and b Î (0, 1),

δ ({k : μ (xk; t) ≤ 1 − b or ν (xk; t) ≥ b}) = 0,

so that

δ

({
k : μ

(
xk;

t
2

)
∗ μ

(
L;

t
2

)
≤ 1 − b or ν

(
xk;

t
2

)
♦ν

(
L;

t
2

)
≥ b

})
= 0.

Let for every t >0,

sup
t

μ

(
xk;

t
2

)
= 1 − b1 and sup

t
μ

(
L;

t
2

)
= 1 − b2,

or

inf
t

ν

(
xk;

t
2

)
= b1 and inf

t
ν

(
L;

t
2

)
= b2
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such that

(1 − b1) ∗ (1 − b2) ≤ 1 − b or b1♦b2 ≥ b. (3:1)

Then

δ

({
k : μ

(
xk;

t
2

)
≤ 1 − b1 or ν

(
xk;

t
2

)
≥ b1

})
= 0, (3:2)

and therefore

δ

({
k : μ

(
xk;

t
2

)
< 1 − b1 − γ or ν

(
xk;

t
2

)
> b1 + γ

})
= 0 for every γ > 0. (3:3)

Now applying Theorem 3.1 and the definition of st(μ,ν)- lim sup x, we get

δ

({
k : μ

(
xk;

t
2

)
< 1 − β − γ or ν

(
xk;

t
2

)
> β + γ

})
= 0 for every γ > 0. (3:4)

From (3.3) and (3.4) and by the definition of st(μ,ν)- lim sup x, we get

1 − b1 − γ ≤ 1 − β − γ or b1 + γ ≥ β + γ ,

that is,

β ≤ b1. (3:5)

Now we find those k such that

μ

(
xk;

t
2

)
> 1 − b1 + γ or ν

(
xk;

t
2

)
< b1 − γ .

We can easily observe that no such k exists which satisfy (3.1) and above condition

together.

Therefore this implies that

δ

({
k : μ

(
xk;

t
2

)
> 1 − b1 + γ or ν

(
xk;

t
2

)
< b1 − γ

})
= 0.

Since a = st(μ,ν)- lim inf x, by Theorem 3.1’, we get

δ

({
k : μ

(
xk;

t
2

)
> 1 − α + γ or ν

(
xk;

t
2

)
< α − γ

})
= 0.

By the definition of st(μ, ν)- lim inf x, we have

1 − α + γ ≤ 1 − b1 + γ or α − γ ≥ b1 − γ ,

that is,

b1 ≤ α. (3:6)

From (3.4) and(3.5), we get b ≤ a. Now combining Theorem 3.2 and the above

inequality, we conclude a = b.
Conversely, suppose that a = b and let supt μ(L, t) = 1 - a or inft ν(L, t) = a. Then

for any g >0, Theorems 3.1 and 3.1’ will together imply that
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δ

({
k : μ

(
xk;

t
2

)
< 1 − α +

γ

2
or ν

(
xk;

t
2

)
> α − γ

2

})
= 0, (3:7)

and

δ

({
k : μ

(
xk;

t
2

)
> 1 − α +

γ

2
or ν

(
xk;

t
2

)
< α − γ

2

})
= 0. (3:8)

Now

1 − α ≥ μ (L; t) = μ (xk − (xk − L) ; t) ≥ μ

(
xk;

t
2

)
∗ μ

(
xk − L;

t
2

)
,

and

α ≤ ν (L; t) = ν (xk − (xk − L) ; t) ≤ ν

(
xk;

t
2

)
♦ν

(
xk − L;

t
2

)
.

Therefore

μ

(
xk;

t
2

)
∗ μ

(
xk − L;

t
2

)
≤ 1 − α or ν

(
xk;

t
2

)
♦ν

(
xk − L;

t
2

)
≥ α. (3:9)

Let supt{μ(xk − L; t
2)} = 1 − a1 or inft{ν(xk − L; t

2)} = a1 , where a1 Î (0, 1) and (3.7)

and (3.9) hold. Then

δ

({
k : μ

(
xk − L;

t
2

)
< 1 − α1 − γ

2
or ν

(
xk − L;

t
2

)
> α1 +

γ

2

})
= 0,

which is true for all g >0. Hence

δ

({
k : μ

(
xk − L;

t
2

)
≤ 1 − α1 or ν

(
xk − L;

t
2

)
≥ α1

})
= 0,

which is true for all a ≤ a1 Î (0, 1), because 1 - a1 is the least upper bound or a1 is

the greatest lower bound.

Now repeat the process by taking (3.8) and (3.9) instead of (3.7) and (3.9). If (3.8)

and (3.9) are satisfied, then inftμ(xk − L; t
2) = 1 − a1 or suptν(xk − L; t

2) = a1 ,

On contrary suppose that 1 − a1 �= inftμ(xk − L; t
2) or a1 �= suptν(xk − L; t

2 ) and

conditions (3.8) and (3.9) be satisfied. This implies that there exists some r Î (0, 1)

such that either 1 − r = μ
(
xk − L; t

2

)
or r = ν

(
xk − L; t

2

)
for some t >0 where 1 - a1

>1 - r or a1 < r.

As (3.8) and (3.9) are satisfied, and let us suppose that inftμ(xk − L; t
2) = 1 − a2 or

suptν(xk − L; t
2) = a2 .

Then

1 − a1 > 1 − a2 or a1 < a2, (3:10)

and from (3.9), we get

μ

(
xk − L;

t
2

)
∗ (1 − a2) ≤ 1 − α or ν

(
xk − L;

t
2

)
♦α2 ≥ α.
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Using (3.8), we get(
1 − α +

γ

2

)
∗ (1 − a2) ≤ 1 − α or ν

(
α − γ

2

)
♦(α2) ≥ α for all γ > 0.

Clearly,(
1 − α +

γ

2

)
∗ (1 − a2) ≤ 1 − α or

(
α +

γ

2

)
♦(α2) ≥ α for all γ > 0. (3:11)

Now

1 − a1 = sup
t

μ

(
xk − L;

t
2

)
or α1 = inf

t
ν

(
xk − L;

t
2

)

where a1 Î (0, 1) and which satisfy (3.7) and (3.9).

From (3.11) we conclude that 1 - a2 is another value satisfying (3.7) and (3.9).

Hence

1 − a1 < 1 − a2 or a2 < a1.

This contradicts (3.10). Hence 1 − a1 = inftμ(xk − L; t
2) or a1 = suptν(xk − L; t

2 )

satisfying conditions (3.8) and (3.9).

Therefore the inequality becomes true for all a ≥ a1 Î (0, 1), because 1 - a1 is the

greatest lower bound, and hence

δ

({
k : μ

(
xk − L;

t
2

)
≤ 1 − α or ν

(
xk − L;

t
2

)
≤ α

})
= 0,

for each t >0 and a Î (0, 1). Therefore

st(μ,ν) - lim x = L.

This completes the proof of the theorem.
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