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We prove Turán-type inequalities for some special functions by using a generalization of
the Schwarz inequality.
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1. Introduction

The importance, in many fields of mathematics, of the inequalities of the type

fn(x) fn+2(x)− f 2n+1(x)≤ 0, (1.1)

where n = 0,1,2, . . . , is well known. They are named, by Karlin and Szegö, Turán-type
inequalities because the first of this type of inequalities was proved by Turán [12]. More
precisely, by using the classical recurrence relation [10, page 81]

(n+1)Pn+1(x)= (2n+1)xPn(x)−nPn−1(x), n= 0,1, . . .

P−1(x)= 0, P0(x)= 1
(1.2)

and the differential relation [10, page 83]

(
1− x2

)
P′n(x)= nPn−1(x)−nxPn(x), (1.3)

he proved the following inequality:
∣
∣
∣
∣
∣
Pn(x) Pn+1(x)

Pn+1(x) Pn+2(x)

∣
∣
∣
∣
∣≤ 0, −1≤ x ≤ 1, (1.4)

where Pn(x) is the Legendre polynomial of degree n. In (1.4) equality occurs only if
x =±1. This classical result has been extended in several directions: ultraspherical poly-
nomials, Laguerre and Hermite polynomials, Bessel functions of first kind, modified
Bessel functions, and so forth.
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For example, Lorch [8] established Turán-type inequalities for the positive zeros cνk,
k = 1,2, . . . , of the general Bessel function

Cν(x)= Jν(x)cosα−Yν(x)sinα, 0≤ α < π, (1.5)

where Jν(x) and Yν(x) denote the Bessel functions of the first and the second kind, re-
spectively, while the corresponding results for the positive zeros c′νk, ν ≥ 0, k = 1,2, . . . ,
of the derivative C′ν(x) = (d/dx)Cν(x) and for the zeros of ultraspherical, Laguerre, and
Hermite polynomials have been established in [2, 3, 6], respectively.

Recently, in [7], we have proved Turán-type inequalities for some special functions, as
well as the polygamma and the Riemann zeta functions, by using the following general-
ization of the Schwarz inequality:

∫ b

a
g(t)

[
f (t)

]m
dt ·

∫ b

a
g(t)

[
f (t)

]n
dt ≥

[∫ b

a
g(t)

[
f (t)

](m+n)/2
dt

]2

, (1.6)

where f and g are two nonnegative functions of a real variable and m and n belong to a
set S of real numbers, such that the integrals in (1.6) exist.

As mentioned in [7] this approach represents an alternative method with respect to
the classical ones used by the above-cited authors and based, prevalently, on the Sturm
theory.

In this paper, we continue, in this direction, to investigate about Turán-type inequal-
ities satisfied by some special functions. In the next section, we will give three results. In
the first one, we will use the well-known psi function defined as follows:

ψ(x)= Γ′(x)
Γ(x)

, x > 0, (1.7)

with the usual notation for the gamma function.
In the second one, we will use the so-called Riemann ξ-function which can be defined

(see [11, page 16], cf. [9, page 285]) by

ξ(s)= 1
2
s(s− 1)π−s/2Γ

(
s

2

)
ζ(s), (1.8)

where ζ is the Riemann ζ-function. This function has the following representation (see
[5]):

ξ
(
s+

1
2

)
=

∞∑

k=0
bks

2k, (1.9)

where the coefficients bk are given by the formula

bk = 8
22k

(2k)!

∫∞

0
t2kΦ(t)dt, k = 0,1, . . . , (1.10)

Φ(t)=
∞∑

n=1

(
2π2n4e9t − 3πn2e5t

)
e−πn

2e4t . (1.11)
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In [1] the following Turán-type inequalities were proved:

b2k −
k+1
k

bk+1bk−1 ≥ 0, k = 0,1, . . . , (1.12)

which are very important in the theory of the Riemann ξ-function (see [5]).
In the third one, we will use the modified Bessel functions of the third kind Kν(x),

x > 0, defined as follows:

Kν(x)= π

2
I−ν(x)− Iν(x)

sinνπ
, ν �= 0,±1,±2, . . . ,

Kn(x)= lim
ν→n

Kν(x), n= 0,±1,±2, . . . ,
(1.13)

where

Iν(x)=
∞∑

k=0

(x/2)ν+2k

k!Γ(ν+ k+1)
(1.14)

are the modified Bessel functions of the first kind.

2. The results

Theorem 2.1. For n= 1,2, . . . , denote by hn =
∑n

k=1(1/k) the partial sum of the harmonic
series. Let

an = hn− logn, (2.1)

then

(
an− γ

)(
an+2− γ

)≥ (an+1− γ
)2
, (2.2)

where γ is the Euler-Mascheroni constant defined by

γ =−ψ(1)= 0,5772156649 . . . . (2.3)

Proof. For the psi function, we use the following expression:

ψ(n+1)=
n∑

k=1

1
k
− γ, n= 1,2, . . . , (2.4)

and the following integral representation:

ψ(z+1)=
∫∞

0

(
e−t

t
− e−zt

e−t − 1

)
dt, Re z > 0. (2.5)

By putting z = n in (2.5), for n= 1,2, . . . , we obtain from (2.4) and (2.5),

n∑

k=1

1
k
− γ =

∫∞

0

(
e−t

t
− e−nt

e−t − 1

)
dt =

∫∞

0

e−t − e−nt

t
dt+

∫∞

0
e−nt

et − 1− t

t
(
et − 1

) dt. (2.6)
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Since
∫∞

0

e−t − e−nt

t
dt = logn, (2.7)

we have

n∑

k=1

1
k
− logn− γ =

∫∞

0

et − 1− t

t
(
et − 1

) e−ntdt. (2.8)

By (1.6) with g(t)= (et − 1− t)/t(et − 1), f (t)= e−t and a= 0, b = +∞, we get

∫∞

0

et − 1− t

t
(
et − 1

) e−ntdt ·
∫∞

0

et − 1− t

t
(
et − 1

) e−(n+2)tdt ≥
[∫∞

0

et − 1− t

t
(
et − 1

) e−(n+1)tdt
]2

(2.9)

that is the inequality (2.2). �

Theorem 2.2. For k = 1,2, . . . , let bk (k = 1,2, . . .) be the coefficients in (1.9), then

b2k −
(2k+1)(k+1)

k(2k− 1)
bk+1bk−1 ≤ 0, k = 1,2, . . . . (2.10)

Proof. By (1.6) and (1.10), with g(t)= 8Φ(t), f (t)= (2t)2 and a= 0, b = +∞, we get

∫∞

0
8Φ(t)(2t)2k+2dt ·

∫∞

0
8Φ(t)(2t)2k−2dt ≥

[∫∞

0
8Φ(t)(2t)2kdt

]2
. (2.11)

Dividing (2.11) by (2k)! this inequality becomes

(2k+2)!
(2k)!

bk+1
(2k− 2)!
(2k)!

bk−1 ≤ b2k, k = 1,2, . . . , (2.12)

from which, since ((2k+2)!/(2k)!)((2k− 2)!/(2k)!)= ((2k+1)(k+1))/k(2k− 1), we ob-
tain the conclusion of Theorem 2.2. �

Remark 2.3. It is important to note that inequalities (1.12) and (2.10) together give

k+1
k

bk+1bk−1 ≤ b2k ≤
k+1
k

2k+1
2k− 1

bk+1bk−1, k = 1,2, . . . . (2.13)

Theorem 2.4. Let Kν(x), x > 0, be the modified Bessel function of the third kind. Then, for
ν >−1/2 and μ >−1/2,

Kν(x) ·Kμ(x)≥ K2
(ν+μ)/2(x). (2.14)

Proof. By (1.6) with g(t)= e−β/t−γt, f (t)= t−1 and a= 0, b = +∞, we get

∫∞

0
tm−1e−β/t−γtdt ·

∫∞

0
tn−1e−β/t−γtdt ≥

[∫∞

0
t(m+n)/2−1e−β/t−γtdt

]2
. (2.15)
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Using the following formula (see [4, Integral 3.471(9)]):

∫∞

0
tν−1e−β/t−γtdt = 2

(
β

γ

)ν/2

Kν

(
2
√
βγ
)
, ν >−1

2
, (2.16)

from (2.15) we have

Kν

(
2
√
βγ
)
·Kμ

(
2
√
βγ
)
≥ K2

(ν+μ)/2

(
2
√
βγ
)

(2.17)

which, putting x = 2
√
βγ, is equivalent to the conclusion of Theorem 2.4.

In the particular case μ= ν+2, we find

Kν(x) ·Kν+2(x)≥ K2
ν+1(x), ν >−1

2
. (2.18)

�

Concluding Remark 2.5. By means of (1.6) Turán-type inequalities for many complicated
integrals as well as, for example, sn =

∫ π
0 (logsinx)

ndx (n= 0,1, . . .) for which we have

sn(x)sn+2(x)≥ s2n+1(x), (2.19)

can be obtained.
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