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1. Introduction and statement of results

In his lectures on integral equations, Hilbert initiated the study of maxima of bilinear
and multilinear forms. The case p = 2 in the following inequality is nowadays known as
“Hilbert’s double series theorem.”

If p > 1, p′ = p/(p− 1),
∑∞

m=1 a
p
m ≤A, and

∑∞
n=1 b

p′
n ≤ B, then

∞∑

m=1

∞∑

n=1

ambn
m+n

≤ π csc
(
π

p

)

A1/pB1/p′ . (1.1)

Hilbert’s proof, apart from the determination of the best possible constant π csc(π/p),
was published by Weyl [7]. The calculation of the constant, and the integral analogue of
Hilbert’s double series theorem (for p = 2) are due to Schur [6]. The generalizations to
other p′s of both the discrete and integral versions of this result were discovered later on
by Hardy and Riesz and published by Hardy in [4]. The statement of the integral analogue
of the theorem above is the following.

If p > 1, p′ = p/(p− 1),
∫∞
0 f p(x)dx ≤ F,

∫∞
0 g p

′
(y)dy ≤G, then

∫∫∞

0

f (x)g(y)
x+ y

dxdy ≤ π csc
(
π

p

)

F1/pG1/p′ . (1.2)

Other proofs and generalizations in different directions were given by several authors; see
the book by Hardy et al. [5, page 227]. Applications of Hilbert’s theorem range from the
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theory of analytic functions to results about the moments of real variable functions [5,
pages 236–247].

Let now K : Rm
+ → R be a measurable kernel such that

Cm =
∫∞

0
···

∫∞

0

∣
∣K
(
y1, . . . , ym

)∣
∣y

−1/p1
1 ··· y−1/pmm dy1 ···dym <∞; (1.3)

here, 1 < p1, p2, . . . , pm <∞ are some arbitrary (fixed) indices. Them-linear operator T is
defined via

T
(
f1, . . . , fm

)
(x)=

∫∞

0
···

∫∞

0
K
(
y1, . . . , ym

)
f1
(
xy1
)··· fm

(
xym

)
dy1 ···dym, (1.4)

where x > 0 and f1, . . . , fm are measurable functions on R+ = [0,∞). Note that T is in fact
an integral operator having a homogeneous kernel K̃ of degree −m,

T
(
f1, . . . , fm

)
(x)=

∫∞

0
···

∫∞

0
K̃
(
x, y1, . . . , ym

)
f1
(
y1
)··· fm

(
ym
)
dy1 ···dym, (1.5)

where K̃(x, y1, . . . , ym)= x−mK(x−1y1, . . . ,x−1ym). Condition (1.3) can be rewritten as

Cm =
∫∞

0
···

∫∞

0

∣
∣K̃
(
1, y1, . . . , ym

)∣
∣y

−1/p1
1 ··· y−1/pmm dy1 ···dym <∞. (1.6)

We remark also that, if p0 > 1 is such that 1/p0 + 1/p1 + ···+1/pm = 1, then

Cm =
∫∞

0
···

∫∞

0

∣
∣K̃
(
x,1, y2, . . . , ym

)∣
∣x−1/p0 y−1/p22 ··· y−1/pmm dxdy2 ···dym. (1.7)

In particular, (1.6) and (1.7) imply that, if K̃ is symmetric with respect to the variables
x, y1, . . . , ym, then Cm is a symmetric expression of the indices p0, p1, . . . , pm.

The goal of this paper is twofold: to give a proof of the multilinear extension of the
integral inequality (1.2) and to provide some interesting applications of this result.

Theorem 1.1. Letm≥ 1 and 1 < p, p1, . . . , pm <∞ be such that 1/p1 + 1/p2 + ···+1/pm =
1/p. Then

∥
∥T
(
f1, . . . , fm

)∥
∥
Lp(R+)

≤ Cm

∥
∥ f1
∥
∥
Lp1 (R+)

···∥∥ fm
∥
∥
Lpm (R+)

, (1.8)

where Cm is the constant defined by (1.3) or (1.6). Moreover, if K(y1, . . . , ym) ≥ 0 for all
y1, . . . , ym ≥ 0, then the constant Cm is the best possible in (1.8).

A less general version of Theorem 1.1, which assumes the kernel to be a positive func-
tion and which does not determine the best constant, can be found in [5]. There are
many proofs of inequality (1.8). For the sake of completeness, we will recall one which
to us seems to be the easiest and which is inspired by an idea of Schur [6] in the linear
case; see also [5, page 230]. The determination of the best constant, however, is much
more interesting. In this work, a strong emphasis is placed on obtaining explicit formulas,
in terms of the special gamma function Γ, of the best constants in multilinear extensions
of certain inequalities due to Hilbert, Hardy, and Hardy-Littlewood-Pólya which do not
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seem to be in the literature. These formulas are presented in Section 3. We prove the
main result, Theorem 1.1, in the following section. The elementary, yet nontrivial, proof
is a nice application of the Dominated Convergence theorem.

Remark 1.2. An alternate way of finding an upper bound for the norm of a positive mul-
tilinear operator is via the so called multilinear Schur test in the work of Grafakos and
Torres [2, Theorem 1]. In particular, for an m-linear operator T with positive and sym-
metric kernel on Rm

+ , the multilinear Schur test gives the following implication.
If for all B > A > 0, there exist measurable functions u1, . . . ,um,w on R+ with 0 <

u1, . . . ,um, w <∞ a.e. such that

T
(
u
p′1
1 , . . . ,u

p′m
m
)≤ Bwp′ a.e., (1.9)

then T is a bounded operator from Lp1 (R+)×···×Lpm(R+) into Lp(R+), with norm less
than or equal to A.

In the case of the multilinear nontensorial extension of the Hilbert operator P¬⊗ (see
Section 3.1 for its definition), it was shown in [2] that an appropriate choice of the func-
tions u1, . . . ,um,w gives in fact equality in (1.9). Furthermore, it is easy to see that the same

choice of weights uj(yj)= y
−1/p j p

′
j

j , w(x)= x−1/pp′ , 1≤ j ≤m, gives equality in (1.9) for
all m-linear operators T of the form (1.4). In this case B = Cm, where Cm is defined by
(1.3). Therefore, by the implication above, we see that the operator norm ‖T‖ ≤ Cm. We
would like to point out, however, that in order to show ‖T‖ = Cm one needs to either
trace back where equality holds in the inequalities proving the main result of [2] or go
through a similar computation to the one presented here in the next section.

2. Proof of Theorem 1.1

We let g ∈ Lp′(R+), 1/p + 1/p′ = 1 and denote by 〈·,·〉 the dual (Lp,Lp′) pairing. For
simplicity, we will write Lp for Lp(R+). Note that, for i = 1, . . . ,m,

∫∞
0 | fi(xyi)|pidx =

y−1i

∫∞
0 | fi(x)|pidx. Using this fact and Hölder’s inequality, we obtain the following se-

quence of inequalities:

∣
∣
〈
T
(
f1, . . . , fm

)
,g
〉∣
∣

≤
∫∞

0
···

∫∞

0

∣
∣K
(
y1, . . . , ym

)∣
∣
∫∞

0

∣
∣g(x)

∣
∣
∣
∣ f1
(
xy1
)∣
∣···∣∣ fm

(
xym

)∣
∣dxdy1 ···dym

≤
∫∞

0
···

∫∞

0

∣
∣K
(
y1, . . . , ym)

∣
∣‖g‖Lp′

m∏

i=1

(∫∞

0

∣
∣ fi
(
xyi
)∣
∣pidx

)1/pi
dy1 ···dym

= Cm‖g‖Lp′
∥
∥ f1
∥
∥
Lp1 ···

∥
∥ fm

∥
∥
Lpm .

(2.1)

This proves the first part of our theorem.
For the second part, we will show that if the kernel K is nonnegative, then the operator

norm ‖T‖ of T is exactly Cm. For n a positive integer and i = 1, . . . ,m, we define the
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sequences of functions gn, fi,n by

gn(x)= x−1/p
′+1/p′nχ[0,1](x), fi,n(x)= x−1/pi+1/pinχ[0,1](x). (2.2)

Clearly, ‖gn‖p
′

Lp′ = ‖ fi,n‖piLpi = ‖gn‖Lp′ ‖ f1,n‖Lp1 ···‖ fm,n‖Lpm = n. We have

〈
T
(
f1,n, . . . , fm,n

)
,gn
〉

=
∫ 1

0
x−1/p

′+1/p′n
∫∞

0
···

∫∞

0
K
(
y1, . . . , ym

)
f1,n
(
xy1
)··· fm,n

(
xym

)
dy1 ···dymdx

=
∫ 1

0
x−1/p

′+1/p′n
∫ 1/x

0
···

∫ 1/x

0
K
(
y1, . . . , ym

) m∏

i=1

(
xyi
)−1/pi+1/pindy1 ···dymdx

=
∫ 1

0
x−1+1/n

∫ 1/x

0
···

∫ 1/x

0
K
(
y1, . . . , ym

) m∏

i=1
y
−1/pi+1/pin
i dy1 ···dymdx

=−n
∫∞

1

(
x−1/n

)′
(∫ x

0
···

∫ x

0
K
(
y1, . . . , ym

) m∏

i=1
y
−1/pi+1/pin
i dy1 ···dym

)

dx

= n
∫ 1

0
···

∫ 1

0
K
(
y1, . . . , ym

) m∏

i=1
y
−1/pi+1/pin
i dy1 ···dym +

m∑

i=1
Ii,

(2.3)

or

〈
T
(
f1,n, . . . , fm,n

)
,gn
〉

∥
∥gn
∥
∥
Lp′
∥
∥ f1,n

∥
∥
Lp1 ···

∥
∥ fm,n

∥
∥
Lpm

=
∫ 1

0
···

∫ 1

0
K
(
y1, . . . , ym

) m∏

i=1
y
−1/pi+1/pin
i dy1 ···dym +

m∑

i=1
Ii/n.

(2.4)

For i= 1, . . . ,m, we have denoted

Ii = n
∫∞

1
y−1/ni

∫ yi

0
···

∫ yi

0
K
(
y1, . . . , ym

) m∏

j=1
y
−1/p j+1/p jn
j dy1 ··· d̂yi ···dymdyi; (2.5)

here, d̂yi means that we do not integrate with respect to the variable yi. In the transition
from the fourth to the fifth line in the sequence of equalities above we made the change of
variables x �→ 1/x. The last equality follows from integration by parts and the observation
that, if we let

S
(
z1, . . . ,zm

)=
∫ z1

0
···

∫ zm

0
K
(
y1, . . . , ym

) m∏

i=1
y
−1/pi+1/pin
i dy1 ···dym, (2.6)
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then

d

dx
S(x, . . . ,x)=

m∑

i=1

∂S

∂zi
(x, . . . ,x)=

m∑

i=1

∫ x

0
···

∫ x

0
K
(
y1, . . . ,

(i)
x , . . . , ym

)
x−1/pi+1/pin

×
∏

j =i
y
−1/p j+1/p jn
j dy1 ··· d̂yi ···dym,

(2.7)

where the upper index (i) means that x replaces the variable yi in the ith position. Let
now Di denote the domain of integration in the integral Ii above, that is,

Di =
{(
y1, . . . , ym

)∈ Rm
+ : 1≤ yi <∞, 0≤ yj ≤ yi, j = i

}
. (2.8)

Taking into account that 1/p1 + ···+1/pm = 1/p, we can bound the integrand of Ii/n on
Di as follows:

y−1/ni K
(
y1, . . . , ym

) m∏

j=1
y
−1/p j+1/p jn
j ≤ y

−1/n+1/p1n+···+1/pmn
i K

(
y1, . . . , ym

) m∏

j=1
y
−1/p j

j

= y
−1/p′n
i K

(
y1, . . . , ym

) m∏

j=1
y
−1/p j

j ≤ K
(
y1, . . . , ym

) m∏

j=1
y
−1/p j

j .

(2.9)

Also, on [0,1]m we obviously have

K
(
y1, . . . , ym

) m∏

j=1
y
−1/p j+1/p jn
j ≤ K

(
y1, . . . , ym

) m∏

j=1
y
−1/p j

j . (2.10)

Now, assumption (1.3) on the kernel K allows us to use the Dominated Convergence
theorem to infer that

lim
n→∞Ii/n=

∫∞

1

∫ yi

0
···

∫ yi

0
K
(
y1, . . . , ym

) m∏

j=1
y
−1/p j

j dy1 ···dym,

lim
n→∞

∫ 1

0
···

∫ 1

0
K
(
y1, . . . , ym

) m∏

j=1
y
−1/p j+1/p jn
j dy1 ···dym

=
∫ 1

0
···

∫ 1

0
K
(
y1, . . . , ym

) m∏

j=1
y
−1/p j

j dy1 ···dym.

(2.11)

Furthermore, we have

[0,1]m
⋃
( m⋃

i=1
Di

)

= Rm
+ , (2.12)

and for i, j = 1, . . . ,m, any of the intersection sets [0,1]m
⋂
Di,Di

⋂
Dj , i = j, has Lebesgue

measure 0 in Rm. Consequently, (2.4), (2.11) imply that

‖T‖ = lim
n→∞

〈
T
(
f1,n, . . . , fm,n

)
,gn
〉

∥
∥gn
∥
∥
Lp′
∥
∥ f1,n

∥
∥
Lp1 ···

∥
∥ fm,n

∥
∥
Lpm

= Cm. (2.13)

The proof is now complete.
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3. Applications

In this section we wish to revisit some important inequalities due to Hilbert, Hardy-
Littlewood-Pólya, and Hardy. We will discuss the possible multilinear extensions of these
inequalities and provide formulas for the best constants in a closed form via the gamma
function. The formulas we present here do not seem to be in the literature. Let us first
recall a few basic facts about the gamma and beta functions. For more details and further
references on special functions, see the book by Andrews et al. [1]. For a complex number
z with Rez > 0 define

Γ(z)=
∫∞

0
tz−1e−tdt. (3.1)

It follows from the definition that the gamma function Γ(z) is analytic in the right half-
plane Rez > 0. Two fundamental properties of the gamma function are that

Γ(z+1)= zΓ(z), Γ(z)Γ(1− z)= π

sin(πz)
. (3.2)

In particular, we also have Γ(n)= (n− 1)! for all positive integers n. The second formula
above is known under the name of Euler’s reflection formula. Next we define the beta
function. For z and w complex numbers with positive real parts,

B(z,w)=
∫ 1

0
tz−1(1− t)w−1dt. (3.3)

We have the following relationship between the gamma and beta functions:

B(z,w)= Γ(z)Γ(w)
Γ(z+w)

. (3.4)

3.1. Hilbert’s operator. Consider the linear operator

P f (x)=
∫∞

0

f (y)
x+ y

dy (3.5)

with the kernel K̃ (1)(x, y)= 1/(x+ y) which is symmetric in the variables x, y and homo-
geneous of degree −1. By duality, we see that the integral analogue of Hilbert’s theorem
(1.2) is equivalent to the best constant inequality

‖P f ‖Lp(R+) ≤ π csc

(
π

p

)

‖ f ‖Lp(R+). (3.6)

The operator P is usually referred to as Hilbert’s operator and inequality (3.6) as Hilbert’s
inequality. On our quest for multilinear extensions of (3.6) we would like to preserve the
features of the operator P. In particular, we wish to extend its kernel K̃ (1) to kernels K̃ (m)

that fit the framework of our main result, Theorem 1.1. One such extension is provided
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by them-linear operator

P⊗
(
f1, . . . , fm

)
(x)=

∫∞

0
···

∫∞

0

f1
(
y1
)··· fm

(
ym
)

(
x+ y1)···

(
x+ ym

)dy1 ···dym (3.7)

having the kernel

K̃ (m)
⊗ = 1

(
x+ y1

)···(x+ ym
) =

m∏

i=1
K̃ (1)(x, yi

)
. (3.8)

Although K̃ (m)
⊗ is symmetric x, y1, . . . , ym and homogeneous of degree −m, and thus it

preserves the properties satisfied by its one dimensional counterpart K̃ (1), the multilin-
ear extension P⊗ is not very interesting due to its tensorial character. Throughout the
remaining of this paper, we let 1 < p, p1, . . . , pm <∞ be such that 1/p = 1/p1 + ···1/pm,
and denote by p0 = p′ the dual exponent of p. We will also write Lp for Lp(R+). Since

P⊗
(
f1, . . . , fm

)= (P⊗···⊗P)
(
f1, . . . , fm

)= P( f1)···P
(
fm
)
, (3.9)

using Hölder’s inequality and (3.6), we obviously have

∥
∥P⊗

(
f1, . . . , fm

)∥
∥
Lp ≤ πm

m∏

i=1
csc

(
π

pi

)
∥
∥ f1
∥
∥
Lp1 ···

∥
∥ fm

∥
∥
Lpm . (3.10)

The constant on the right (the operator norm ‖P⊗‖ of P⊗) is the best possible.
A muchmore interesting situation arises when we consider the nontensorial extension

P¬⊗
(
f1, . . . , fm

)
(x)=

∫∞

0
···

∫∞

0

f1
(
y1
)··· fm

(
ym
)

(
x+ y1 + ···+ ym

)m dy1 ···dym (3.11)

having the (symmetric in variables x, y1, . . . , ym and homogeneous of degree −m) kernel

K̃ (m)
¬⊗ = 1

(
x+ y1 + ···+ ym

)m . (3.12)

Noting that K̃ (m)
¬⊗ ≤ K̃ (m)

⊗ , we know that the operator P¬⊗ is bounded from Lp1 ×···×Lpm

into Lp. Nevertheless, the a priori constant ‖P⊗‖ is not the best possible in this case.

Claim 3.1. The following best constant inequality holds:

∥
∥P¬⊗

(
f1, . . . , fm

)∥
∥
Lp ≤ 1

(m− 1)!

m∏

i=0
Γ

(
1
p′i

)
∥
∥ f1
∥
∥
Lp1 ···

∥
∥ fm‖Lpm . (3.13)

Recall that, due to the homogeneity and symmetry in the variables x, y1, . . . , ym of K̃ (m)
¬⊗ ,

the formula that computes the norm of the corresponding operator defined by (3.11)
must be a symmetric expression in p0, p1, . . . , pm; see the comments following (1.6). This
is indeed the case in Claim 3.1. Observe that the best “tensorial” constant ‖P⊗‖ is sym-
metric only in p1, p2, . . . , pm, in general.
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Proof. By Theorem 1.1, the best constant is given by

Cm =
∫∞

0
···

∫∞

0

(
1+ y1 + ···+ ym

)−m
y
−1/p1
1 ··· y−1/pmm dy1 ···dym. (3.14)

Let us denote the integral on the right by Im(m,1/p1, . . . ,1/pm). By making the change of
variables ym = (1+ y1 + ···+ ym−1)t and integrating first with respect to dt, we get

Im
(
m,1/p1, . . . ,1/pm

)=
∫∞

0
(1+ t)−mt−1/pmdtIm−1

(
m− 1/p′m,1/p1, . . . ,1/pm−1

)
. (3.15)

Observe that, if we make the change of variables t+1= 1/s,

∫∞

0
(1+ t)αtβdt =

∫ 1

0
s−α−β−2(1− s)βds= B(−α−β− 1,β+1). (3.16)

Therefore, if we recall the relationship between the beta and gamma functions, we obtain

∫∞

0
(1+ t)−mt−1/pmdt = Γ

(
m− 1/p′m

)
Γ
(
1/p′m

)

Γ(m)
,

Im
(
m,1/p1, . . . ,1/pm

)= Γ
(
m− 1/p′m

)
Γ
(
1/p′m

)

Γ(m)
Im−1

(
m− 1/p′m,1/p1, . . . ,1/pm−1

)
.

(3.17)

By a simple induction argument, we obtain from this recurrence that

Im
(
m,1/p1, . . . ,1/pm

)= Γ
(
m− 1/p′m−···− 1/p′1

)
Γ
(
1/p′m

)···Γ(1/p′1
)

Γ(m)
. (3.18)

Due to the relation on the exponents, the latter equality simplifies exactly to

Cm = 1
(m− 1)!

m∏

i=0
Γ

(
1
p′i

)

. (3.19)

�

Remark 3.2. One can construct other multilinear extensions of P. For example, consider
them-linear operator

Pm
(
f1, . . . , fm

)
(x)=

∫∞

0
···

∫∞

0

f1
(
y1
)··· fm

(
ym
)

(
x+ y1 ··· ym

)m dy1 ···dym. (3.20)

Form= 1 we clearly recover P from Pm. Note, however, that the kernel of Pm is not sym-
metric with respect to x, y1, . . . , ym, and we do not have anymore the a priori boundedness
of the operator on products of Lebesgue spaces, since Pm and P⊗ are not comparable. As
such, the operator Pm does not fall under the scope of our main result, Theorem 1.1. For
the remainder of the paper, we will avoid any further discussion about multilinear opera-
tors that are arbitrary extensions (i.e., which do not preserve the features) of the classical
linear operators considered.
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3.2. Hardy-Littlewood-Pólya’s operator. We letQ denote Hardy-Littlewood-Pólya’s lin-
ear operator defined by

Q f (x)=
∫∞

0

f (y)
max(x, y)

dy. (3.21)

Itsm-linear nontensorial extension is

Q¬⊗
(
f1, . . . , fm

)
(x)=

∫∞

0
···

∫∞

0

f1
(
y1
)··· fm

(
ym
)

[
max

(
x, y1, . . . , ym

)]m dy1 ···dym. (3.22)

Claim 3.3. The following best constant inequality holds:

∥
∥Q¬⊗

(
f1, . . . , fm

)∥
∥
Lp ≤

( m∑

i=0

m∏

j=0, j =i
p′j

)
∥
∥ f1
∥
∥
Lp1 ···

∥
∥ fm

∥
∥
Lpm . (3.23)

Proof. With the notation in the proof of Theorem 1.1, we can decompose Rm
+ into the

union [0,1]m
⋃
(
⋃m

i=1Di) so that the interiors of the sets in this union are pariwise disjoint.
Furthermore, the best constant in the inequality we want to prove is

Cm =
∫∞

0
···

∫∞

0

[
max

(
1, y1, . . . , ym

)]−m
y
−1/p1
1 ··· y−1/pmm dy1 ···dym

=
∫

[0,1]m
y
−1/p1
1 ··· y−1/pmm dy1 ···dym +

m∑

i=1
Ji,

(3.24)

where

Ji =
∫∞

1

∫ yi

0
···

∫ yi

0
y
−1/p1
1 ··· y−m−1/pii ··· y−1/pmm dy1 ··· d̂yi ···dymdyi. (3.25)

Now,

∫

[0,1]m
y
−1/p1
1 ··· y−1/pmm dy1 ···dym =

m∏

j=1

y
1−1/p j

j

1− 1/p j
|10 =

m∏

j=1
p′j (3.26)

and (recall that p′0 = p)

Ji =
∫∞

1
y
−m−1/pi
i

m∏

j=1, j =i

y
1−1/p j

j

1− 1/p j
|yi0 dyi =

m∏

j=1, j =i
p′j

∫∞

1
y
−1−1/p1−···−1/pm
i dyi

=
m∏

j=1, j =i
p′j

y
−1/p1−···−1/pm
i

−1/p1−···− 1/pm
|∞1 =

m∏

j=0, j =i
p′j .

(3.27)

By summing up, we obtain the desired result. �
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In particular, form= 1, we recover the best constant in the (Lp,Lp) inequality satisfied
by the operator Q, C1 = p + p′ = p2/(p− 1); see [5, page 254]. Furthermore, for the m-
linear tensorial extension of Q,

Q⊗
(
f1, . . . , fm

)
(x)=

∫∞

0
···

∫∞

0

f1
(
y1
)··· fm

(
ym
)

max
(
x, y1

)···max
(
x, ym

)dy1 ···dym (3.28)

the best constant inequality is

∥
∥Q⊗

(
f1, . . . , fm

)∥
∥
Lp ≤

m∏

i=1

p2i
pi− 1

∥
∥ f1
∥
∥
Lp1 ···

∥
∥ fm

∥
∥
Lpm . (3.29)

3.3. Hardy’s operator. In his attempts to simplify the proofs known at the time of
Hilbert’s double series theorem, Hardy introduced in [3] the operator

R f (x)= 1
x

∫ x

0
f (y)dy (3.30)

and proved that it is bounded from Lp into Lp with best constant p/(p− 1). Unlike the

kernels of the operators P, Q considered before, the kernel k̃(1)(x, y)= (1/x)χ[0,x](y) of R
is not symmetric with respect to the variables x, y (to emphasize this difference, we use
now the lower case letter k). Here, χI denotes the characteristic function of the set I . The
m-linear tensorial extension

R⊗
(
f1, . . . , fm

)
(x)= 1

xm

∫ x

0
···

∫ x

0
f1
(
y1
)··· fm

(
ym
)
dy1 ···dym (3.31)

is then bounded from Lp1 × ··· × Lpm into Lp, and the best constant is
∏m

i=1 pi/(pi −
1). Note that the kernel k̃(m)

⊗ of R⊗ is still positive and homogeneous of degree −m,
as required in the hypothesis of Theorem 1.1. In our search for an appropriate non-

tensorial multilinear extension of R, we observed that we could also write k̃(1)(x, y) =
(1/x)χ[0,1](y/x) = (1/x)χ[1+y/x,∞)(2). This simple observation has suggested that we de-
fine the nontensorial extension via

R¬⊗
(
f1, . . . , fm

)
(x)= 1

xm

∫∞

0
···

∫∞

0
χ[0,x]

(
y1 + ···+ ym

)
f1
(
y1
)··· fm

(
ym
)
dy1 ···dym.

(3.32)

It is worth noting that, as in the previous examples, the kernel of the nontensorial ex-

tension satisfies k̃(m)
¬⊗ ≤ k̃(m)

⊗ . We therefore have the a priori boundedness of R¬⊗ from
Lp1 ×···× Lpm into Lp. However, since k̃(m)

¬⊗ is symmetric in the variables y1, . . . , ym but
not in x, we expect the operator norm of the nontensorial extension to be symmetric in
p1, . . . pm but not in p0 = p′ (the index that “corresponds” to x).

Claim 3.4. The following best constant inequality holds:

∥
∥R¬⊗

(
f1, . . . , fm

)∥
∥
Lp ≤

∏m
i=1Γ

(
1/p′i

)

Γ
(
m+1/p0

)
∥
∥ f1
∥
∥
Lp1 ···

∥
∥ fm

∥
∥
Lpm . (3.33)
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Proof. By Theorem 1.1, the best constant is given by

Cm =
∫∞

0
···

∫∞

0
χ[0,1]

(
y1 + ···+ ym

)
y
−1/p1
1 ··· y−1/pmm dy1 ···dym

=
∫ 1

0

∫ 1−y1

0
···

∫ 1−y1−···−ym−1

0
y
−1/p1
1 ··· y−1/pmm dym ···dy1

= p′m

∫ 1

0

∫ 1−y1

0
···

∫ 1−∑m−2
k=1 yk

0
y
−1/p1
1 ··· y−1/pm−1m−1

(

1−
m−1∑

k=1
yk

)1/p′m

dym−1 ···dy1.
(3.34)

In the last integral, we make the substitution ym−1 = tm−1(1−
∑m−2

k=1 yk) and integrate first
with respect to dtm−1. This allows us to simplify to an integral over only m− 2 variables

multiplied by the integral in tm−1,
∫ 1
0 t
−1/pm−1
m−1 (1− tm−1)1/p

′
mdtm−1 = B(1/p′m,1 + 1/p′m).

More precisely, we have

Cm = p′m
Γ
(
1/p′m−1

)
Γ
(
1+1/p′m

)

Γ
(
1+1/p′m−1 + 1/p′m

)

×
∫ 1

0

∫ 1−y1

0
···

∫ 1−∑m−3
k=1 yk

0
y
−1/p1
1 ··· y−1/pm−2m−2

(

1−
m−2∑

k=1
yk

)1/p′m−1+1/p′m

dym−2 ···dy1.
(3.35)

Since, p′mΓ(1 + 1/p′m) = Γ(1/p′m), by letting successively ym−2 = tm−2(1−
∑m−3

k=1 yk), . . . ,
y2 = t1(1− y1) and integrating with respect to dtm−2, . . . ,dt1 respectively, we obtain

Cm =
∏m

i=1Γ
(
1/p′i

)

Γ
(
1+
∑m

i=1
(
1/p′i

)) . (3.36)

Since,
∑m

i=1 1/p
′
i =m− 1/p, the desired result follows. �

Remark 3.5. The integral inequalities we considered have corresponding discrete ver-
sions. For example, the m-linear discrete versions of Hilbert’s and Hardy-Littlewood-
Pólya’s inequalities are, respectively,

∞∑

k=1

∞∑

k1=1
···

∞∑

km=1

akak1 ···akm(
k+ k1 + ···+ km

)m ≤ Cm(
∞∑

k=1
a
p′

k )
1/p′

m∏

j=1

( ∞∑

kj=1
a
pj

kj

)1/p j

,

∞∑

k=1

∞∑

k1=1
···

∞∑

km=1

akak1 ···akj
(
max

(
k,k1,··· ,km

))m ≤ C′m

( ∞∑

k=1
a
p′

k

)1/p′ m∏

j=1

( ∞∑

kj=1
a
pj

kj

)1/p j

.

(3.37)

The constants Cm and C′m are the ones obtained in Claims 3.1 and 3.3, respectively. The
proofs of the discrete versions follow from an appropriate discrete analogue of Theorem
1.1, but we will not pursue such a result here; the interested reader is referred to [5, page
232] for further details.
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