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1. Introduction
In this study, we established two existence results of solutions for a class of impulsive

functional differential equations which can be described in the following form

d
dt

D(t, ut) = A(t)D(t, ut) + f (t, ut,
t∫
0
e(t, s, us)ds), t ∈ [0, b], t �= ti, (1:1)

u0 = φ, φ ∈ B, (1:2)

�u(ti) = Ii(uti), i ∈ {1, . . . ,m} (1:3)

where A(t) : D(A(t)) ⊂ � → � is a family of unbounded linear closed operators

such that for each t Î [0, b], A(t) is the infinitesimal generator of analytic semigroup

of linear bounded operators (St(s))s ≥ 0 on a Banach space �, endowed with the norm

‖ ·‖� ; the history ut : (−∞, 0] → � is defined as ut(θ) = u(t + θ), θ ≤ 0; B is a set of

measurable functions � : (-∞, 0] ® X endowed with appropriate seminorm; the opera-

tor D(t, j) is defined as D(t, j) = j(0) + g(t, j), where the functions

f : [0, b] × B × � → � , f : [0, b] × B × � → � and Ii : � → � , i Î ℤ are appropriate

functions for all i Î {1, ..., m}; 0 < t1 <... < tm < b is a sequence of fixed real numbers

and the symbol Δξ(t) represents the jump of the function ξ at the moment t, this

means that Δξ (t) = ξ (t+) - ξ(t-), where the notation ξ(t+) and ξ(t-) represent, respec-

tively, the right and the left-hand side limits of the function ξ at t.

There are many physical phenomena that are described by means of impulsive differ-

ential equations, for instance, biological systems, electrical engineering, chemical reac-

tions, among others can be modeled by impulsive differential equations, a good survey

on impulsive differential equations can be found in [1] see also [2,3]. However,
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impulsive actions can influence the behavior of solutions making the analysis more dif-

ficult. Motivated by this facts, the studies of such systems have drawn the attention of

many researchers during last years.

Recently, Park et al. [4] have investigated the problem

d
dt

⎡⎣x(t) − g(t, xt ,

t∫
0

a(t, s, xs)ds)

⎤⎦ = Ax(t) + f (t, xt ,

t∫
0

e(t, s, xs)ds),

t ∈ [0, b], t �= ti, i = 1, 2, . . . ,m,

�x(ti) = Ii(x(t
−
i )), i = 1, 2, . . . ,m,

x0 = φ ∈ Bh.

(1:4)

In this model, the operator A : D(A) ⊂ � → � is the infinitesimal generator of a

compact analytic semigroup of bounded linear operators (T(t))t ≥ 0 on a Banach space

� such that 0 Î r(A), where r(A) is the resolvent set of the operator

f , g : [0, b] × Bh × � → � , f , g : [0, b] × Bh × � → � and Ii : � → � , i = 1, 2,..., m

are given functions that satisfy suitable conditions. Using the theory of fractional

powers and priori estimates for compact operators, the authors established some exis-

tence result for the problem (1.4). Lately, Balachandran and Annapoorani [5] investi-

gated the following class of abstract problem (1.5)

d
dt

[
x(t) − g(t, xt)

]
= A(t)x(t) + f (t, xt) +

t∫
0

e(t, s, xs)ds, t ∈ I = [0, b], t �= ti, i = 1, 2, . . . ,m,

�x(ti) = Ii(x(t−i )), i = 1, 2, . . . ,m,

x0 = φ ∈ Bh.

In the system (1.5), it was assumed that for each t Î [0, b] the operator A(t) is the

infinitesimal generator of compact analytic semigroup of bounded linear operators on

a Banach space �. Moreover, the domain, D(A(t)), of the operators A(t) is assumed to

be independent of t Î [0, b] and dense in �, i.e., A(t) : D ⊂ � → � with D̄ = � . To

get their results, the authors used the conditions of Acquistapace and Terreni, see [6],

to guarantee the existence of an evolution family of operators associated with the non-

autonomous abstract Cauchy problem

u′(t) = A(t)u(t), t ∈ [0, b],

u(0) = x ∈ �.

Then, using fractional powers and operators theory the authors get some existence

result based on a priori bounded estimates for compact operators.

Other authors have studied problems involving impulsive act, for retarded and neu-

tral functional differential equations we cite [7-17], for applications of impulsive differ-

ential equations on biology and neural networks we cite [18-21]. On the other hand

impulsive fractional differential equations is a topic treated in [22,23].

In this article, the study of a class of neutral impulsive integro-differential equations

is proposed. To get our results, we used the technique involving the fixed point theory

of compact and condensing operators. We pointed out that the problem studied in

this article has not been considered in the literature, once that the approach used in

this study is totally different from those studies mentioned above. Actually, the main
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difference is that in our study we need to use an assumptions of compactness on the

nonlinear equation, and in applications, these assumptions make all differences,

because, even in infinite dimensional Hilbert space it is not straightforward handedly

with compact sets. However, in our applications, we overcome this difficult using a

well-known criterion of compactness in Lp(Ω) space [[24], Kolmogorov-Riesz-Weil the-

orem]. This is the principal motivation of this study.

We now turn to a summary of this study. The second section provides tools which

are necessary to establish the main results that are the Theorems 2.3 and 2.4. In third

section, we apply our abstract results in concrete examples.

2. Preliminaries
In this study, the symbols (�, ‖ ·‖�) and (�, ‖ ·‖�) stand for Banach spaces with their,

respectively, norms and we denote by L(�,�) the Banach space of bounded linear

operators from � into � endowed with the uniform operator topology; particularly,

we denote L(�) when � = �. we start defining the evolution operator associated with

the family A(t), t Î [0. b].

Definition 2.1. A family of operators U(t, s), t ≥ s, t, s Î I is said to be an evolution

family associated to the problem (2.1) if the following conditions hold:

(a) U(t, s)U(s, r) = U(t, r) for all r ≤ s ≤ t.

(b) For each x ∈ � , the function (t, s) ® U(t, s)x is continuous from {(t, s), t ≥ s, t,

s Î I} into �.

(c) For each t > s, the function t ® U(t, s) is continuous differentiable with respect

to t and
∂

∂t
U(t, s) = A(t)U(t, s) .

The family of evolution system U(t, s) is called exponential stable if there are positive

constants M̃ and a such that ‖ U(t, s)‖L(�) ≤ M̃e−α(t−s) , for every t, s Î [0, b].

Throughout this study, A(t) : D(A(t)) ⊂ � → � denotes a family of unbounded

closed linear operators defined in a common domain D, which is independent of t and

dense in �. Moreover, we assume that the system{
u′(t) = A(t)u(t), t ≥ s, t, s ∈ I,
u(s) = x ∈ �, (2:1)

has an associated evolution family of operators U(t, s), t ≥ s, t, s Î I. For additional

details and more properties about the family U(t, s), we refer the reader to [6,25,26].

To study the problem (2.1), we consider the space of normalized piecewise continu-

ous functions PC([0, τ ],�) , this means that, a function u : [0, τ ] → � belongs to

PC([0, τ ],�) if u is continuous at t ≠ ti, u(t
−
i ) = u(ti) and u(t+i ) < ∞ , for all i = 1,...,

m. It is well known that if it is equipped with the norm ‖ u‖PC = sups∈[0,a] ‖ u(s)‖� ,
then PC([0, τ ],�) became a Banach space.

The technique used in this study is based on the compactness criterion. For this rea-

son, we will make the following assumptions.

Put t0 = 0, tn+1 = τ and for u ∈ PC([0, τ ],�) we denote by

ũi ∈ P([ti, ti+1];�), i = 0, . . . ,n , the function given by
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ũi(t) =
{

u(t), for t ∈ (ti, ti+1],
u(t+i ), for t = ti.

In particular, B̃i stands the set defined by B̃i = {ũi, u ∈ B} , where B ⊂ PC([0, τ ],�) .
Lemma 2.1. ( [12]) A set B ⊂ PC is relatively compact in PC if and only if the set

B̃i is relatively compact in the space C([ti, ti+1];�) , for every i = 0, 1,..., n.

The next step is to define the phase space. This will be done in the following way.

The space B , will be formed by all measurable functions ϕ : (−∞, 0] → � with semi-

norm ‖ ·‖B . On the phase space B we assume the following condition. Let

x : (−∞, b] → � , b > 0 be a function such that x0 = �, ϕ ∈ B and

x|[0,b] ∈ PC[0, b];�) . Then the following properties hold true.

(i) xt is in B ;

(ii) ‖ x(t)‖� ≤ H ‖ xt‖B ;

(iii) ‖ xt‖B ≤ K(t − σ )sup{‖ x(s)‖� : σ ≤ s ≤ t} +M(t − σ ) ‖ xσ‖B , where H >0 is a

constant; K, M : [0, ∞) ® [1, ∞), K(·) is continuous, M(·) is locally bounded and H,

K, M are independent of x(·).

Remark 2.1. To treat retarded impulsive differential equation we suitable modified

the axioms of the abstract phase space B . Actually, we drop the condition of continu-

ity of the B -valued function t ® xt, since t → x(t) ∈ PC in not a continuous

function.

Following the ideas of [15], we used the notations K̄ and M̄ which is defined by

K̄ := sup
s∈[0,b]

K(s) and M̄ := sup
s∈[0,b]

M(s).

In what following we give some examples of phase spaces whose the above axioms

are satisfied.

Example 2.1. Consider the function g(θ) = egθ, θ ≤ 0, g ≥ 0, and let L2([0, π], ℝ) be

the space of square integrable Lebesgue measure functions endowed with the norm

‖ ξ‖L2 = (
∫ π

0 | ξ(x) |2dx)1/2 . Then we define the phase space norm B as being

B =
{
φ : (−∞, 0] → L2([0,π];�); sup

θ≤0
eγ θ ‖ φ(θ)‖L2 < ∞)

}
.

If B is endowed with the norm ‖ φ‖B = supθ≥0e
γ θ ‖ φ(θ)‖L2 , for all φ ∈ B then it

is well known that (B, ‖ ·‖B) is a phase space and the conditions (i)-(iii) are fulfilled.

In these particular example it is possible to show that H = 1, K(t) = 1 and M(t) = e-gt,

for all t ≥ 0.

Motivated by Pazy [16,25] we adopt the following concept of mild solution to pro-

blem (1.1)-(1.3).

Definition 2.2. A function u : (−∞, b] → �, b > 0 , is a local mild solution of pro-

blem (1.1)-(1.3) if the following conditions holds.

(i) u0 = j, φ ∈ B ;
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(ii) the function u(t) ∈ PC([0, b];�) , x(t+i ) = x(ti) + Ii(xti) , for all i = 1,..., m;

(iii) the integral equation below is satisfied,

u(t) = U(t, 0)(φ(0) + g(0,φ)) − g(t, ut)

+

t∫
0

U(t, s)f (s, us,

s∫
0

e(s, τ , uτ )dτ )ds +
∑
ti<t

U(t, ti)Ii(uti), t ∈ [0, b],

is satisfied.

The tools used in this study are based on point fixed theory. For this reason, the next

two theorems play important role in the development of our results.

Theorem 2.1. [[27], Leray-Schauder Alternative] Let C be a convex subset of a

Banach space �, and assume 0 Î C. Let F : C ® C be a completely continuous opera-

tor, and let

E(F) := {x ∈ C; x = λF(x),λ ∈ (0, 1)
}
.

Then either E(F) is unbounded or F has a fixed point.

Theorem 2.2. [[28], Corollary 4.3.2] Suppose that D is a closed bounded convex sub-

set of the Banach space � and that B and C are continuous function from D to � with

(ma1) Bx + Cx Î D, for all x Î D.

(ma2) C(D) is compact set; and

(ma3) there is a number 0 ≤ g <1 such that || Bx - By || ≤ g || x - y ||, for all x, y

Î D.

Then there is z Î D such that Bz + Cz = z.

Next, we stated some important conditions used in the proof of our results.

(H1) The function g : [0, b] × B → � satisfy the following condition

(H1.1) Let φ ∈ B and consider the extension y : (−∞, b] → � of j which is

given by

y(t) =
{

φ(t), t ≤ 0,
U(t, 0)φ(0), t ∈ [0, b].

(2:2)

Then, each bounded set B of PC the family of functions {g(t, yt + ut), t Î [0, b], u Î
B} is equi-continuous.

(H1.2) There are constants c1 and c2 such that ‖ g(t,φ) ‖≤ c1 ‖ φ‖B + c2 , for all

t ≥ 0 and φ ∈ B.
(H2) The function f : [0, b] × B × � → � satisfies the following conditions.

(H2.1) The function (x, j) ® f(t, j, x) is continuous for almost everywhere t Î
[0, b].

(H2.2) The function t ® f(t, j, x) is strong measurable for each (φ, x) ∈ B × �. .
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(H2.3) There is a positive continuous function m : [0, b] ® [0, ∞) and a nonde-

creasing positive continuous function ψ: ℝ ® [0, ∞) such that

‖ f (t,φ, x)‖� ≤ m(t)ψ(‖ φ‖B+ ‖ x‖�),

for every (t,φ, x) ∈ [0, b] × B × �.

(H3) The function e : [0, b] × [0, b] × B → � satisfy the following conditions.

(H3.1) The function j ® e(t, s, j) is continuous almost everywhere for all t, s Î
[0, b].

(H3.2) The function (t, s) ® e(t, s, j) is strong measurable for each φ ∈ B.
(H3.3) There is a positive continuous function p : [0, b] ® [0, ∞) and a nonde-

creasing integrable positive function Ω: ℝ ® [0, ∞) such that

‖ e(t, s,φ)‖� ≤ p(s)�(‖ φ‖B),

for all (t, s,φ) ∈ [0, b] × [0, b] × B.

(H4) For each function u : (−∞, b] → �, with u0 ∈ B and

u(·)|[0,b] ∈ PC([0, b];�) , τ ® e(s, τ, uτ), τ Î [0,b] and t ® f(t, ut, x), t Î [0, b] are

measurable functions for almost everywhere s Î [0, b] and x ∈ �.

Now we are already to state and prove the main result of this article.

Theorem 2.3. Assume that the conditions (H1) - (H4) are satisfied. In addition, sup-

pose that the following assumptions hold.

(t1) The function g : [0, b] × B → � is completely continuous.

(t2) The operators Ii are completely continuous and there are positive constants, Li
such that

‖ Ii(x)‖� ≤ Li ‖ φ‖B,

for all φ ∈ B , x ∈ � , and i = 1,..., m.

(t3) For each bounded subsets B ⊂ PC([0, b];�) and G ⊂ � the set{
U(t, s)f (s, x̄s + ys, z), x ∈ B, z ∈ G

}
,

is relatively compact for each t ≥ s, t, s Î [0, b], where x̄ : (−∞, b] → � is an exten-

sion of x in such manner that x̄(t) = 0, t ≤ 0 and x̄(t) = x(t) , t Î [0, b].

If 1 − K(M̃
∑m

i=1 Li) > 0 and∫ t

0
ξ(s)ds <

∫ ∞

C̃

ds
ψ(s) + �(s)

ds,

where

C̃ =
(KM̃ + KM̃ +M) ‖ φ ‖ +c2(M̃ + 1)

1 − K(M̃
∑m

i=1 Li)
,
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and

ξ(t) = max

{
(KM̃ + KM̃ +M) ‖ φ ‖
1 − K̃(M̃

∑m
i=1 Li)

K̃M̃m(t), p(t)

}
, t ∈ [0, b],

then, the problems (1.1)-(1.3) have a mild solution.

Proof. Suppose that u : (−∞, b] → � is a solution of (1.1)-(1.3) and let

y : (−∞, b] → � be a continuous extension of j given in (H1). If we written the solu-

tion u(·) of the problem (1.1)-(1.3) as u(t) = x(t) + y(t), t Î (-∞, b], then we can see

that x(t) = 0, t ≤ 0 and for t Î [0, b] the following integral equation hold true

x(t) = U(t, 0)g(0,φ) − g(t, xt + yt)

+

t∫
0

U(t, s)f (s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ )ds

+
∑
ti<t

U(t, ti)Ii(xti + yti), t ∈ [0, b].

Motivated by this remark we consider the space

� =
{
x : (−∞, b] → �; x(θ) = 0, θ ≤ 0, and x(·)|[0,b] ∈ PC([0, b];�)

}
,

endowed with the norm ‖ x‖� = supt∈[0,b] ‖ x(t)‖� . Moreover, on Λ we define the

operators Γi : Λ ® Λ, i = 1, 2, 3 given by

�1x(t) = U(t, 0)f (0,φ) − f (t, xt + yt)

�2x(t) =

t∫
0

U(t, s)g(s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ )ds

�3x(t) =
∑
ti<t

U(t, ti)Ii(xti + yti),

for all t Î [0, b]. Using the fact that (U(t, s))t ≥ s is a evolution family of operators

and assuming the conditions on f, g and the family of operator Ii, i = 1,..., m, it is not

difficult see that t ® Γi(t), t Î [0, b] is a normalized piecewise continuous function for

all i = 1,..., m. This shows that Γ is well defined. In the next, we prove that the opera-

tor Γ = Γ1 + Γ2 + Γ3 satisfies all conditions of Theorem 2.1. As the proof is very long

we split it into various steps.

Step 1. The operator 1 is completely continuous

Let xn Î Λ, n Î N be a sequence of elements of Λ such that xn ® x as n ® ∞ for

some x Î Λ. From the boundedness of operators U(t, s) and the axioms of the phase

space B it is easy to see that the set
{
xnt , xt, n ∈ �, t ∈ [0, b]

}
is bounded in B ,

which implies from condition (H1) the uniformity convergence of

g(t, xnt + yt) → g(t, xt + yt), as n → ∞

on [0, b]. Thus, we have the continuity of Γ1. From condition (H1), and the axiom

(iii) follows immediately the Γ1 applies bounded sets of Λ into equi-continuous sets of

Λ. On the other hand, again by (iii), and using the fact that f is a completely
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continuous function, soon as infers that, for each t Î [0, b], the set {g(t, xt + yt), x Î B}

is compact in �. The proof that Γ1 is a completely continuous operator is complete.

Step 2. The operator Γ2 is complete continuous

The condition (H3.1) permit us conclude that e(t, s, xsn) → e(t, s, xs) as n ® ∞ almost

everywhere for t, s Î [0, b]. By (H3.3), and the Lebesgue’s dominated convergence theo-

rem we conclude that

t∫
0

e(t, s, xsn)ds →
∫ t

0
e(t, s, xs)ds,

uniformly for t Î [0, b]. From the strong continuity of the operators (U(t, s))t ≥ s, we

can conclude that

t∫
0

U(t, s)f (s, xns + ys,

s∫
0

e(s, τ , xnτ + yτ )dτ )ds →
t∫

0

U(t, s)f (s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ )ds,

as n ® ∞, uniformly for t Î [0, b]. This fact and the properties of the evolution

family U(t, s) lead us to the continuity of the operator Γ2. Next, we show that Γ2 takes

bounded sets into equi-continuous sets. First, we observe from conditions (H2.3), (H3.3)

and the axioms of phase space that{
e(t, s, xs + ys), t, s ∈ [0, b], x ∈ B

}
,

and ⎧⎨⎩f (t, xt + yt,

t∫
0

e(t, s, xs + ys)ds); t, s ∈ [0, b], x ∈ B

⎫⎬⎭ (2:3)

are bounded sets in �.

Let ε >0 be the arbitrary positive real number and t1, t2 Î [0, b], t1 > t2. Thus, take

into account the previous notes and using the assumption (iii) we see that the set⎧⎨⎩U(t2 − ε, s)g(s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ )ds, s ∈ [0, t2 − ε
/
2], x ∈ B

⎫⎬⎭
is relatively compact in �. Thus we have

‖ �2u(t2) − �2u(t1) ‖

≤
t2−ε/2∫
0

‖ [U(t1, t2 − ε) − U(t2, t2 − ε)]U(t2 − ε, s)g(s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ ) ‖ ds

+

t2−ε/2∫
t2

‖ [U(t1, s) − U(t2, s)]g(s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ ) ‖ ds

+

t1∫
t2

‖ U(t1, s)g(s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ ) ‖ ds,
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thus, from the continuity of U(t, s) and the assumptions of compactness contained

on the condition (t3) we can infer the existence of 0 < δ < ε such that if |t1 - t2| < δ

then

‖ �2x(t1) − �2x(t2) ‖ ≤ ε(t2 − ε/2)

+ 2ε/2M̃ sup
s∈[0,b]

‖ f (s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ ) ‖ ds

+ εM̃ sup
s∈[0,b]

‖ f (s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ ) ‖ ds.

This shows the equi-continuity of Γ2. In what follows, we show that for each t Î [0,

b] the set

�(t) =

⎧⎨⎩
t∫

0

U(t, s)f (s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ )ds, x ∈ B

⎫⎬⎭ , (2:4)

where B Î Λ, is pre-compact in Λ. To do that, we observe from (2.3) that for each s

Î [0, t] the set⎧⎨⎩f (s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ ), x ∈ B

⎫⎬⎭
is a bounded set. Then,

t∫
0

U(t, s)f (s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ )ds =

t−ε∫
0

U(t, s)f (s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ )ds

+

t∫
t−ε

U(t, s)f (s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ )ds,

which implies by [[28], Lemma 1.3]

t∫
0

U(t, s)f (s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ )ds

∈ tc̃o

⎧⎨⎩U(t, s)f (s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ ), s ∈ [0, t]

⎫⎬⎭ + Cε ,

with diam(Cε) < ε, where diam(·) denotes the diameter of the set Cε and co {·} the

convex hull. Taking all this into account we see that for each fixed t Î [0, b], the set

Θ(t) in (2.4) is relatively compact set in �. This completes the proof that the operator

Γ2 is completely continuous.

Step 3. The operator Γ3 is completely continuous

To show that is Γ3 is a completely continuous, consider a bounded subset B of Λ and

for each i = 1,..., m, define the set �̃i ⊂ C([ti, ti+1];�) as
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�̃i =

⎧⎨⎩
i−1∑
j=1

U(t, tj)Ij(xtj), t ∈ [ti, ti+1], x ∈ B̃i

⎫⎬⎭ .

To prove that the sets �̃i , i = 1,..., m, are precompacts in C([ti, ti+1];�) , consider t1,
t2 Î (ti, ti+1], t1 > t2. Using the continuity of (t, s) ® U (t, s)x, and the compactness of

sets Ij(B), j = 1,..., m, given ε >0 there is 0 < δ < ε such that if |t1 - t2| < δ we have

‖
i∑

j=1

(U(t1, tj) − U(t2, tj))Ij(xtj) ‖ ≤ nε,

uniformly for x Î B. On the other hand for t Î (ti, ti+1) fixed, from our hypothesis it

is not difficult see that the set

�̃i(t) =

⎧⎨⎩
i∑

j=1

U(t, tj)Ij(xtj), x ∈ B

⎫⎬⎭ ,

is relatively compact in �

On the other hand, if t = ti, the set �̃i(ti) became

�̃i(ti) =

⎧⎨⎩
i−1∑
j=1

U(t, tj)Ij(xtj), x ∈ B.

⎫⎬⎭ ,

and proceeding as in the early case we infer that the set �̃i(ti) is relatively compact

in �, The prove that the set

i−1∑
j=1

(U(ti, tj) − U(t2, tj))Ij(xtj)

is an equi-continuous set of functions is done in the same manner as at the

beginning

of the section. The proof that Γ3 is completely continuous is finished.

In the next, we obtain a priori estimative of the solutions for the equation lΓxl = xl,

for l Î (0, 1) and = Γ = Γ1 + Γ2 + Γ3. Let x be a solution of the equation lΓ(xl) = xl,

in addition we use the notation mλ(t) = K sups∈[0,t] ‖ x(s) ‖ +(KM̃ +M) ‖ φ‖B , then

we have

‖ x(t) ‖ ≤ ‖ U(t, 0)‖L(X) ‖ g(0,φ) ‖ + ‖ g(t, xt + yt) ‖

+

t∫
0

‖ U(t, s)‖L(X) ‖ f (s, xs + ys,

s∫
0

e(s, τ , xτ + yτ )dτ )ds ‖

+
∑
tj<t

‖ U(t, tj)‖L(X) ‖ Ij(xtj)‖L(X)

≤ M̃ ‖ φ ‖ +c1mλ(t) + c2(M̃ + 1)

+ M̃

t∫
0

m(s)ψ(mλ(s) +

s∫
0

p(τ )�(mλ(τ ))dτ )ds + M̃
∑
ti<t

Limλ(t),
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this implies that

mλ(t) ≤ (KM̃ + KM̃ +M) ‖ φ ‖ +c2(M̃ + 1)

1 − K(M̃
∑m

i=1 Li)

+
(KM̃ + KM̃ +M) ‖ φ ‖
1 − K(M̃

∑m
i=1 Li)

M̃K

t∫
0

m(s)ψ(mλ(s) +

s∫
0

p(τ )�(mλ(τ ))dτ )ds.

If we take the right-hand side of the previous inequalities and call it of v(t) we have

that ml(t) ≤ v(t), for all t Î [0, b]. This leads us to the following inequality:

v(t) ≤ (KM̃ + KM̃ +M) ‖ φ ‖ +c2(M̃ + 1)

1 − K(M̃
∑m

i=1 Li)

+
(KM̃ + KM̃ +M) ‖ φ ‖
1 − K(M̃

∑m
i=1 Li)

KM̃

t∫
0

m(s)ψ(v(s) +

s∫
0

p(τ )�(v(τ ))dτ )ds,

this yields

v′(t) ≤ (KM̃ + KM̃ +M) ‖ φ ‖
1 − K(M̃

∑m
i=1 Li)

KM̃m(t)ψ(v(t) +

t∫
0

p(τ )�(v(τ ))dτ ).

Next, we considered the function � (t) = v(t) +
t∫
0
p(s)�(v(s))ds , thus we have that v

(0) = ϖ(0) and v(t) ≤ ϖ(t), for all t Î [0, b], using this and the non-decreasingly prop-

erties of the function ψ(·), we get

� ′(t) ≤ (KM̃ + KM̃ +M) ‖ φ ‖
1 − K(M̃

∑m
i=1 Li)

KM̃m(t)ψ(� (t)) + p(t)�(� (t)), t ∈ [0, b].

Observe that if we define the function

ξ(t) = max{ (K̃M̃ + K̃M̃ +M) ‖ φ ‖
1 − K̃(M̃

∑m
i=1 Li)

K̃M̃m(t), p(t)}, t ∈ [0, b] then we have

� ′(t) ≤ ξ(t)ψ(� (t)) + �(� (t)),

which implies that

� ′(t)
ψ(� (t)) + �(� (t))

≤ ξ(t),

for all t Î [0, b]. Integrating the early inequality from 0 to t we have

� (t)∫
� (0)

ds
ψ(s) + �(s)

≤
t∫

0

ξ(s)ds <

∞∫
� (0)

ds
ψ(s) + �(s)

.

The early inequalities enable us to conclude that the set {xl, xl = Γxl, l Î (0, 1)} is

bounded. From Theorem 2.1 the problem (1.1)-(1.3) has a mild solution. The proof of

theorem is completed. □
In the next result, the following conditions are used.
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(G1) There is a positive constant Lf such that

‖ g(t,φ) − g(t,ψ)‖� ≤ Lg ‖ φ − ψ‖B,

for every t Î [0, b] and φ,ψ ∈ B.

(G2) There are positive constants di, i = 1,..., m, such that

‖ Ii(x) − Ii(y)‖� ≤ di ‖ x − y‖�,

for every x, y ∈ � ..
Theorem 2.4. Assume that the condition (H2)-(H3) and (G1)-(G2) are satisfied. In

addition, suppose that the assumption (iii) of Theorem (2.3) is satisfied. Then if

LgK + KM̃ lim inf
ξ→∞

ψ(ξ + �(ξ)
∫ b
0 p(τ )dτ )

ξ

b∫
0

m(s)ds + M̃K
n∑
i=1

di < 1,

and

(Lg + M̃
n∑
i=1

di) < 1,

then the problem (1.1)-(1.3) has a mild solution.

Proof. Let us consider the operator Γ: Λ ® Λ defined as in Theorem 2.3. We claim

that there is r >0 such that Γ(Br) ⊂ Br. Suppose by contradiction that this assumption

is false. Then for each r >0 there are tr Î [0, b] and ur(·) Î Br such that

‖ �(ur)(tr)‖� ≥ r. This implies that

r ≤ M̃(H ‖ φ‖B+ ‖ g(0,φ)‖X) + M̃

tr∫
0

‖ f (s, urs + ys,

s∫
0

e(s, τ , urτ + yτ )dτ ) ‖ ds

+
∑
ti<tr

‖ U(tr , ti)Ii(urti + yti) ‖ + ‖ g(tr , urtr + ytr )‖X

≤ M̃(H ‖ φ‖B+ ‖ g(0,φ)‖X) + Lg(Kr + (KM̃H +M) ‖ φ ‖) + sup
s∈[0,b]

‖ g(s, 0) ‖

+ M̃ψ(Kr + (KM̃H +M) ‖ φ ‖ +�(Kr + (KM̃H +M) ‖ φ ‖)
b∫

0

p(τ )dτ )

b∫
0

m(s)ds

+ M̃
n∑
i=1

(di(Kr + (KM̃H +M) ‖ φ ‖)+ ‖ Ii(0)‖X),

take the lim inf in the previous inequality, we have

1 ≤ LgK + KM̃ lim inf
ξ→∞

ψ(ξ + �(ξ)
∫ b
0 p(τ )dτ )

ξ

b∫
0

m(s)ds

+ M̃K
n∑
i=1

di,

which is contradictory with our assumptions. So let r >0 be such a number and con-

sider the restriction �|Br of the operator Γ on Br, that is, �|Br : Br → Br Next, we split

the operator Γ in the following way Γ = Γ1 + Γ2, where
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�1(u) = U(t, 0)(φ(0) + g(0,φ)) − g(t, ut + yt) +
∑
ti<t

U(t, ti)Ii(uti + yti), t ∈ [0, b] and

�2(u) =

t∫
0

U(t, s)f (s, us + ys,

s∫
0

e(s, τ , uτ + yτ )dτ )ds, t ∈ [0, b].

As shown in the proof of Theorem 2.3, it is not difficult to see that Γ2 is completely

continuous and for u1, u2 Î Λ we have that

‖ �1(u1)(t) − �1(u2)(t)‖� ≤ Lf ‖ u1t − u2t ‖ +M̃
n∑
i=1

di ‖ u1ti − u2ti ‖

≤ (Lf + M̃
n∑
i=1

di) ‖ u1 − u2‖�.

The previous inequality shows that Γ1 is contractive. Now, by Theorem 2.2, we can

conclude that the problem (1.1)-(1.3) has a mild solution. □

3. Applications
The main aim of this section is to apply our abstract results in concrete examples. To

this end, we handle with a very special kind of operators. To be more specific, on the

Banach space � = L2([0,π],�) we define the operator A : D(A) → � given by Ax(ξ) =

x“(ξ), ξ Î [0, π] with domain

D(A) =
{
x ∈ �; x′′ ∈ �and x(0) = x(π) = 0

}
.

It is well known that in this case A has a discrete spectrum which is given by -n2, n

Î N. Moreover, � has a completely orthonormal base formed by eigenfunctions of A

associated with the eigenvalues -n2, which is given xn(ξ) =
√

2
π
sin(nξ) , n Î N. This

implies that the following conditions are satisfied.

(i) For each f ∈ � , f (ξ) =∑∞
n=1〈f , xn〉xn(ξ),

(ii) For each f Î D(A), we have Af (ξ) = −∑∞
n=1 n

2〈f , xn〉xn(ξ) ,

where 〈·,·〉 represents the inner product in �. Taking into account all these informa-

tion, it is possible to prove that the operator A is the infinitesimal generator of a com-

pact semigroup of bounded linear operators (T(t))t ≥ 0, which is given by

T(t)f (ξ) =
∞∑
n=1

e−n2t〈f , xn〉xn(ξ), t ≥ 0, ξ ∈ [0,π].

To guarantee the existence of an evolution family associated with the problem{
u′(t) = A(t)u(t), t ≥ s, t, s ∈ [0, b]
u(s) = x ∈ �, (3:1)

the following assumptions on the function a0 : [0, b] × [0, π] ® ℝ are made
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(a1) There are constants c >0 and a Î (0, 1) such that

| a0(t, ξ) − a0(s, ξ) |≤| t − s|α ,

for all t, s Î [0, b] and almost everywhere ξ Î [0, π].

(b0) there is a real number c0 such that

a0(τ , ξ) ≤ c0,

for all τ Î [0, ∞) and ξ Î [0, π].

Letting D(A(t)) = D(A) for all t ≥ 0 and A(t)x(ξ) = a0(t, ξ)x“(ξ), ξ Î [0, π], we have

that the system (3.1) has an associated evolution family of operators (U(t, s))t ≥ s which

is given explicitly by the following formula:

(U(t, s)f )(ξ) =
∞∑
n=0

e−n2
∫ t
s a0(τ ,ξ)dτ 〈f , xn〉xn(ξ), ξ ∈ [0,π], t ∈ [0, b].

Using the properties of semigroup (T(t))t ≥ 0 it is straightforward to show that U(t, s)

satisfies the condition

‖ U(t, s)‖L(�) ≤ e−c0(t−s), t ≥ s.

Next, we consider the following partial differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t

(
u(t, ξ) +

ξ∫
0

t∫
0
k1(s, ξ1)u(s, ξ1) sin(ξ)dsdξ1

)

= a0(t, ξ)
∂2

∂ξ2

(
u(t, ξ) +

ξ∫
0

t∫
0
k1(s, ξ1)u(s, ξ1) sin(ξ)dsdξ1

)
+

t∫
−∞

k2(−s)P2(s, u(t, ξ))ds +
t∫
0

s∫
−∞

k3(t − δ)P3(δ − t, u(t, ξ)dδds),

u(t, 0) = u(t,π) = 0, s ∈ [0,π],

u(s, ξ) = φ(s, ξ), s ≤ 0, ξ ∈ [0,π],

u(t+i , ξ) = u(ti, ξ) +
ξ∫
0
k4,i(ξ)u(ti, ξ1)dξ1, i = 1, . . . ,m.

(3:2)

To model the problem (3.2) we choose as the phase space the set formed by all pie-

cewise continuous functions ϕ : (−∞, 0] → � which sups ≤ 0 h(θ) || �(s) || <∞, where

h(θ) = ebθ, θ ≤ 0, and we denote this space by Bh equipping it with the norm

‖ ϕ‖Bh = sups≤0 h(s) ‖ ϕ(s) ‖ . In order to show that the conditions (H1)-(H4) are satis-

fied we needed to consider the following assumptions.

(p1) The function P2 : (-∞, 0] × ℝ ® [0, ∞) satisfies the following conditions:

(p1.1) for each h Î ℝ, s ® P2(s, h ) is a measurable and bounded function,

(p1.2) there is a positive constant LP2 such that

| P2(s, η1) − P2(s, η2) | ≤ LP2 | η1 − η2 |,

for all s ≤ 0, and h i Î ℝ, i = 1, 2.
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(p2) The functions s → ∫ π

0 k1(s, ξ1)dξ1 and ξ → ∫ 0
−b k1(s, ξ)ds are bounded

almost everywhere on [-b, 0] × [0, π], s → ∫ π

0 k1(s, ξ1)2e−βsdξ1 is integrable on the

interval [-b, 0].

(p3)k2(·) Î L((-∞, π]) and s ® P2(s, h ) is measurable and bounded function for

each h Î ℝ. In addition we assume the existence of positive constant LP2 such that

the following inequality hold true

| P2(s, η2) − P2(s, η1) |≤ LP2 | η2 − η1 |,

for almost everywhere s Î (-∞, 0] and h i Î [0, π], i = 1, 2.

(p4) The function P3 : [-π, ∞) × ℝ ® ℝ satisfies the following conditions.

(p4.1) for each h Î ℝ, s ® P3(s, h ), s Î [-∞, b), is a measurable and bounded

function,

(p4.2) there is a positive constant LP3 such that

| P3(t, η2) − P3(t, η1) |≤ LP3 | η2 − η1 |,

for all s Î [-π, ∞) and h i Î ℝ, i = 1, 2.

(p4.3) The function k3(·) Î L([-π, ∞)).

To transform the problem (3.2) into the abstract system (1.1), we define the func-

tions g : [0, b] × Bh → �, f : [0, b] × B × � → � , e : [0,T] × [0,T] × Bh → � and

Ii : B → � , i = 1, 2,..., n, respectively, given by,

g(t,ϕ)(ξ) =

ξ∫
0

0∫
−t

ϕ(s, ξ1) sin(ξ)ds, t ∈ [0,∞), ξ ∈ [0,π],

f (t,ϕ, x)(ξ) =

0∫
−∞

k2(−s)P2(s,ϕ(0, ξ))ds + x(ξ), t ∈ [0, b], ξ ∈ [0,π]

e(t, s,ϕ)(ξ) =

s∫
−∞

k3(t − τ )P3(τ ,ϕ(0, ξ))dτ , t, s ∈ [0,T], ξ ∈ [0,π],

Ii(φ)(ξ) =

ξ∫
0

k4,i(ξ)φ(0, ξ1)dξ1.

We shall show that the condition (H1) hold true. In fact, let x : (-∞, π] ® L1(0, π) be

a bounded function such that x | [0,π] ∈ PC([0,π]; L1(0,π)) we have
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| g(t + h, xt+h)(ξ) − g(t, xt)(ξ) | ≤
ξ∫

0

t+h∫
t

| x(s, ξ1) sin(ξ) | dsdξ

≤
t+h∫
t

⎛⎝ ξ∫
0

x(s, ξ1)
2dξ1

⎞⎠1/2⎛⎝ ξ∫
0

k1(s, ξ1)
2dξ1

⎞⎠1/2

| sin(ξ) | ds

≤ sup
s∈[−b,0]

⎛⎝ π∫
0

x(s, ξ1)
2dξ1

⎞⎠1/2 t+h∫
t

⎛⎝ π∫
0

k1(s, ξ1)
2dξ1

⎞⎠1/2

| sin(ξ) | ds.

The previous inequalities jointly with the assumption (p2) show that the function t

® g(t, xt) is uniformly continuous on bounded subsets ofPC([0, b] , L2(0, π)) which
implies that the condition (H1.1) hold true. To prove that the condition (H1.2) is satis-

fied, we observe that

| g(t,φ)(ξ) | ≤
ξ∫

0

0∫
−t

| k1(s, ξ1) ‖ φ(s, ξ1) | dsdξ1

≤
0∫

−t

⎛⎝ ξ∫
0

k1(s, ξ1)
2e−βsdξ1

⎞⎠1/2⎛⎝ ξ∫
0

φ(s, ξ1)
2eβsdξ1

⎞⎠1/2

ds

≤ sup
s≤0

⎛⎝ ξ∫
0

φ(s, ξ1)
2eβsdξ1

⎞⎠1/2 0∫
−t

⎛⎝ π∫
0

k1(s, ξ1)
2e−β,sdξ1

⎞⎠1/2

ds,

which implies the condition (H1.2).

The next step is a proof that the function (x, j) ® f(t, j, x) is continuous. However,

with the help of condition (p2) we have

π∫
0

| f (t,φ2, x2)(ξ) − f (t,φ1, x1)(ξ) |2 ≤ 4LP2

π∫
0

| φ2(0, ξ) − φ1(0, ξ) |2dξ + 4

π∫
0

| x2(ξ) − x1(ξ) |2dξ

≤ 4LP2 sup
s≤0

π∫
0

eβs | φ2(s, ξ) − φ1(s, ξ) |2dξ

+ 4

π∫
0

| x2(ξ) − x1(ξ) |2dξ ,

for all φi ∈ B , xi ∈ � , i = 1, 2. Thus we have shown that the condition (H2.1) is ful-

filled. In particular, as P2 is continuous in the second variable we have that for each

(φ, x) ∈ B × � fixed the function ξ → ∫ 0
−∞ k2(−s)P2(s,φ(0, ξ))ds is measurable. Thus

from [[24], Theorem 1.2.1] we infer that t ® f(t, j, x) is measurable for each

(φ, x) ∈ B × � . On the other hand, assuming that s ® P2(s, 0), s Î (-∞, 0] is bounded

function, we have that

| f (t,φ, x)(ξ) |2 ≤ 4LP2 | φ(0, ξ) |
⎛⎝ 0∫

−∞
k2(−s)ds

⎞⎠2

+16

⎛⎝ 0∫
−∞

k2(−s)P2(s, 0)ds

⎞⎠2

+16 | x(ξ) |2,
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which implies that

‖ f (t,φ, x)‖� ≤ 4

⎧⎪⎨⎪⎩LP2
⎛⎝ 0∫

−∞
k2(−s)ds

⎞⎠2

,

4π

⎛⎝ 0∫
−∞

k2(−s)P2(s, 0)ds

⎞⎠2

, 4

⎫⎪⎬⎪⎭
1/2

(‖ φ‖B+ ‖ x‖�).

(3:3)

Thus the condition (H2.3) is fulfilled.

On the other hand, the same idea applied to prove that the previous functions is of

Caratheádory type can be used to show that function e(·,·,·) satisfies the same property.

Here it is mentioned that the functions that appear in the condition (H3.3) are given by

‖ e(t, s,φ)‖� ≤ 4max

⎧⎨⎩LP2
⎛⎝ s∫

−∞
k2(−δ)dδ

⎞⎠2

,

4π

⎛⎝ s∫
−∞

k2(−δ)P2(δ, 0)dδ

⎞⎠2

, 4

⎫⎬⎭
1/2

‖ φ‖B.

(3:4)

Finally, it remains that the condition (H4) is valid. However, we observe that

Bh ⊂ L∞
h ((−∞, 0], L2((0,π))),

where a function j : (-∞, 0] ® L2(0, π) is an element of L∞
h ((−∞, 0] , L2(0, π)) if

and only if

ess sup
s≤0

π∫
0

h(s)φ2(s, ξ)dξ < ∞,

with the norm defined by ‖ φ‖L∞
h
= inf{a;μ{θ ∈ (−∞, 0]; ‖ φ‖L2 > a} = 0} , where μ

= hdξ, and dξ representing the Lebesgue measure on (-∞, 0]. Thus, following the ideas

of [[29], Theorem 3.8] and using the fact that h(θ - t) ≤ G(-t)h(θ), θ ≤ 0, G(-t) = e-bt, t

≥ 0, we see that if u : (0, -∞] ® L2(0, π) is admissible function in the sense of [29],

then we derive the mensurability of t ® ut, t Î [0, b]. Thus, as e(·,·,·) and f(·,·,·) are

measurable functions we infer that τ ® e(t, τ, uτ ) and τ ® f(t, uτ, x) for all t, τ Î [0,

b], x Î L2(0, π). Now we will see that the conditions of the Theorem 2.3 hold. To see

this, we observe that

| g(t,ϕ)(ξ + h) − g(t,ϕ)(ξ) | ≤
ξ∫

0

0∫
−t

| ϕ(s, ξ1) ‖ (sin(ξ + h) − sin(ξ)) | dsdξ1

+

ξ+h∫
ξ

0∫
−t

| ϕ(s, ξ1) ‖ sin(ξ) | dsdξ1,
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taking the advantage of the previous inequality we have

| g(t,ϕ)(ξ + h) − g(t,ϕ)(ξ) | ≤ b sup
s≤0

⎛⎝ π∫
0

eβs | ϕ(s, ξ1) |2dξ1
⎞⎠ π−h∫

0

| (sin(ξ + h) − sin(ξ)) | ds

+ bh sup
s≤0

⎛⎝ π∫
0

eβs | ϕ(s, ξ1) |2dξ
⎞⎠1/2

| sin(ξ + h) | ds,

which implies from [[24], Theorem A.5.2] the assumption (t1).

The same idea which was used to prove the compactness of the function g can be

used to prove that compactness of the operators Ii, i = 1,..., m. Regarding the inequality

that appear in the condition (t2), we observe that to exhibit explicitly the ci constants, i

= 1,..., m, the following account is necessary

‖ Ii(φ) ‖2B ≤ π ‖ φ ‖2B
π∫

0

k24,i(ξ)dξ ,

for all i = 1,..., m.

As we choose the phase space as being Bh , then it is possible to show that the con-

stant H and the functions K(·) and M(·) that appear in the axioms (ii) and (iii) are

given, respectively, by H = 1, K(t) = 1 and M(t) = e-bt, for all t ≥ 0.

Taking into account what was said before we derive the following result.

Theorem 3.1. Assume that all previous conditions are fulfilled. Assume in addition

that the following inequalities hold,

b∫
3 ‖ φ ‖

1 −∑m
i=1 Li

p(s)ds < ∞,

where p(·) represents the right-hand side of the inequalities (3.4). Then the problem

(3.2) has a mild solution.

4. Competing interests
The authors declare that they have no competing interests.

5. Authors’ contributions
MNR conceived the study and participated in its design and coordination. MH partici-

pated in the design of the study and performed the typesetting of the text. GS partici-

pated in the design of the article. All authors read and approved the final manuscript.

Author details
1Departamento De Matemática, Universidade Federal De Pernambuco, Recife-pe, Cep 50540-740, Brazil 2Faculdade De
Ciência E Tecnologia De Caruaru, Universidade De Pernambuco, Caruaru-pe, Cep 55002, Brazil

Received: 1 March 2011 Accepted: 7 December 2011 Published: 7 December 2011

References
1. Bainov, DD, Pavel, S: Impulsive Differential Equations: Periodic Solutions and Applications. In: Pitman Monographs and

Surveys in Pure and Applied Mathematics. pp. x+228. Longman Scientific & Technical, Harlow, UK66, (1993)
2. Samoilenko, AM, Perestyuk, NA: Impulsive Differential Equations. World Scientific, Singapore (1995)
3. Lakshmikanthan, V, Bainov, D, Simeonov, P: Theory of Impulsive Differential Equations. In series in Modern Applied

Mathematics. World Scientific, Teaneck, NJ. 6 (1989)

Rabelo et al. Journal of Inequalities and Applications 2011, 2011:135
http://www.journalofinequalitiesandapplications.com/content/2011/1/135

Page 18 of 19



4. Park, JY, Balachandran, K, Annapoorani, N: Existence results for impulsive neutral functional integrodifferential equations
with infinite delay. Nonlinear Anal. 71, 3152–3162 (2009). doi:10.1016/j.na.2009.01.192

5. Balachandran, K, Annapoorani, N: Existence results for impulsive neutral evolution integrodifferential equations with
infinite delay. Nonlinear Anal Hybrid Syst. 3, 674–684 (2009). doi:10.1016/j.nahs.2009.06.004

6. Schnaubelt, R: Asymptotic behavior of parabolic nonautonomous evolution equations. In Functional Analytic Methods
for Evolution Equations. Lecture Notes in Mathematics, vol. 1855, pp. 401–472.Springer, Berlin (2004)

7. Hernández, E, Prokopezyk, A, Ladeira, L: A note on partial functional differential equations with state-dependent delay.
Nonlinear Anal Real World Appl. 7(4), 510–519 (2006). doi:10.1016/j.nonrwa.2005.03.014

8. Baghli, S, Benchohra, M: Perturbed functional and neutral functional evolution equations with infinite delay in Fréchet
spaces. Elec J Differ Equ. 69, 1–19 (2008)

9. Ahmad, S, Stamov, GT: Almost periodic solutions of N-dimensional impulsive competitive systems. Nonlinear Anal Real
World Appl. 10(3), 1846–1853 (2009). doi:10.1016/j.nonrwa.2008.02.020

10. Ahmad, S, Stamov, GT: On almost periodic processes in impulsive competitive with delay and impulsive perturbations.
Nonlinear Anal Real World Appl. 10(5), 2857–2863 (2009). doi:10.1016/j.nonrwa.2008.09.003

11. Hernádez, E, Henráquez, H: Existence of periodic solutions of partial neutral functional differential equations with
unbounded delay. J Math Anal Appl. 221(1), 499–522 (1998)

12. Hernïández, E, Pierri, M, Gonáalves, G: Existence results for an impulsive abstract partial differential equation with state-
dependent delay. Comput Math Appl. 52(3-4), 411–420 (2006). doi:10.1016/j.camwa.2006.03.022

13. Hernández, E, Rabelo, M, Henráquez, H: Existence of solutions for impulsive partial neutral functional differential
equations. J Math Anal Appl. 331, 1135–1158 (2007). doi:10.1016/j.jmaa.2006.09.043

14. Chang, YK, Anguraj, A, Arjunan, MM: Existence results for impulsive neutral functional differential equations with infinite
delay. Nonlinear Anal Hybrid Syst. 2, 209–218 (2008). doi:10.1016/j.nahs.2007.10.001

15. Cuevas, C, Hernández, E, Rabelo, M: The existence of solutions for impulsive neutral functional differential equations.
Comput Math Appl. 58(4), 744–757 (2009). doi:10.1016/j.camwa.2009.04.008

16. Hernández, E, Hernráquez, HR: Impulsive partial neutral differential equations. Appl Math Lett. 19, 215–222 (2006).
doi:10.1016/j.aml.2005.04.005

17. Hernádez, E, McKibben, M, Henráquez, HR: Existence results for abstract impulsive second order neutral functional
differential equations. Nonlinear Anal Theory Methods Appl. 70(7), 2736–2751 (2009). doi:10.1016/j.na.2008.03.062

18. Stamov, GT: On the existence of almost periodic solutions for the impulsive Lasota-Wazewska model. Appl Math Lett.
22(4), 516–520 (2009). doi:10.1016/j.aml.2008.07.002

19. Stamov, GT: Almost periodic models of impulsive Hopfield neural networks. J Math Kyoto Univ. 49(1), 56–67 (2009)
20. Stamov, GT: Stability processes of moving invariant manifolds in uncertain impulsive differential-difference equations.

Math Bohem. 134(1), 67–76 (2009)
21. Stamov, GT: Existence of almost periodic solutions for impulsive cellular neural networks. Rocky Mountain J Math. 38(4),

1271–1284 (2008). doi:10.1216/RMJ-2008-38-4-1271
22. Benchohra, M, Slimani, BA: Existence and uniqueness of solutions to impulsive fractional differential equations. Elec J

Differ Equ. 2009(10), 11 (2009)
23. Agarwal, RP, Benchohra, M, Slimani, BA: Existence results for differential equations with fractional order and impulses.

Mem Diff Equ Math Phys. 44, 1–21 (2008)
24. Vrabie, II: C0-semigroups and applications. North-Holland Mathematics Studies. pp. xii+373. North-Holland Publishing

Co., Amsterdam191, (2003)
25. Pazy, A: Semigroups of linear operators and applications to partial differential equations. In Applied Mathematical

Sciences, vol. 44,Springer, New York (1983)
26. Lunardi, A: Analytic Semigroups and Optimal Regularity in Parabolic Problems. In Progress in Nonlinear Differential

Equations and Their Applications, vol. 16,Birkháauser Verlag, Basel (1995)
27. Granas, A, Dugundji, J: Fixed Point Theory. Springer, New York (2003)
28. Martin, RH Jr: Nonlinear Operators and Differential Equations in Banach Spaces. Pure and Applied Mathematics. pp. xi

+440.Wiley, New York (1976)
29. Hino, Y, Murakami, S, Naito, T: Functional-Differential Equations with Infinite Delay. Lectures Notes in Mathematics.

Spring, New York1473 (2003)

doi:10.1186/1029-242X-2011-135
Cite this article as: Rabelo et al.: Existence of integro-differential solutions for a class of abstract partial impulsive
differential equations. Journal of Inequalities and Applications 2011 2011:135.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Rabelo et al. Journal of Inequalities and Applications 2011, 2011:135
http://www.journalofinequalitiesandapplications.com/content/2011/1/135

Page 19 of 19

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1. Introduction
	2. Preliminaries
	Step 1. The operator 1 is completely continuous
	Step 2. The operator Γ2 is complete continuous
	Step 3. The operator Γ3 is completely continuous

	3. Applications
	4. Competing interests
	5. Authors’ contributions
	Author details
	References

