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We consider an elliptic hemivariational inequality with nonlocal nonlinearities. Assum-
ing only certain growth conditions on the data, we are able to prove existence results for
the problem under consideration. In particular, no continuity assumptions are imposed
on the nonlocal term. The proofs rely on a combined use of recent results due to the
authors on hemivariational inequalities and operator equations in partially ordered sets.
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1. Introduction

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary ∂Ω, and let V =W1,p(Ω)

and V0 =W
1,p
0 (Ω), 1 < p <∞, denote the usual Sobolev spaces with their dual spaces V∗

andV∗
0 , respectively. In this paper, we deal with the following quasilinear hemivariational

inequality:

u∈V0 :
〈−Δpu,v−u

〉
+
∫

Ω
jo(u;v−u)dx ≥ 〈�u,v−u〉, ∀ v ∈V0, (1.1)

where jo(s;r) denotes the generalized directional derivative of the locally Lipschitz func-
tion j :R→R at s in the direction r given by

jo(s;r)= limsup
y→s, t↓0

j(y + t r)− j(y)
t

, (1.2)

(cf., e.g., [3, Chapter 2]), Δpu= div(|∇u|p−2∇u) is the p-Laplacian with 1 < p <∞, and
〈·,·〉 denotes the duality pairing between V0 and V∗

0 . The mapping � : V0 → V∗
0 on

the right-hand side of (1.1) comprises the nonlocal term and is generated by a function
F :Ω×Lp(Ω)→R through

�u := F(·,u). (1.3)

Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2006, Article ID 79532, Pages 1–13
DOI 10.1155/JIA/2006/79532

http://dx.doi.org/10.1155/S1025583406795327


2 Nonlocal and nonsmooth hemivariational inequalities

While elliptic hemivariational inequalities in the form (1.1) with �u replaced by a given
element f ∈V∗

0 have been treated recently, for example, in [2] under the assumption that
appropriately defined super- and subsolutions are available, the novelty of the problem
under consideration is that the term on the right-hand side of (1.1) is nonlocal and not
necessarily continuous in u. Moreover, we do not assume the existence of super- and sub-
solutions.

Our main goal is to prove existence results for problem (1.1) only under the assump-
tion that certain growth conditions on the data are satisfied.

Problem (1.1) includes various special cases, such as the following. for example.
(i) For j : R→ R smooth, (1.1) is the weak formulation of the nonlocal Dirichlet

problem

u∈V0 :−Δpu+ j′(u)=�u in V∗
0 . (1.4)

(ii) If j :R→R is not necessarily smooth, and g :Ω×R→R is a Carathéodory func-
tion with its Nemytskij operator G, then the following (local) hemivariational
inequality of the form

u∈V0 :
〈−Δpu,v−u

〉
+
∫

Ω
jo(u;v−u)dx ≥ 〈Gu,v−u〉, ∀ v ∈V0, (1.5)

is a special case of (1.1) by defining F(x,u) := g(x,u(x)).
(iii) If j :R→R is convex, then (1.1) is equivalent to the following inclusion:

u∈V0 :−Δpu+ ∂ j(u)��u in V∗
0 , (1.6)

where ∂ j(s) denotes the usual subdifferential of j at s in the sense of convex ana-
lysis.

(iv) As for an example of a (discontinuous) nonlocal � that will be treated later, we
consider F defined by

F(x,u)= [|x|]+ γ
∫

Ω

[
u(x)

]
dx, (1.7)

where γ is some positive constant, and [·] :R→ Z is the integer function which
assigns to each s∈R the greatest integer [s]∈ Z satisfying [s]≤ s.

The plan of the paper is as follows. In Section 2 we formulate the hypotheses and themain
result. In Section 3 we deal with an auxiliary hemivariational inequality which arises from
(1.1) by replacing �u on the right-hand side by a given f ∈ V∗

0 . The preliminary results
about this auxiliary problem are of independent interest. Finally, in Section 4 we prove
our main result and give an example.

2. Hypotheses andmain result

We denote the norms in Lp(Ω),V0, and V∗
0 by ‖ · ‖p, ‖ · ‖V0 , and ‖ · ‖V∗

0
, respectively.

Let ∂ j :R→ 2R \ {∅} denote Clarke’s generalized gradient of j defined by

∂ j(s) := {ζ ∈R} | jo(s;r)≥ ζ r, ∀r ∈R, (2.1)
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(cf., e.g., [3, Chapter 2]). Denote by λ1 the first Dirichlet eigenvalue of −Δp which is
positive (see [5]) and given by the variational characterization

λ1 = inf
0�=u∈V0

∫
Ω |∇u|p dx∫
Ω |u|pdx

. (2.2)

Further, let Lp(Ω) be equipped with the natural partial ordering of functions defined by
u≤w if and only if w−u belongs to the positive cone L

p
+(Ω) of all nonnegative elements

of Lp(Ω). This induces a corresponding partial ordering also in the subspace V of Lp(Ω).
We assume the following hypothesis for j and F.
(H1) The function j : R→ R is locally Lipschitz and its Clarke’s generalized gradient

∂ j satisfies the following conditions:
(i) there exists a constant c1 ≥ 0 such that

ξ1 ≤ ξ2 + c1
(
s2− s1

)p−1
(2.3)

for all ξi ∈ ∂ j(si), i= 1,2, and for all s1, s2 with s1 < s2;
(ii) there are a ε ∈ (0,λ1) and a constant c2 ≥ 0 such that

ξ ∈ ∂ j(s) : |ξ| ≤ c2 +
(
λ1− ε

)|s|p−1, ∀ s∈R. (2.4)

(H2) The function F :Ω×Lp(Ω)→R is assumed to satisfy the following.
(i) x �→ F(x,u) is measurable in x ∈ Ω for all u ∈ Lp(Ω), and for almost every

(a.e.) x ∈ Ω the function u �→ F(x,u) is increasing, that is, F(x,u) ≤ F(x,v)
whenever u≤ v.

(ii) There exist constants c3 > 0, μ≥ 0 and α∈ [0, p− 1] such that

‖�u‖q ≤ c3 +μ‖u‖αp, ∀ u∈ Lp(Ω), (2.5)

where q ∈ (1,∞) is the conjugate real to p satisfying 1/p+1/q = 1, and μ≥ 0
may be arbitrarily if α ∈ [0, p− 1), and μ ∈ [0,ε) if α = p− 1, where ε is the
constant in (H1)(ii).

The main result of the present paper is given by the following theorem.

Theorem 2.1. Let hypotheses (H1) and (H2) be satisfied. Then problem (1.1) possesses
solutions, and the solution set of all solutions of (1.1) is bounded in V0 and has minimal and
maximal elements.

The proof of Theorem 2.1 requires several preliminary results which are of interest
in its own and which will be provided in Section 3. In Section 4 we recall an abstract
existence result for an operator equation in ordered Banach spaces, which together with
the results of Section 3 form the main tools in the proof of Theorem 2.1. We will assume
throughout the rest of the paper that the hypotheses of Theorem 2.1 are satisfied
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3. Preliminaries

Let f ∈V∗
0 be given. In this section, we consider the following auxiliary hemivariational

inequality:

u∈V0 :
〈−Δpu,v−u

〉
+
∫

Ω
jo(u;v−u)dx ≥ 〈 f ,v−u〉, ∀ v ∈V0. (3.1)

In the next sections, we are going to prove the existence of solutions of (3.1), the existence
of extremal solutions of (3.1), and the monotone dependence of these extremal solutions.

3.1. An existence result for (3.1). The existence of solutions of (3.1) follows by standard
arguments and is given here only for the sake of completeness and for providing the nec-
essary tools that will be used later. The main ingredient is the following surjectivity result
for multivalued pseudomonotone and coercive operators, see, for example, [6, Theorem
2.6] or [7, Chapter 32].

Proposition 3.1. Let X be a real reflexive Banach space with dual space X∗, and let the
multivalued operator � : X → 2X

∗
be pseudomonotone and coercive. Then � is surjective,

that is, range �= X∗.

For convenience, let us recall the notion of multivalued pseudomonotone operators
(cf., e.g., [6, Chapter 2]).

Definition 1. Let X be a real reflexive Banach space. The operator � : X → 2X
∗
is called

pseudomonotone if the following conditions hold.
(i) The set �(u) is nonempty, bounded, closed, and convex for all u∈ X.
(ii) � is upper semicontinuous from each finite-dimensional subspace of X to the

weak topology on X∗.
(iii) If (un) ⊂ X with un⇀ u, and if u∗n ∈�(un) is such that limsup〈u∗n ,un − u〉 ≤ 0,

then to each element v ∈ X , there exists u∗(v)∈�(u) with

liminf
〈
u∗n ,un− v

〉≥ 〈u∗(v),u− v
〉
. (3.2)

The existence result for (3.1) reads as the following lemma.

Lemma 3.2. The hemivariational inequality (3.1) possesses solutions for each f ∈V∗
0 .

Proof. We introduce the function J : Lp(Ω)→R defined by

J(v)=
∫

Ω
j
(
v(x)

)
dx, ∀ v ∈ Lp(Ω). (3.3)

Using the growth condition (H1)(ii) and Lebourg’s mean value theorem, we note that
the function J is well-defined and Lipschitz continuous on bounded sets in Lp(Ω), thus
locally Lipschitz. Moreover, the Aubin-Clarke theorem (see [3, page 83]) ensures that, for
each u∈ Lp(Ω) we have

ξ ∈ ∂J(u)=⇒ ξ ∈ Lq(Ω) with ξ(x)∈ ∂ j
(
u(x)

)
for a.e. x ∈Ω. (3.4)
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Consider now the multivalued operator � :V0→ 2V
∗
0 defined by

�(v)=−Δpv+ ∂
(
J|V0

)
(v), ∀v ∈V0, (3.5)

where J|V0 denotes the restriction of J to V0. It is well known that −Δp :V0→V∗
0 is con-

tinuous, bounded, strictly monotone, and thus, in particular, pseudomonotone. It has
been shown in [2] that the multivalued operator ∂(J|V0 ) is bounded and pseudomono-
tone in the sense given above. Since −Δp and ∂(J|V0 ) are pseudomonotone, it follows
that the multivalued operator � is pseudomonotone. Thus in view of Proposition 3.1
the operator � is surjective provided � is coercive. By making use of the equivalent
norm in V0 which is ‖u‖pV0

= ∫Ω |∇u|p dx, and the variational characterization of the first
eigenvalue of −Δp, the coercivity can readily be seen as follows: For any v ∈ V0 and any
w ∈ ∂(J|V0 )(v) we obtain by applying (H1) the estimate

1
‖v‖V0

〈−Δpv+w,v
〉≥ 1

‖v‖V0

[∫

Ω
|∇v|pdx−

∫

Ω

(
c2 +

(
λ1− ε

)|v|p−1)|v|dx
]

≥ 1
‖v‖V0

[
‖v‖pV0

− λ1− ε

λ1
‖v‖pV0

− c‖v‖p
]
,

(3.6)

for some constant c > 0, which proves the coercivity of �. Applying Proposition 3.1 we
obtain that there exists u∈V0 such that f ∈�(u), that is, there is an ξ ∈ ∂J(u) such that
ξ ∈ Lq(Ω) with ξ(x)∈ ∂ j(u(x)) for a.e. x ∈Ω and

−Δpu+ ξ = f in V∗
0 , (3.7)

where

〈ξ,ϕ〉 =
∫

Ω
ξ(x)ϕ(x)dx ∀ϕ∈V0, (3.8)

and thus by definition of Clarke’s generalized gradient ∂ j from (3.8), we get

〈ξ,ϕ〉 =
∫

Ω
ξ(x)ϕ(x)dx ≤

∫

Ω
jo(u(x);ϕ

(
x)
)
dx ∀ϕ∈V0. (3.9)

Due to (3.7) and (3.9) we conclude that u∈ V0 is a solution of the auxiliary hemivaria-
tional inequality (3.1). �

3.2. Existence of extremal solutions of (3.1). In this section, we show that problem (3.1)
has extremal solutions which are defined as in the following definition.

Definition 2. A solution u∗ of (3.1) is called the greatest solution if for any solution u of
(3.1), u≤ u∗. Similarly, u∗ is the least solution if for any solution u, one has u∗ ≤ u. The
least and greatest solutions of the hemivariational inequality (3.1) are called the extremal
ones.

Here we prove the following extremality result.

Lemma 3.3. The hemivariational inequality (3.1) possesses extremal solutions.
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Proof. Let us introduce the set � of all solutions of (3.1). The proof will be given in steps
(a), (b) and (c).

(a) Claim: � is compact in V0.
First, let us show that � is bounded in V0. By taking v = 0 in (3.1), we get

〈−Δpu,u
〉≤ 〈 f ,u〉+

∫

Ω
jo(u;−u)dx, (3.10)

which yields by applying (H1)(ii)

‖u‖pV0
≤ ‖ f ‖V∗

0
‖u‖V0 + c‖u‖p +

(
λ1− ε

)‖u‖pp, (3.11)

for some constant c ≥ 0. By means of Young’s inequality, we get for any η > 0,

‖u‖pV0
≤ ‖ f ‖V∗

0
‖u‖V0 + c(η) +η‖u‖pp +

(
λ1− ε

)‖u‖pp, (3.12)

which yields for η < ε and setting ε̃ = ε−η the estimate

‖u‖pV0
≤ ‖ f ‖V∗

0
‖u‖V0 + c(η) +

λ1− ε̃

λ1
‖u‖pV0

, (3.13)

and hence the boundedness of � in V0.
Let (un)⊂�. Then there is a subsequence (uk) of (un) with

uk⇀ u in V0, uk −→ u in Lp(Ω), uk(x)−→ u(x) a.e. in Ω. (3.14)

Since the uk solve (3.1), we get with v = u in (3.1)

〈−Δpuk − f ,u−uk
〉
+
∫

Ω
jo
(
uk;u−uk

)
dx ≥ 0, (3.15)

and thus

〈−Δpuk,uk −u
〉≤ 〈 f ,uk −u

〉
+
∫

Ω
jo
(
uk;u−uk

)
dx. (3.16)

Due to (3.14) and due to the fact that (s,r) �→ jo(s;r) is upper semicontinuous, we get by
applying Fatou’s lemma

limsup
k

∫

Ω
jo
(
uk;u−uk

)
dx ≤

∫

Ω
limsup

k
jo
(
uk;u−uk

)
dx = 0. (3.17)

In view of (3.17), we thus obtain from (3.14) and (3.16)

limsup
k

〈−Δpuk,uk −u
〉≤ 0. (3.18)

Since the operator −Δp enjoys the (S+)-property, the weak convergence of (uk) in V0

along with (3.18) imply the strong convergence uk → u in V0, see, for example, [1, The-
orem D.2.1]. Moreover, the limit u belongs to � as can be seen by passing to the limsup
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on the left-hand side of the following inequality:

〈−Δpuk − f ,v−uk
〉
+
∫

Ω
jo
(
uk;v−uk

)
dx ≥ 0, (3.19)

where we have used Fatou’s lemma and the strong convergence of (uk) in V0. This com-
pletes the proof of Claim (a).

(b) Claim: � is a directed set
The solution set � is called upward directed if for each pair u1,u2 ∈ � there exists a

u∈� such that uk ≤ u, k = 1,2. Similarly, � is called downward directed if for each pair
u1,u2 ∈ � there exists a u ∈ � such that u ≤ uk, k = 1,2, and � is called directed if it is
both upward and downward directed. Let us show that � is upward directed. To this end
we consider the following auxiliary hemivariational inequality

u∈V0 :
〈−Δpu− f + λB(u),v−u

〉
+
∫

Ω
jo(u;v−u)dx ≥ 0, ∀ v ∈V0, (3.20)

where λ ≥ 0 is a free parameter to be chosen later, and the operator B is the Nemytskij
operator given by the following cut-off function b :Ω×R→R:

b(x,s)=
⎧
⎨

⎩
0 if u0(x)≤ s,

−(u0(x)− s
)p−1

if s < u0(x),
(3.21)

with u0 =max(u1,u2). The function b is easily seen to be a Carathéodory function sat-
isfying a growth condition of order p− 1 and thus B : V0 → V∗

0 defines a compact and
bounded operator. This allows to apply the same arguments as in the proof of Lemma 3.2
to show the existence of solutions of problem (3.20) provided we are able to verify that the
corresponding multivalued operator related with (3.20) is coercive, that is, we only need
to verify the coercivity of �(v)=−Δpv+ λB(v) + ∂(J|V0 )(v), v ∈V0. This, however, read-
ily follows from the proof of the coercivity of the operator−Δp + ∂(J|V0 ) and the following
estimate of 〈B(v),v〉. In view of the definition (3.21) the function s �→ b(x,s) monotone
nondecreasing and b(·,u0)= 0. Therefore we get by applying Young’s inequality for any
η > 0 the estimate

〈
B(v),v

〉=
∫

Ω
b(·,v)(v−u0 +u0

)
dx ≥

∫

Ω
b(·,v)u0dx ≥−η‖v‖pp− c(η), (3.22)

which implies the coercivity of−Δp + λB+ ∂(J|V0 ) when η is chosen sufficiently small, and
hence the existence of solutions of the auxiliary problem (3.20). Now the set � is shown
to be upward directed provided that any solution u of (3.20) satisfies uk ≤ u, k = 1,2,
because then Bu= 0 and thus u∈� exceeding uk.

By assumption uk ∈� which means uk satisfies

uk ∈V0 :
〈−Δpuk − f ,v−uk

〉
+
∫

Ω
jo
(
uk;v−uk

)
dx ≥ 0, ∀ v ∈V0. (3.23)
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Taking the special functions v = u+ (uk − u)+ in (3.20) and v = uk − (uk − u)+ in (3.23)
and adding the resulting inequalities we obtain

〈−Δpuk −
(−Δpu

)
,
(
uk −u

)+〉− λ
〈
B(u),

(
uk −u

)+〉

≤
∫

Ω

(
jo
(
u;
(
uk −u

)+)
+ jo

(
uk;−

(
uk −u

)+))
dx.

(3.24)

Next we estimate the right-hand side of (3.24) by using the following facts from non-
smooth analysis, (cf. [3, Chapter 2]): The function r �→ jo(s;r) is finite and positively
homogeneous, ∂ j(s) is a nonempty, convex, and compact subset of R, and one has

jo(s;r)=max
{
ξ r | ξ ∈ ∂ j(s)

}
. (3.25)

Denote {w > v} = {x ∈Ω | w(x) > v(x)}, then by using (H1)(i) and the properties on jo

and ∂ j, we get for certain ξk(x)∈ ∂ j(uk(x)) and ξ(x)∈ ∂ j(u(x)) the following estimate:
∫

Ω

(
jo
(
u;
(
uk −u

)+)
+ jo

(
uk;−

(
uk −u

)+))
dx

=
∫

{uk>u}

(
jo
(
u;uk −u

)
+ jo

(
uk;−

(
uk −u

)))
dx

=
∫

{uk>u}

(
ξ(x)

(
uk(x)−u(x)

)
+ ξk(x)

(− (uk(x)−u(x)
)))

dx

=
∫

{uk>u}

(
ξ(x)− ξk(x)

)(
uk(x)−u(x)

)
dx ≤

∫

{uk>u}
c1
(
uk(x)−u(x)

)p
dx.

(3.26)

For the terms on the left-hand side of (3.24) we have

〈−Δpuk −
(−Δpu

)
,
(
uk −u

)+〉≥ 0 (3.27)

and in view of (3.21) yields

〈
B(u),

(
uk −u

)+〉=−
∫

{uk>u}

(
u0(x)−u(x)

)p−1(
uk(x)−u(x)

)
dx

≤−
∫

{uk>u}

(
uk(x)−u(x)

)p
dx.

(3.28)

By means of (3.26), (3.27), (3.28), we get the inequality

(
λ− c1

)
∫

{uk>u}

(
uk(x)−u(x)

)p
dx ≤ 0. (3.29)

Selecting λ such that λ > c1 from (3.29) it follows uk ≤ u, k = 1,2, which proves the up-
ward directedness. By obvious modifications of the auxiliary problem one can show anal-
ogously that � is also downward directed.

(c) Claim: � possesses extremal solutions
The proof of this assertion is based on steps (a) and (b). We will show the existence

of the greatest element of �. Since V0 is separable we have that � ⊂ V0 is separable too,
so there exists a countable, dense subset Z = {zn | n∈N} of �. By step (b), � is upward
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directed, so we can construct an increasing sequence (un) ⊂ � as follows. Let u1 = z1.
Select un+1 ∈� such that

max
{
zn,un

}≤ un+1. (3.30)

The existence of un+1 is due step (b). By the compactness of �, we find a subsequence of
(un), denoted again by (un), and an element u∈� such that un → u in V0, and un(x)→
u(x) a.e. in Ω. This last property of (un) combined with its increasing monotonicity im-
plies that the entire sequence is convergent in V0 and, moreover, u = supn un. By con-
struction, we see that

max
{
z1,z2, . . . ,zn

}≤ un+1 ≤ u, ∀n, (3.31)

thus Z ⊂V≤u
0 := {w ∈V0 |w ≤ u}. Since V≤u

0 is closed in V0, we infer

�⊂ Z ⊂V≤u
0 , (3.32)

which in conjunction with u∈� ensures that u is the greatest solution of (3.1).
The existence of the least solution of (3.1) can be proved in a similar way. This com-

pletes the proof of Lemma 3.3. �

3.3. Monotonicity of the extremal solutions of (3.1). From Lemma 3.3, we know that
for given f ∈V∗

0 the hemivariational inequality (3.1) has a least solution u∗ and a great-
est solution u∗. The purpose of this subsection is to show that these extremal solutions
depend monotonously on f . Let the dual order be defined by

f1, f2 ∈V∗
0 : f1 ≤ f2⇐⇒

〈
f1,ϕ

〉≤ 〈 f2,ϕ
〉
, ∀ ϕ∈V0∩L

p
+(Ω). (3.33)

Lemma 3.4. Let u∗k be the greatest and uk,∗ the least solutions of the hemivariational in-
equality (3.1) with right-hand sides fk ∈V∗

0 , k = 1,2, respectively. If f1 ≤ f2, then it follows
that u∗1 ≤ u∗2 and u1,∗ ≤ u2,∗.

Proof. We are going to prove u∗1 ≤ u∗2 . To this end, we consider the following auxiliary
hemivariational inequality:

u∈V0 :
〈−Δpu+ λB(u),v−u

〉
+
∫

Ω
jo(u;v−u)dx ≥ 〈 f2,v−u

〉
, ∀ v ∈V0, (3.34)

where λ≥ 0 is a free parameter to be chosen later, and B is the Nemytskij operator given
by the following cutoff function b :Ω×R→R:

b(x,s)=
⎧
⎨

⎩
0 if u∗1 (x)≤ s,

−(u∗1 (x)− s
)p−1

if s < u∗1 (x),
(3.35)

which can be written as b(x,s)=−[(u∗1 (x)− s)+]p−1. The existence of solutions of (3.34)
can be proved in just the same way as for the auxiliary problem (3.20). By definition, u∗1
satisfies

u∗1 ∈V0 :
〈−Δpu

∗
1 ,v−u∗1

〉
+
∫

Ω
jo
(
u∗1 ;v−u∗1

)
dx ≥ 〈 f1,v−u∗1

〉
, ∀ v ∈V0. (3.36)
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Let u be any solution of (3.34). Applying the special test functions v = u+ (u∗1 −u)+ and
v = u∗1 − (u∗1 − u)+ in (3.34) and (3.36), respectively, and adding the resulting inequali-
ties, we obtain

〈−Δpu
∗
1 −

(−Δpu
)
,
(
u∗1 −u

)+〉− λ
〈
B(u),

(
u∗1 −u

)+〉
+
〈
f2− f1,

(
u∗1 −u

)+〉

≤
∫

Ω

(
jo
(
u;
(
u∗1 −u

)+)
+ jo

(
u∗1 ;−

(
u∗1 −u

)+))
dx.

(3.37)

Since 〈−Δpu
∗
1 − (−Δpu),(u∗1 − u)+〉 ≥ 0 and 〈 f2 − f1, (u∗1 − u)+〉 ≥ 0 (note f2 ≥ f1), the

left hand-side of (3.37) can be estimated below by the term

−λ〈B(u),(u∗1 −u
)+〉= λ

∫

Ω

[(
u∗1 −u

)+]p
dx. (3.38)

Similar as in the proof of Lemma 3.3, the right-hand side of (3.37) can be estimated above
as follows:

∫

Ω

(
jo
(
u;
(
u∗1 −u

)+)
+ jo

(
u∗1 ;−

(
u∗1 −u

)+))
dx ≤ c1

∫

Ω

[(
u∗1 −u

)+]p
dx, (3.39)

which yields

(
λ− c1

)
∫

Ω

[(
u∗1 −u

)+]p
dx ≤ 0. (3.40)

Selecting λ such that λ > c1 from (3.40), it follows that u∗1 ≤ u. Thus Bu = 0 and any
solution u of (3.34) is in fact a solution of the hemivariational inequality (3.1) with right-
hand side f2 which exceeds u∗1 . Because u

∗
2 is the greatest solution of (3.1) with right-hand

side f2, it follows that u∗1 ≤ u∗2 .
The proof for the monotonicity of the least solutions follows by similar arguments and

can be omitted. �

4. Proof of the main result

In this section, we will prove our main result, Theorem 2.1. Its proof is based on the re-
sults of Section 3 and on an existence result for an abstract operator equation in ordered
Banach spaces which has been obtained recently in [4] and which we recall here for con-
venience.

4.1. Abstract operator equation. Consider the operator equation

u∈ E : Lu=Nu, (4.1)

where L,N :W → E are mappings defined on a partially ordered setW whose images are
in a lattice-ordered Banach space E = (E,‖ · ‖,≤) that possesses the following properties.

(E0) Bounded and monotone sequences of E have weak or strong limits.
(E1) ‖u+‖ ≤ ‖u‖ for each u∈ E, where u+ = sup(0,u).

Then the following theorem holds, (cf. [4]).
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Theorem 4.1. Let E be a lattice-ordered Banach space satisfying (E0) and (E1), and letW
be some partially ordered set. Assume that the mappings L,N :W → E satisfy the following
hypotheses.
(A1) The equation Lu = f has for each f ∈ E least and greatest solutions u∗,u∗ ∈W ,

and these extremal solutions depend monotonously on f .
(A2) N :W → E is increasing, that is, u < v implies that Nu≤Nv for all u,v ∈W.
(A3) An estimate in the form

‖Nu‖ ≤ h
(‖Lu‖), u∈W , (4.2)

holds, where h : R+ → R+ is an increasing function having the property that there
exists an R > 0 such that R= h(R), and if s≤ h(s) then s≤ R.

Then the operator equation (4.1) admits minimal and maximal solutions.

Note that according to hypotheses (A1)–(A3), no continuity or compactness condi-
tions are imposed on the operators L,N. The notions greatest and least, andminimal and
maximal have to be understood in the usual set-theoretical sense.

As for examples of ordered Banach spaces E satisfying (E0) and (E1) we refer to [4]
and note that in particular, the following two spaces have these properties.

(i) Lp(Ω), 1≤ p ≤∞, ordered a.e. pointwise, where Ω is a σ-finite measure space.

(ii) The Sobolev spaces W1,p(Ω), W
1,p
0 (Ω), 1 < p <∞, ordered a.e. pointwise with

Ω being a bounded Lipschitz domain in RN .

4.2. Proof of Theorem 2.1. We are going to relate our original hemivariational inequal-
ity (1.1) to the abstract setting (4.1) and apply Theorem 4.1. For this purpose, we choose
E = Lq(Ω), and denote by � f ⊂V0 the solution set of the hemivariational inequality (3.1)
with right-hand side f ∈ E. Apparently, we then have � f1 ∩� f2 =∅ if f1 �= f2.We intro-
duce the subsetW ⊂V0 given by

W =
⋃

f∈E
� f , (4.3)

and let L :W → E be the mapping which assigns u �→ f whenever u∈� f . Further, let us
define the operator N by

u∈W :Nu :=�u. (4.4)

With the mappings L, N :W → E introduced this way, we readily can see that u ∈ V0 is
a solution of the original problem (1.1) if and only if u satisfies (4.1). Since E = Lq(Ω)
possesses the properties (E0) and (E1), we only need to verify hypotheses (A1)–(A3) of
Theorem 4.1 for the operators L and N specified above. First, due to Lemma 3.3 for each
f ∈ E (note E ⊂V∗

0 ), there exist extremal solutions of

u∈W : Lu= f , (4.5)

and these extremal solutions depend monotonously on f in view of Lemma 3.4. Thus
(A1) of Theorem 4.1 is valid. Due to (H2)(i), the operator N :W → E defined by (4.4) is
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increasing which verifies (A2). To show (A3), let u ∈ � f , that is, Lu = f (which is (3.1)
with f ∈ E). From (3.1), we obtain by taking v = 0 and applying (H1)(ii) the following
estimate:

λ1‖u‖pp ≤ ‖u‖pV0
≤ ‖ f ‖q ‖u‖p + c‖u‖p +

(
λ1− ε

)‖u‖pp, (4.6)

for some constant c ≥ 0, and thus (note that Lu= f )

‖u‖p ≤
(
1
ε

)(1)/(p−1)(‖Lu‖q + c
)(1)/(p−1)

. (4.7)

Finally, applying (H2)(ii) we obtain by means of (4.7)

‖Nu‖q = ‖�u‖q ≤ c3 +μ
(
1
ε

)α/(p−1)(‖Lu‖q + c
)α/(p−1)

, (4.8)

which means that

‖Nu‖q ≤ h
(‖Lu‖q

)
, (4.9)

where

h(s)= c3 +μ
(
1
ε

)α/(p−1)
(s+ c)α/(p−1). (4.10)

With α specified in (H2)(ii), one can show by elementary calculations that the function
s �→h(s) obtained in (4.10) has all the properties supposed in (A3). Therefore, Theorem 4.1
can be applied which completes the proof of our main result.

4.3. Example. Consider problem (1.1) with the nonlocal term � generated by the fol-
lowing F of the introduction:

F(x,u)= [|x|]+ γ
∫

Ω

[
u(x)

]
dx, (4.11)

where [·] :R→ Z is the integer function and γ is some positive constant. Let |Ω| denote
the Lebesgue measure of Ω⊂ RN , and c > 0 some generic constant not depending on u.
Then for u∈ Lp(Ω), we get

∣
∣(�u)(x)

∣
∣≤ c+ γ

∫

Ω

(∣∣u(y)
∣
∣+1

)
dy ≤ c+ γ|Ω|1/q‖u‖p, (4.12)

which yields the estimate

‖�u‖q ≤ c+ γ |Ω|2/q‖u‖p. (4.13)

According to hypothesis (H2)(ii), we have the following correspondences: c3 ∼= c, μ ∼=
γ |Ω|2/q, and α∼= 1.Hence, under the assumption (H1) on j by Theorem 2.1, the existence
of solutions of (1.1) follows provided either p > 2 or p = 2 and γ |Ω|2/q < ε.
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Remark 4.2. We note that the results obtained in the preceding sections can be extended
to more general problems in the form (1.1) by replacing the p-Laplacian by a general
quasilinear elliptic and coercive operator of Leray-Lions type.
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[1] S. Carl and S. Heikkilä, Nonlinear Differential Equations in Ordered Spaces, Chapman &
Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 111, Chapman &
Hall/CRC, Florida, 2000.

[2] S. Carl, V. K. Le, and D. Motreanu, The sub-supersolution method and extremal solutions for
quasilinear hemivariational inequalities, Differential Integral Equations 17 (2004), no. 1-2, 165–
178.

[3] F. H. Clarke, Optimization and Nonsmooth Analysis, Classics in Applied Mathematics, vol. 5,
SIAM, Pennsylvania, 1990.
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