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1 Introduction

Let C be a closed and convex subset of a real Hilbert space H with the inner product (-, -)
and the norm || - ||. Let {F,,}ucr be a family of bifunctions from C x C into R, where R is
the set of real numbers and I is an arbitrary index set. The system of equilibrium problems
is to find x € C such that

Fu(x,y) >0, meTl,VyeC. (1.1)
The set of solutions of (1.1) is denoted by SEP(F,,), where m € T', that is,
SEP(F,;) = {x € C: Fu(x,y) > 0,Vy € C}. (1.2)

If T is a singleton, then the problem (1.1) is reduced to the equilibrium problem of finding
x € C such that

F(x,y) >0, VyeC. (1.3)
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The set of solutions of (1.3) is denoted by EP(F).
Recall the following definitions.
A mapping A : C — H is called monotone if

(Ax —Ay,x—y) >0, Vx,yeC. (1.4)

A mapping A is called «-inverse-strongly monotone [1, 2], if there exists a positive real
number « such that

(Ax - Ay,x —y) > a||Ax — Ay||>, Vx,yeC. (1.5)
), % =y y y

Clearly, if A is a-inverse-strongly monotone, then A is monotone.
A mapping A is called B-strongly monotone if there exists a positive real number g such
that

(Ax— Ay,x—y) = Bllx -yl Vx,yeC. (1.6)

A mapping A is called L-Lipschitz continuous if there exists a positive real number L
such that

[Ax - Ayl < Lllx—yl, Vx,yeC. 1.7)

It is easy to see that if A is an «-inverse-strongly monotone mapping from C into H,
then A is é—Lipschitz continuous.

In 2009, Qin et al. [3] introduced the following algorithm for a finite family of asymp-
totically A;-strictly pseudocontractions.

Let x9 € C and {«,};°, be a sequence in (0,1). The sequence {x,} is as follows:

x1 = oo + (1 — 0rg) S1xo,
%y = onxp + (1 —a1)Sox1,

x3 = ataxy + (1 — 012)S3%9,

an = an_1xn-1 + (1 — ano1)Snan-t,
xn+1 = anay + (1 - on)Six, (1.8)

2
XN+2 = ON11XN+1 T (1 - aN+1)Ssz+lr

_ 2
Xon = don-_1%on-1 + (1 — a2N—1)SNx2N—1;

3
Xon+1 = QonXon + (1 — aan)Sixon,

It is called the explicit iterative sequence of a finite family of asymptotically A;-strictly

pseudocontractions {S;, S, ..., Sy}. Since for each n > 1, it can be writtenas n = (h—1)N +1,
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where i = i(n) € {1,2,3,...,N}, h = h(n) > 1is a positive integer and k(1) — 00, as n — 00,

we can rewrite the above table in the following compact form:
h(n)
X = 0paXn-1 + (L= 1) Sy X1, V21

Next, Sahu et al. [4] introduced new iterative schemes for asymptotically strictly pseu-
docontractive mappings in the intermediate sense. To be more precise, they proved the
following theorem.

Theorem (SXY) Let C be a nonempty closed and convex subset of a real Hilbert space
Hand T : C — C be a uniformly continuous asymptotically «-strictly pseudocontractive
mapping in the intermediate sense with a sequence {y,} such that F(T) is nonempty and
bounded. Let {o,} be a sequence in [0,1] such that 0 <8 <o, <1 -« forall n € N. Let
{x,} C C be a sequence generated by the following (CQ) algorithm:

u = x; € C chosen arbitrarily,
Yn = (1 - Oln)xn + oz,,T”x,,,
Cu={z € C:llya—2zl* < lxn = 2II* + 64}, (1.9)

Q.={zeC:{x,—z,u—x,) >0},

Xn+l = PC,,(TQ,, (I/l)r Vn e N,

where 0, = ¢, + Yy A, and A, = sup{||x, — z|| : z € F(T)} < 0o. Then {x,} converges strongly
to Pr(ry(u), where Pr(r) is a metric projection from H into F(T).

In 2010, Hu and Cai [5] considered the asymptotically strictly pseudocontractive map-
pings in the intermediate sense concerning the equilibrium problem. They obtained the
following result in a real Hilbert space. Next, Ceng et al. [6] introduced the viscosity ap-
proximation method for a modified Mann iteration process for asymptotically strict pseu-
docontractive mappings in the intermediate sense and they proved the strong convergence
of a general CQ-algorithm and extended the concept of asymptotically strictly pseudo-
contractive mappings in the intermediate sense to the Banach space setting called nearly
asymptotically strictly pseudocontractive mappings in the intermediate sense. Finally, they
established a weak convergence theorem for a fixed point of nearly asymptotically strictly
pseudocontractive mappings in the intermediate sense which are not necessarily Lipschitz

continuous mappings.

Theorem (HC) Let C be a nonempty closed and convex subset of a real Hilbert space H
and N > 1 be an integer, ¢ : C — C be a bifunction satisfying (Al)-(A4), and A : C — H be
an a-inverse-strongly monotone mapping. Let for each1 <i <N, T;: C — C be a uniformly
continuous k;-strictly asymptotically pseudocontractive mapping in the intermediate sense
for some 0 < k; < 1 with sequences {yy,} C [0,00) such that lim,_, o Yni = 0 and {c,;} C
[0, 00) such that lim,,_,  ¢,,; = 0. Let k = max{k; : 1 <i < N}, y, =max{y,,;: 1 <i < N}, and
¢, =max{c,; :1 <i < N}. Assume that F = ﬂﬁll-"(Ti) N EP(¢) is nonempty and bounded.
Let {a,} and {B,} be sequences in [0,1] such that 0 <a <a, <1,0<8 < B, <1-k forall
neN,and0<b<r,<c<2a.
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Let {x,} and {u,} be sequences generated by the following algorithm:

x1 € C chosen arbitrarily,
uy € C such that ¢(u,,y) + (Axy, y — uy) + i =ty thyy —x4) > 0,
VyeC,
h(n)
Zy = (L= Bty + By T,'(n) Un,

Yn = (I —an)u, + onzy,

(1.10)

Cn = {V eC: ”yn - V||2 =< ”xn - V||2 + Gn};
Qu={veC:{x,—v,x0 —x,) >0},

X1 = Pc,nq,(%0), VneNU{0},

where 6, = Cyn) + Yump2 — 0, as n — 00, and p, = sup{||x, — v|| : v € F } < 0. Then {x,}

converges strongly to Pr(xo).

In 2011, Duan and Zhao [7] introduced new iterative schemes for finding a common
solution set of a system of equilibrium problems and a solution of a fixed point set of
asymptotically strict pseudocontractions in the intermediate sense and they proved these
schemes converge strongly.

In 2012, Shui Ge [8] introduced a new hybrid algorithm with variable coefficients for
a fixed point problem of a uniformly Lipschitz continuous mapping and asymptotically
pseudocontractive mapping in the intermediate sense on unbounded domains and he

proved strong convergence in a real Hilbert space.

Theorem (Ge) Let C be a nonempty, closed, and convex subset of a real Hilbert space H,
T : C — C be a uniformly L-Lipschitz continuous mapping and asymptotically pseudocon-
tractive mapping in the intermediate sense with sequences {k,} C [1,00) and {v,} C [0, 00).
Let q, = 2k, — 1 for each n € N. Let {x,} be the sequence generated by the following hybrid

algorithm with variable coefficients:

x1 € C chosen arbitrarily,

Cl = Cr
Zn = (1 - ,én)xn + ,én Tnxm
Yn = (1 - &n)xn + &n 1"z, (111)

Co={ueCy:lly.— Z't”z < |lxn = MHZ
- &n:én(l - ,én - 53L2 - qn,én)”xn - Tnxn”2 + 0,0y},

Xne1 =Pc,, (x1), VmeN,

where

O = 2(1+72)(@n = DA + guB) + 21 + @uBn)Vir
By

1+ [, — 21 1|2

~ oy
oy

=———— and B:
L+ [, — ]| !
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Assume that the positive real number 1y is chosen so that B, (x,) N Fix(T) # ¥ and that
{a,} and {B,} are sequences in (0,1) such that a < a,, < 8, < b for some a > 0 and for some
be(0,55).

Then {x,} converges strongly to a fixed point of T .

In this paper, motivated and inspired by the previously mentioned above results, we in-
troduce a new iterative algorithm by the hybrid projection method for finding a common
solution of a system of equilibrium problems of bifunctions satisfying certain conditions
and a common solution of fixed point problems of a family of uniformly Lipschitz contin-
uous and asymptotically A;-strict pseudocontractive mappings in the intermediate sense
in a real Hilbert space. Then, we prove a strong convergence theorem of the iterative algo-
rithm generated by this conditions. Finally, we also give a numerical example which sup-
ports our results. The results obtained in this paper extend and improve several recent
results in this area.

2 Preliminaries

Let H be a real Hilbert space with the inner product (-,-) and the norm || - ||. Let C be a
closed and convex subset of H. For any point x € H, there exists a unique nearest point
in C, denoted by Pc(x), such that

lx—Pex|| < lx—yl, VyeC.
Pc is called the metric projection of H onto C defined by the following:
Pc(x) = argryneié1 %=l
We know that P¢ is a nonexpansive mapping H onto C. It is also known that P¢ satisfies
|Pcx — Peyll* < (Pcx— Pcy,x—y), Vx,y€H,
and
(x —Pcx,z—Pcx) >0, VzeC.

We will adopt the following notations:
(1) — for strong convergence and — for weak convergence.
(2) ow(x,) = {x:3x,, — x} denotes the weak w-limit set of {x,}.
(3) A nonlinear mapping S : C — C is a self-mapping in C. We denote the set of fixed
points of S by F(S) (i.e., F(S) = {x € C: Sx = x}). Recall the following definitions.

Definition 2.1 Let S be a mapping from C to C. Then
(1) S is said to be nonexpansive it

ISx =Syl < llx=yll, VxyeC. (2.1)
(2) Sis said to be uniformly Lipschitz continuous if there exists a constant L > 0 such that

||S”x - S"y” <L|x-yl|, forallintegersn>1,Vx,yeC. (2.2)

Page 5 of 19
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(3) S is said to be asymptotically nonexpansive if there exists a sequence {k,} C [1,00)
with k, — 1 as n — oo such that

||S”x - S"y” <kyllx—y|, forallintegersn>1,Vx,yeC. (2.3)

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
(see [9]) in 1972. It is known that if C is a nonempty, bounded, closed, and convex subset
of a real Hilbert space H, then every asymptotically nonexpansive self-mapping has a fixed
point. Further, the set F(S) of fixed points of S is closed and convex.

(4) S is said to be asymptotically nonexpansive in the intermediate sense [10, 11] if it is
continuous and the following inequality holds:

lim sup sup (||S”x - S”y” —|lx —y||) <0. (2.4)

n—-oo xyeC

Putting &, = max{0, supx,yec(llS”x = S8"| - llx — yll)}, we see that §, — 0 as n — oc.
Then (2.4) is reduced to

|S"% = 8"y < llx =yl +&» VxyeC.

The class of asymptotically nonexpansive mappings in the intermediate sense was intro-
duced by Kirk and Bruck ez al. (see [10, 11]) as a generalization of the class of asymptotically
nonexpansive mappings. It is known that if C is a nonempty, bounded, closed, and convex
subset of a real Hilbert space H, then every asymptotically nonexpansive self-mapping in
the intermediate sense has a fixed point (see [12]).

(5) S is said to be contractive if there exists a coefficient k € (0,1) such that

[Sx =Syl <klx—yll, Vx,yeC. (25)

(6) S is said to be a A-strict pseudocontraction if there exists a coefficient A € [0,1) such
that

2
)

[1Sx = Syll*> < llx = ylI* + 1| (I = S)x — (I - S)y|

Vx,y € C. (2.6)

The class of strict pseudocontractions was introduced by Brower and Petryshyn (see [1])
in 1967. Clearly, if S is a nonexpansive mapping, then S is a strict pseudocontraction with
A = 0. We also remark that if A = 1, then S is called a pseudocontractive mapping.

(7) S is said to be an asymptotically \-strict pseudocontraction with the sequence {d,,}
(see also [13]) if there exists a sequence {d,} C [0, 00) with d,, — 0 as n — oo and a con-
stant A € [0,1) such that

2
)

|87~ S”y“2 <@+d)lx-yI* +A[ (x = S"x) - (y - S™y)

Vx,ye C,VneN. (2.7)

The class of asymptotically strict pseudocontractions was introduced by Qihou [14] in
1996. Clearly, if S is an asymptotically nonexpansive mapping, then S is an asymptotically
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strict pseudocontraction with A = 0. We also remark that if A = 1, then S is said to be an
asymptotically pseudocontractive mapping which was introduced by Schu [15] in 1991.

(8) S is said to be an asymptotically \-strict pseudocontraction in the intermediate sense
with the sequence {d,} [4, 5] if there exists a sequence {d,,} C [0, 00) withd, — 0 asn — oo
and a constant A € [0,1) such that

timsup sup ([[$"x ~ $"y|* = @+ d)llx —y1I* = & (x - ") - (y=5")[*) <0,

n—>oo xyeC

Vx,ye C,VneN. (2.8)

Putting ¢, = max{0, sup, ,.c(IS"x - S"y||> — (1 + d,,)llx — y|I* — Al|(x — 5"x) — (y = 5"9)[1*)},
we see that ¢, — 0 as 7 — o0o. Then (2.8) is reduced to

||S”x—5”y||2 <A +d,)llx-y|*+ k” (x—s"x) - (y—s"y) ||2 +¢ Vx,yeCVnelN.

The class of asymptotically strict pseudocontractions in the intermediate sense was in-
troduced by Sahu, Xu, and Yao [4] as a generalization of a class of asymptotically strict
pseudocontractions.

For solving the equilibrium problem, let us give the following assumptions for the bi-
function F and the set C:

(Al) F(x,x)=0 forallx e C;

(A
(A

(A4) for eachx € C, y — F(x,y) is convex and lower semicontinuous.

2) F is monotone, i.e., F(x,y) + F(y,x) <0, forall x,y € C;
3) for each x,y,z € C, limsup,_, o F(tz + (1 — t)x,y) < F(x,);

Lemma 2.2 ([16]) Let C be a nonempty closed and convex subset of a real Hilbert space H.
For any x,y,z € H and given also a real number a € R, the set

{veC:ily—vlI> <llx—vl*+(zv) +a}
is closed and convex.

Lemma 2.3 ([17]) Let C be a nonempty closed and convex subset of a real Hilbert space H.
Let F: C x C — R satisfy (A1)-(A4), and let r > 0 and x € H. Then there exists z € C such
that

1
F(z,y)+-(y-2z-x)>0, VYyeC.
r

Lemma 2.4 ([18]) Assume that F : C x C — R satisfies (A1)-(A4). For r >0 and x € H,
define a mapping T, : H — C as follows:

T,(x):{zeC:F(z,y)+%(y—z,z—x)zO,VyeC}. (2.9)

Then the following hold:
(1) T, is single-valued,;
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(2) T, is firmly nonexpansive, i.e., for any x,y € H,
I Tox— Toyll* < (Trx— Ty, % y); (2.10)

(3) F(T,) =EP(F); and
(4) EP(F) is closed and convex.

Lemma 2.5 ([7,19]) Let H be a real Hilbert space. Then the following identities hold:
@) llx =17 = llxl> = IyI* = 2{x - y,9), Vx,y € H.
(i) lltx+ @ =)yl = tllxl® + A=) |IyI* - tQ - B)|lx - y||*, V£ € [0,1], Vx,y € H.
(iii) [l + 1% = llx]* + 2(p,% + ).

Lemma 2.6 ([4]) Let C be a nonempty closed and convex subset of a real Hilbert space H,
and S : C — C be a uniformly L-Lipschitz continuous and asymptotically A-strict pseudo-
contraction in the intermediate sense. Then F(S) is closed and convex.

Lemma 2.7 ([4]) Let C be a nonempty closed and convex subset of a real Hilbert space H
and S : C — C be a uniformly L-Lipschitz continuous and asymptotically A-strict pseudo-
contraction in the intermediate sense. Then the mapping I — S is demiclosed at zero, that
is, if the sequence {x,} in C is such that x,, — x and x,, — Sx,, — 0, then x € F(S).

Lemma 2.8 ([20]) Let C be a nonempty closed and convex subset of a real Hilbert space H.
Let {x,} be a sequence in H and u € H, and let q = Pcu. Suppose that {x,} is such that

wy(x,) C C and satisfies the condition
%, —ull <llu-ql, VneN.

Then x, — q.

Lemma 2.9 ([4]) Let C be a nonempty closed and convex subset of a real Hilbert space H.
Let S: C — C be an asymptotically A-strict pseudocontractive mapping in the intermediate

sense with the sequence y,. Then

1
|5 =8y < 7 (Ml =1 + U W=Dl =12 + A= D)ey),

forallx,ye CandneN.

3 Main results

In this section, we prove a strong convergence theorem which solves the problem of find-
ing a common solution of a system of equilibrium problems and a common solution of
fixed point problems in Hilbert spaces.

Theorem 3.1 Let C be a nonempty closed and convex subset of a real Hilbert space H. Let
M > 1 be a positive integer. Let {F,,})_, : C x C — R be a bifunction satisfying (A1)-(A4).
Let {S;}Y, : C — C be a uniformly Lipschitz continuous and asymptotically A;-strict pseu-
docontractive mapping in the intermediate sense for some 0 < \; < 1 with the sequences
{cui} C [0,00) such that lim,_, « c,; = 0 and {d,,;} C [0,00) such that lim,_, « d,,; = 0. Let
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A=max{};:1 <i <N}, ¢, =max{c,;:1<i<N}andd, =max{d,;:1 <i<N}. Assume
that Q := (ﬂfn/[:l SEP(F,,)) N (ﬂﬁl F(S;)) is nonempty and bounded. Let {a,}, {B.} be se-
quences in [0,1] such that0<a<a,<1,0<b<g,<1-Xa,beR,VneNand {r,,,} be
a sequence in (0,00) such that lim,_, o 7, > 0.

Let {x,} be a sequence generated by the following algorithm:

x1 € C chosen arbitrarily,

G =H,
F, Fr_ F: F
Up = TV/WV,[VI T*’iy—l}n e T’”22,n Trl}nxn’
h
2= (L= Btk + BuSigey (3.1)

Y= =@ty + QuZp,

Conn={weC:lyn— W”2 < %y = W||2 +0,},

Xn+l = Ple (xl): Vn e N;

where 0, = cyn) + dpyp2 — 0, as n — oo and p, = sup{|lx, — w|| : w € Q} < 00 and n =
(h(n) — 1)N + i(n), where i(n) € {1,2,3,...,N}. Then {x,} converges strongly to some point
p’, where p* = Po(x1).

Proof The proof is split into seven steps.

Step 1. We will show that Pq, is well defined.

From Lemma 2.4, we get ﬂff:l SEP(F,,) is closed and convex. From the assumption of
{Si}Y, and Lemma 2.6, it follows that (X, F(S;) is closed and convex.

Therefore, Q := (ﬂfn/le SEP(F,,)) N (ﬂfﬁl F(S;)) is closed and convex. Hence, Pq is well
defined.

Step 2. We will show that C,, is closed and convex for each n > 1.

By the assumption of C,,1, it is easy to see that C, is closed for each # > 1. We only show
that C, is convex for each n > 1.

Note that C; = H is convex. Suppose that Cy is convex for some k > 1. Next, we show

that Cy,; is convex for the same k. For each w € Cy, we see that
llyse = wi* < llic = wil® + 6
is equivalent to
2(xk = Yo w) < llell® = llyell® + 6. 32)
Taking wy; and w, in Cy,; and putting w = twy + (1 — t)wy, it follows that wy, wy € Ci, and so
20k = yio wr) < llael|® = llyxcll® + & (3.3)
and
20k = Yo wa) < llxill” = lyell* + . (3.4)

Combining (3.3) with (3.4), we obtain that

2wk =y, W) < llewcll® = llyll* + Ok
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That is,
—2 —n2
lye = wi® < ok = w° + .

In view of the convexity of Ci, we see that w € Ci. This implies that w € Cy,1. Therefore,
Cr+1 is convex. Hence, C,, is closed and convex for each n > 1.

Step 3. We will show that Q@ C C, for each n > 1.

Put @7 := T} Thrml - Th2 Th x, foreverym € {1,2,3,...,M} and @9 = [ forall n € N.

"m-1,n Ln

Therefore, u, = ©x,. It is obvious that @ C C; = H. Suppose that 2 C C; for some k > 1.
Next, we show that @ C Ci,; for the same k. Taking p € Q2 and for each m €
{1,2,3,...,M}, we see that Tri;”n is nonexpansive and Tf}:l”np = p. We note that

lun - pll = | O, — ONp|| < llxs—pll, VYneN. (3.5)
We observe that

2w = pI% = | (L= B) (1t = ) + Bu (k) — p)) |
= (L= Bdllttn = pI% + Ba | SL st = p|* = Bal = B) | St s — |
< (L= Bu)llttn = pI1? + Bu[ (1 + dugu) s =PI + 2| SE 11 — 11 ]|* + €]
(n)
— Bl = B) || i 1y — 1)
< (1+ dii) 1t = PI? = BuL = B = 1) | SE 14 — 4| + B
(n)
< (1 + dh(n))”un —P||2 + ﬁnch(n)- (3-6)

By virtue of convexity of | - ||, one has

2
lyn = pI* = || (1= o)Wty — p) + €u(zn = p) ||
< @ -a)llun —pl* + anllza - pll*. (3.7)

Substituting (3.5) and (3.6) into (3.7), we obtain

190 = pI* < (1= @)ty = plI* + aullzn - pII?
< (L= an)lltn = plI* + @[ (1 + dio) 1t = P + Bucnin]
< Nt = P11 + diiy 180 = PII* + Buchin
< Nt = P11 + i) 1% =PI + i
= llun ~pII* + 6, (3.8)
< [l = pII* + 6. (3.9)
Therefore, p € Cy,1, and so 2 C C, for each n > 1. Hence, {x,,} is well defined.
Step 4. We will show that {x,} is bounded.

Since Q2 is a nonempty closed and convex subset of H, there exists a unique g € 2 such
that g = Pox;. By the assumption, we have x,, = P¢, x; for any g € Q C C,,. Then

len —x1 1l < llg —x1| = [|Pex1 — %1 .
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This implies that {x,} is bounded. Therefore, {u,}, {z,}, and {y,} are also bounded.

Step 5. We will show that |u, — S;u,|| — 0 and ||x, — Six,|| > 0 as n — o0, Vi €
{1,2,3,...,N}.

Since x,, = P¢c,x1 and x,, = P¢c,x1 € Cyy1 C Cyy, we have

0 < (%1 — X X — Xp1)

= (X1 — Xy X — X1 + X1 — K1)

IA

2
=l = xu1% + [l — x5 [ ll01 = X |- (3.10)
Therefore, [lx1 — %, [1? < l|lx1 — %l %1 — %5411l and so
o — |l = 161 — %]l < %1 — X ]l (3.11)

Thus, the sequence {||x,, — %1/} is nondecreasing. Since {x,} is bounded, lim,,_,  ||%, — X1 ||
exists. On the other hand, from (3.10), we have

2 2
1% = Xper I” = 1% — X1 + %1 — X ||
2 2
= loew — a1 17 + 2(n — X1, %1 — K1) + 161 — Xpar ||
2 2
= |l = x1 1" + 2 — 1, %1 — X + Xy — Kpi1) + (%1 = X1 |
_ 2 2 2
= 1% =X 1" = 200 — o117 + 2% — X1, % — X)) + %1 — X ||
2 2
< s =21 17 = Nl — 21 |I7. (3.12)

The fact that lim,,_,  ||x,, — %1 exists implies that
lim [, — %]l = O. (3.13)
n—0o0
It is easy to see that
lim [, — %ill =0, Vi=1,2,3,...,N.
n—0o0
Since %41 = Pc,,, %1 € Cyy1, we have
2 2
”,yn — X1 l” < %y — X ll” + O

It follows that

2 2
lyn = xall” = Y1 = Xps1 + Xns1 — %l

2 2
lyn = %1l + (%01 = %017 + 2{¥n — Xna1s Xne1 — %)

IA

2 2
o — a1 17 + O + o001 — %™ + 2V — Xna1s Xnie1 — %)

1 + 2115 = Fas1 %1 — %]l + O (3.14)

< 2”xn+1 —Xn
Since 6, — 0 as n — o0 and from (3.13), we obtain

lim ||x, — y,|| =0. (3.15)
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For each p € €, it follows from the firmly nonexpansive Tf;;"‘n that for each m € {1,2,3,
...,M}, we have

|5, - p|* = | T @, - TEn
<(®)x, —p,©r %, — p)
1
= S(l©rx=p|* + €7 %0 = p|* - [ €715 - 07|,
foralll <m <M.

Thus, we get

||®Tx,, —p“2 < ||®T’1xn —p”2 - ||®Txn - @n”"lxn 2, foralll <m <M. (3.16)

This implies that for each m € {1,2,3,...,M},

(0730l = |08~ o[ - [O55 - 7715 | - [0 30 - 072

o | ©2, - O, |~ | OLt — ©%, |

m m— 2
= "xn_p”z_H@nxn_@n lxn” .
Therefore, by the convexity of || - ||* and (3.8) and the nonexpansivity of Ti;”n, we get

lyn =PI < llttn = plI* + 6,
= H @yx,, - ®{1VIPH2 +6,
=< ”@;nxn —P||2 + 6,

_ 2
=< “xn _p”2 - ”@:,nxn - @:’n 1xn || + Qn-
It follows that

|©7%, - 07 %, |” < %0 = pI* = s — > + 6,

< 1% = 7ull (1% = Pl + 11y = ) + O (3.17)
From (3.15) and (3.17), we obtain
lim [|©]x, - O] "%, | =0, Vme{1,2,3,...,M}. (3.18)
Then we have

=51 = ity ~ @211, + @215, - 6112, |

bt ||@an_®2xn|| — 0, asun— oo.
Therefore,

lim ||u, —x,|| = 0. (3.19)
n— 00
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From (3.13) and (3.19), we get

lttnir = tull < Nttnir = X | + 1%0e1 = Xull + 1y — 220]| > 0,  asn— oo. (3.20)
It follows that

nllrrgo letyei — 1yl =0, Vie{l,2,3,...,N}. (3.21)

Since for any positive integer n > N, we can write n = (h(n) — 1)N + i(n), where i(n) €
{1,2,3,...,N}, note that

”un _Snun” = Hun _SZE,,n))un H + HSfl(E,,n))un - Snun H

= ||u,, ) un ” + ||S ) Un — Sitn)Un || (3.22)

l(n i(n

From the conditions 0 <a <a, <land 0<b < B, <1- X, we get

1
4 = Si | = — Nz — 14l

B

! | Il
—-Uu
a, B In "

IA

1
E(“yn = x|l + %, = un”)

From (3.15) and (3.19), we obtain

lim [u, = i) | = 0. (3.23)

It is obvious that the relations /(#n) = h(n — N) + 1 and i(n) = i(n — N) hold.
Therefore, we compute

”S Mn Uy “ = ”S Uy S%l(i,,n_)]_\[l)un—Nﬂ ” + ||Sf$,,n_)1_\[l)un—N+l h n_,y) Uy N”

H i N Dty — thnn |+ ttnon = thynvia | + N thpnir = th|
1t St s S
H i(n— N Lt,, N — Up-N ” + | tp-n — thp-ns1ll + | Up-ns1 — Unll.
Applying Lemma 2.9 and (3.21), we get

i 15

) = 0. (3.24)
From (3.22) and (3.24), it follows that
lim ||u, — S,u,| = 0. (3.25)
n— o0
Since

”Mn _Sn+iun|| =< ”Mn - un+i” + ||un+i _Sn+iun+i” + ||Sn+iun+i _Sn+iun|| - 07 asn — o0
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foranyi e {1,2,3,...,N}, which gives that
lim ||u, - S;u,|| =0, Vie{l,2,3,...,N}. (3.26)
n—00

Moreover, for each i € {1,2,3,...,N}, we obtain

It = Sixnll < Nl — v || + 2ty — Siua || + 1|S;2, — Sz || = 0,  asm— oo,

This implies that
lim (%, —Six,l| =0, Vie{l,2,3,...,N}. (3.27)
n—0o0

Step 6. We will show that p* € Q2 := (MY, F(S:)) N (N, SEP(E,,)).
(6.1) We will show that p” € MY, F(S)).
We take p* € w,(x,) and assume that Xy — p’ for some subsequence {2} of {x,}.

Note that S; is uniformly Lipschitz continuous and (3.27), we obtain
lim |x, - Sfx,]| =0, VkeN. (3.28)
n— 00

It follows from Lemma 2.7 that

p e )F(S). (3:29)

(6.2) We will show that p” € (*._, SEP(F,,).
By Lemma 2.3, for each m € {1,2,3,..., M}, we have

E(©0%,y) + %(y - ®x,, O, — O x,) >0, VyeC.

n

From (A2), we get

1 -1
—(y - O %, O x, — O xy,> > F,, (y, @Z’xn), VyeC.

Tn
Taking # = n;, we get

o Oy — O, .
Y- ®n,»xn;’ V—n, >F, (y, @njxnj), VyeC.
From (3.18), we obtain that ®;’/’_x,,/. — p as j— oo for each m € {1,2,3,..., M} (espe-
cially Uy, = @fl;_’x,,/.). Considering this together with (3.18) and (A4), we have for each

me{1,2,3,...,M} that

0>Fu(yp), VyeC.
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ForanyO0<¢<1 andy eC,welety;=ty+(1—t)p’.Sincey € Cand p" € C, we obtain that
y; € C, and so Fm(yt, ) < 0. It follows that

0 = Fu(eye) < tFmy) + (L= )Fm(yep ) < tEu(ye,y).
Dividing by ¢, for each m € {1,2,3,..., M}, we get
F.(yy) >0, VyeC.
Letting ¢t — 0, from (A3), we get
E.(p',y) =0, VyeC.
Therefore, p* € ﬂ L SEP(F,,), and so p" € Q.
Step 7. We will show that {x,} converges strongly to Pox;.

Set p’ = Po(x1), then

VneN.

%1 — 21l < ||

Since €2 is a nonempty closed and convex subset of H, there exists a unique p~ € Q2 such that
P’ = Pq(x1). It follows from Lemma 2.8 that x,, — p’, where p” = Pq(x1). This completes
proof. d

4 Deduced theorems

If we take M =1 in Theorem 3.1, then we obtain the following result.

Theorem 4.1 Let C be a nonempty closed and convex subset of a real Hilbert space H.
Let M > 1 be a positive integer. Let F : C x C — R be a bifunction satisfying (A1)-(A4).
Let {S;}Y, : C — C be a uniformly Lipschitz continuous and asymptotically A;-strict pseu-
docontractive mapping in the intermediate sense for some 0 < )\; <1 with the sequences
{cui} C [0,00) such that lim,_, ¢, ; = 0 and {d,,;} C [0,00) such that lim,_, - d,,; = 0. Let
A=max{};: 1 <i<N}, ¢, =max{c,;:1<i<N}andd, =max{d,;:1 <i < N}. Assume
that Q := EP(F) N (ﬂfil F(S;)) is nonempty and bounded. Let {,}, {B,} be sequences in
[0,1] such that0<a <w, <1,0<b<B,<1-XabeR,VneN,{r,,} be a sequence in
(0,00) such that lim,_, o 7y, > 0.
Let {x,} be a sequence generated by the following algorithm:

x1 € C chosen arbitrarily,

Ci=H
U = TF x4,
=(1-Bu, + ,Bn un, (4.1)

Y= (1 — )ty + Ayzy,

C;’1+1 = {W € Cn : ”yn - W”2 S ”xn - W||2 + 9,,},

Xntl = PC,,+1 (xl): VrneN,
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where 0, = ¢y + dpeyp?: — 0, as n — 0o and p, = sup{||lx, — w| : w € Q} < 00 and n =
(h(n) — 1)N + i(n), where i(n) € {1,2,3,...,N}. Then {x,} converges strongly to some point
p’, where p* = Po(x1).

Remark 4.2 Theorem 4.1 improves and extends the theorem of Tada and Takahashi [21]
and the corollary of Duan and Zhao [7].

If we set F,,, =0 and ry,, =1 for all m € {1,2,3,...,N} in Theorem 3.1, then we obtain
the following result.

Theorem 4.3 Let C be a nonempty closed and convex subset of a real Hilbert space H.
Let M > 1 be a positive integer. Let {S;}Y, : C — C be a uniformly Lipschitz continuous
and asymptotically A;-strict pseudocontractive mapping in the intermediate sense for some
0 < A; < 1 with the sequences {c,,;} C [0,00) such that lim,_, o ¢,; = 0 and {d,;} C [0, 00)
such that lim,_, o d,; = 0. Let . =max{A;:1 <i <N}, ¢, =max{c,;:1<i<N}andd, =
max{d,;:1 < i< N}. Assume that Q := ﬂf\il F(S;) is nonempty and bounded. Let {,,}, { B}
be sequences in [0,1] such that0<a<a, <1,0<b<f,<1-Xr abeR,VneN, {r,,}
be a sequence in (0,00) such that lim,_, o 7y, > 0.
Let {x,} be a sequence generated by the following algorithm:

x1 € C chosen arbitrarily,
C =H,

h(n)
zy = (1= Bu)xy + 'ani(n) Xn»
In = (I — )Xy + ctpzn,

Cur=weCu:lly.— WHZ < %, = W”Z +0,},

X1 = Pc,, (1), VneN,

where 0, = cyny + dpeyp? — 0, as n — 0o and p, = sup{||lx, — w| : w € Q} < 00 and n =
(h(n) — 1)N + i(n), where i(n) € {1,2,3,...,N}. Then {x,} converges strongly to some point
p, wherep’ = Pg(x)).

Remark 4.4 Theorem 4.1 improves and extends the theorem of Sahu, Xu, and Yao [4],
the theorem of Qin, Cho, Kang, and Shang [3] and the corollary of Duan and Zhao [7].

5 Numerical examples
In this section, in order to demonstrate the effectiveness, realization and convergence of
algorithm of Theorem 3.1, we consider the following simple example that was presented

in reference [4].

Example 5.1 Letx € R and C = [0,1]. For each x € C, we define

kx, ifxe][0, %];

0, ifxe(3,1],

Sx =

where 0 < k < 1.
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Itis easy to see that S : C — Cis discontinuousatx = 1 and S is not Lipschitz continuous.
Set C; =[O0, %] and C, = (%,1],

For each «,y € C;, we have
|S"x— S"y| =K"|x -yl < |x—yl, Vx,yeCrandV¥neN.
For each x,y € C;, we have
|S”x—S”y| =0<|x-y|, Vx,yeCyandVmeN.
For each x € C; and y € C;, we have

’S”x—S”y‘ = ‘k"x—O}
< |K"(x =) + K"y
< K=yl + K"yl

<lx-yl+k", VneN.
It follows that

|S”x—5”y|2 <(x-yl+ k”)2

<lo—y* +kjx-S"x - (y —S”y)|2 + kK"K,

forallx,y € C and n € N and for some K > 0.

Therefore, S is an asymptotically k-strict pseudocontractive mapping in the intermedi-
ate sense.

In Theorem 3.1, weset N=1,F,=0,B8,=1-k, a, = "Q—ﬁ We apply it to find the fixed
point of S of Example 5.1.

Under the above assumption in Theorem 3.1 is simplified as follows:

x1 € H chosen arbitrarily,
Cl = H)
2z, = kx,, + (1= k)S"x,,,
(5.1)

-1 1
Yn = (5 )%n + (5 )2,

Cn+1 = {W € Cn : ”yn - W”2 =< ”x}’l - W||2 + Qn}r

Xn+l = Pcmlxl, VneN,

In fact, in one-dimensional case, C,,1 is a closed interval. If we set [@,,41, by41] := Cyii1, then

the projection point x,,,; of x; € C onto C,,; can be expressed as

X1, if x1 € [@n41, buirl;
X1 = Pa(x1) { b1, ifx1> byin;

Ap+ls lfxl <adpil-
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Table 1 The numerical results for an initial guess x; = 0.2,0.5,0.8

n (iterative number) Initial guess
X1 = 0.2 X1 = 0.5 X1 = 0.8
10 0.1467 0.2049 0.2105
20 0.0163 0.0205 0.0209
30 0.0016 0.0019 0.0020
40 15149 x 10* 18819 x 10% 19196 x 107
50 14889 x 107 1.8494 x 10° 18864 x 107
0.2 0.5 0.8
016 o4 07
0.14 0.35 08
0.12 03t 0.5
0.1 * 0.25 0.4 *
oo ors| 03
0.04 " 0.1 - 02r
0.02 ", 0.05 ", 01 N
0 ks, 0 e 0 Hdo
0 10 20 3 40 5 0o 10 20 30 40 50 0 10 20 30 40 50
(a) z1 = 0.2 (b) z1 = 0.5 (c) z1 = 0.8
Figure 1 The convergence comparison of different initial values x;.

The numerical results for an initial guess x; = 0.2,0.5,0.8 are shown in Table 1. From the
table, we see that the iterations converge to 0 which is the unique fixed point of S. The

convergence of each iteration is also shown in Figure 1 for comparison.
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