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We introduce a new class of normalized norms on R? which properly contains all absolute
normalized norms. We also give a criterion for deciding whether a given norm in this class
is uniformly nonsquare. Moreover, an estimate for the James constant is presented and
the exact value of some certain norms is computed. This gives a partial answer to the
question raised by Kato et al.
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1. Introduction and preliminaries

A norm || - || on C? (resp., R?) is said to be absolute if ||(z,w)|l = ||(|z|,|w])|l for all
z,w € C (resp., R), and normalized if ||(1,0)[| = [|(0,1)[| = 1. The £,-norms || - ||, are
such examples:

(1.1)

Iz w)ll, = (217 +1wl?)"? if 1< p< oo,
SWllp = max {|z|,|w|}  if p=co.

Let AN, be the family of all absolute normalized norms on C? (resp., R?), and ¥,
the family of all continuous convex functions y on [0, 1] such that y(0) = (1) = 1 and
max{l—t t} <y(t) <1(0=<t<1). According to Bonsall and Duncan [1], AN, and ¥,
are in a one-to-one correspondence under the equation

y() =lA-6)] (O=<t<1) (1.2)
Indeed, for all y € ¥, let

[w|
lz| + |w|

) if (z,w) £ (0,0),
if (z,w) = (0,0).

(12l + why (

|z w)l], = (1.3)
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2 The James constant of normalized norms on R?

Then || - [y € AN,, and || - ||, satisfies (1.2). From this result, we can consider many
non-£,-type norms easily. Now let

) (1.4)
max{l —t, t} if p = 0.

(1=1)P+t2)"? if1<p< o,
p(t) =
Then v, (t) € ¥, and, as is easily seen, the £,-norm || - ||, is associated with .
If X is a Banach space, then X is uniformly nonsquare if there exists § € (0,1) such that
for any x, y € Sx,

either [|x+ yl| <2(1—-46) or lx—yll =2(1-96), (1.5)
where Sx = {x € X : [[x]| = 1}. The James constant J(X) is defined by
J(X) =sup{min{llx+ yll, lx— yll} : x, y € Sx}. (1.6)

The modulus of convexity of X, dx : [0,2] — [0, 1] is defined by

. 1
Sx(e) = 1nf{l St yllix y €Sx, Iyl = s}. (1.7)

The preceding parameters have been recently studied by several authors (cf. [4-6, 8,
9]). We collect together some known results.

ProrositioN 1.1. Let X be a nontrivial Banach space, then

(i) /2 < J(X) <2 (Gao and Lau [5]),

(i) if X is a Hilbert space, then ] (X) = /2; the converse is not true (Gao and Lau [5]),
(iii) X is uniformly nonsquare if and only if J(X) < 2 (Gao and Lau [5]),

(iv) 2J(X) =2 < J(X*) = J(X)/2+ 1, J(X**) = ](X), and there exists a Banach space

X such that J(X*) # J(X) (Kato et al. [8]),
(V) if2 < p < oo, then &;,(¢) = 1 — (1 — (¢/2)?) VP (Hanner [6]),
(vi) J(X) = supie € (0,2) : 0x(¢) <1 —¢/2} (Gao and Lau [5]).

The paper is organized as follows. In Section 2 we introduce a new class of normalized
norms on R2. This class properly contains all absolute normalized norms of Bonsall and
Duncan [1]. The so-called generalized Day-James space, £,,-€,, where y,¢ € V3, is intro-
duced and studied. More precisely, we prove that (€,-£,)* = €y«-£,« where y* and ¢* are
the dual functions of ¢ and ¢, respectively. In Section 3, the upper bound of the James
constant of the generalized Day-James space is given. Furthermore, we compute ] (£y-€x)
and deduce that every generalized Day-James space except £;-€; and €« -€« is uniformly
nonsquare. This result strengthens Corollary 3 of Saito et al. [10].

2. Generalized Day-James spaces

In this section, we introduce a new class of normalized norms on R? which properly con-
tains all absolute normalized norms of Bonsall and Duncan [1]. Moreover, we introduce
a two-dimensional normed space which is a generalization of Day-James £,-£, spaces.
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Lemma 2.1. Lety € Y, and let || - |ly,y. be a function on R? defined by, for all (z,w) € R%,

1wl ., == max{[[(z"w")[, [z w)l, },

- {H(z,w)Hw ifzw > 0, (2.1)

Nlw)||, ifzw <o,

where x* and x~ are positive and negative parts of x € R, that is, x* = max{x,0} and x~ =
max{—x,0}. Then || - |ly,y., is a norm on R2.

For convenience, we put By, y, := {(z,w) € R?: [[(z,w)ly,y, < 1}.

THEOREM 2.2. Let y,p € ¥, and

lzwll, ifzw=0,

> s 2.2
zwlly, {||(z,w)||(p ifzw <0 2.2)
for all (z,w) € R%. Then || - lly.p is @ norm on R2. Denote by N the family of all such prece-
ding norms.

Proof. Let y,¢ € ¥, we only show || - ||, satisfies the triangle inequality. To this end,
it suffices to prove that %, is convex. By Lemma 2.1, we have that B, and B, are
closed unit balls of || - |ly,y., and || - [l¢,y., respectively, and so %Wﬂm and %%ww are convex
sets. We define T : R? — R? by

T((z,w)) = (—z,w) V(z,w) € R% (2.3)

Then T is a linear operator and T(%B,,y.,) = By,,,y, which implies that B, , is convex
and so By,p = By, N By,y,, is convex. O

Taking v = y, and ¢ = y, (1 < p,g < o) in Theorem 2.2, we obtain the following.

CoroLLARY 2.3 (Day-James €,-€, spaces). For 1 < p, q < oo, denote by £,-£, the Day-
James space, that is, R? with the norm defined by, for all (z,w) € R?,

||(Z)W)||p ifZWZO)

z,w = . 2.4
||( )||p,q {H(Z,W)”q leWSO. ( )

James [7] considered the £,,-£, space as an example of a Banach space which is isomet-
ric to its dual but which is not given by a Hilbert norm when p # 2. Day [2] considered
even more general spaces, namely, if (X, || - ||) is a two-dimensional Banach space and
(X*, 01 - II*) its dual, then the X-X* space is the space X with the norm defined by, for all
(z,w) € R2,

el [|[(z,w)]|  ifzw =0, 05
> x = 2.5
ol l(z,w)||* ifzw <.



4 The James constant of normalized norms on R2

For y,¢ € V5, denote by ¢,-¢, the generalized Day-James space, that is, R? with the
norm || - ||, defined by (2.2). For y, defined by (1.4), we write £,-£, for £y-¢y,. For
example, if 1 < p,q < o0, £,-£;, means £y, Ly,

It is worthwhile to mention that there is a normalized norm which is not absolute.

PropoOsITION 2.4. There is y € ¥, such that €,-£« is not isometrically isomorphic to €,-€,
forall ¢ € V,.

Proof. Let
1
1—t ifo<t<-=,
! 8
11-4t .1 1
y(t):= 5 1f§ <t< > (2.6)

1+t 1
— if-<t<l1

2 )

We observe that the sphere of £,,-£., is the octagon whose right half consists of 4 segments
of different lengths. Suppose that there are ¢ € ¥, and an isometric isomorphism from
£,-L onto £,-£,. Since the image of each segment in £ -£ is again a segment of the same
length in £,-£,, the sphere of £,-£, must be the octagon whose each corresponding side
has the same length (measured by || - [|,). We show that this cannot happen. Consider
(1,0) € S, ¢, If (1,0) is an extreme point of Be,,, then Sg, ¢, contains 4 segments of
same lengths since || - ||, is absolute. On the other hand, if (1,0) is an not extreme point
of By, ¢,, again Sg, ¢, contains 4 segments of same lengths. O

Next, we prove that the dual of a generalized Day-James space is again a generalized
Day-James space. Recall that, for y € ¥, the dual function y* of y is defined by
(2.7)
for all s € [0,1]. It was proved that y* € ¥ and (£,-€,)* = €y+-£y+ (see [3, Proposition
1 and Theorem 2]). We generalize this result to our spaces as follows.

TueOREM 2.5. For vy, € ¥y, there is an isometric isomorphism that identifies (€,-€,)*
with £y« -y« such that if f € (£,-£,)* is identified with the element (z,w) € €y+-Ly«, then

f(u,v) =zu+wy (2.8)
for all (u,v) € R?.
Proof. We can prove analogous to [3, Theorem 2]. O
3. The James constant and uniform nonsquareness

The next lemmas are crucial for proving the main theorems.

Lemma 3.1. Let v, € V5. Then
@ Il <= Mlyp =<1+l
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(i) (/My )l - lly <11 Mlyp < Mgyl - Iy,
(iii) (I/ Moyl - llg < 11+ ly,p < Myoll - s
where My, = maxo<;<1 ¢(t)/y(t) and My, = maxo<;<1 y(£)/@(t).

LEmMA 3.2. Let y,¢ € ¥, and let Q; (i = 1,...,4) denote the ith quadrant in R2. Suppose
that x,y € Sy, ¢,, then the following statements are true.
(1) Ifx,y € Qi, thenx+y € Qrandx—y € Qu U Qq.
(i) If x,y € Qy, then x+y € Quand x — y € Q; U Qs.
(iii) If w(t) < @(t) for all t € [0,1] and x — y € Q5 U Qy, where Q5 and Qj are the
interiors of Q, and Qu, respectively, then x+y € Q; U Qs.

We will estimate the James constant of £,,-£,,.

TuEOREM 3.3. Let v, € ¥, with y(t) < ¢(t) forall t € [0,1], let My, = maxo<1 9(t)/y(1),
and let & (-) be the modulus of convexity of €,-€,. Then for ¢ € [0,2],

£

Bype) Zmin{l M,y (1-8,(e), 8‘”<M—w)}’ (3.1)

where 8y, () is the modulus of convexity of £,-€,. Consequently,

J(8y-£y) < sup{e €(0,2):e<2Myy(1—-0y(e)) ore < 2(1 - 8V,<MLW>)}. (3.2)

Proof. By Lemma 3.1(ii), we have
-1y <l llyp < Moyl - lly. (3.3)

We now evaluate the modulus of convexity dy,, for £,-€,. We consider two cases.

Case 1. Take |lxlly,p = llyllye =1 with [lx — yllye = & where x — y € Q; U Q3. Thus
llxlly <1, Iylly < 1,and [|x — ylly, = & which implies that

St ylly < 1-8y(e). (3.4)
This in turn implies
1 1
5 X+ pllye < §M¢,W||x+y||q, <Myy(1-98y(¢)), (3.5)
thus
L= St yllyg 2 1 My (1-8,(0). (3.6)

Case 2. Now take x, y as above, but with x — y € Q; U Qj. By Lemma 3.2(iii), x + y €
Q1 U Qs. Since [lx = ylly,p = &

x—
[ yHWz e
M,y Moy

lx—ylly = (3.7)
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Then
1 1 £
5||x+y||w=5|IX+yH1,,£1—6w(M—W>, (3.8)
and so
1 £
1—5||x+y||w,¢28w<M—w). (3.9)
Hence we obtain (3.1). By Proposition 1.1(vi), (3.2) follows. O

The following corollary shows that we can have equality in (3.2).

CoROLLARY 3.4 [4,8]. Ifl<q<p<candp =2, then

20/4 1/p
In particular, if p = 2 and q = 1, then ] (£,-€,) = \/8/3.
Proof. It follows that since
P 1/p
—oValp, g —1-{1-(¢ 3.11
My, .y, =2 5 e,-0,(8) =1— |1~ 3 : (3.11)
Moreover, if p =2 and g = 1, then J(€,-¢;) < +/8/3. Now we put
. _<2+ﬁ 2—ﬁ> _(2—ﬁ 2+ﬁ> 5.12)
0 — 2\/§ > 2\/3 > 0= 2\/§ > 2\/3 . .
Then
8
||x0||2,1 = ||}’0||2,1 =1, ||x0 i)’0”2,1 = \/; (3.13)
O

THEOREM 3.5. Let v, @ € ¥, with y(t) < ¢(t) forall t € [0, 1], let My, = maxo<s<1 9(t)/y/(1),
and let §,(-) be the modulus of convexity of €,-€,. Then for e € [0,2],

aw,¢(e)zl—M¢,w<1—8¢(MLw>>, (3.14)

where 8y, (+) is the modulus of convexity of £,-£,. Consequently,

T(t,-t,) < sup{e €(0,2):e< 2MW(1 - 5““(1\4%,,‘#))}‘ (3.15)

Proof. By Lemma 3.1(iii), we have
1

Mg = - Mlysp < 11 llg. (3.16)
ad

<
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We now evaluate the modulus of convexity &y, for £,-£,. Let

lxllye = lylly =1 with [[x—ylly,>e (3.17)
Then
1 1
—_— <1, —_— <1,
M‘Pﬂ//”x”q) M%u/”y”q’
(3.18)
Lol = ylly = = llx = yllyp = —
Yy = = yllgy = =
Mo,y YT Myy "7 Myy
which implies that
lx+ylly<1-8 (L) (3.19)
2My,y e = \Myy ) '

This in turn implies that

i 1+ e = gyl =10 () (3.20)
thus
L= 2yl = 1- My (1-8,(35)). (321)
2 M,y
Hence we obtain (3.14). By Proposition 1.1(vi), (3.15) follows. O

COROLLARY 3.6. If2 < g < p < o, then
J(€y-b5) <2'7VP, (3.22)

It is easy to see that the estimate (3.22) is better than one obtained in [4, Example
2.4(3)].

For some generalized Day-James spaces, [8, Corollary 4] of Kato et al. gives only rough
result for the estimate of the James constant, that is, for y € ¥,

2 <J(by-€s) <2M, (3.23)

where M = maxg<;<1 Yoo (£)/9(1).
However, the following theorem gives the exact value of the James constant of these
spaces.

THEOREM 3.7. Let v € W,. Then

1/2
](&V-&,o) = l+m (3.24)
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Proof. For our convenience, we write || - || instead of || - [|y,y... Letx,y € Se,-¢..- We prove
that
. 1/2 1/2
either [x+yll <1+ o x—yll <1+ . 3.25
i [l + yll v(172) r llx — yll v(172) (3.25)

Let us consider the following cases.
Case 1. x,y € Q. Let x = (a,b) and y = (¢,d) where a,b,c,d € [0,1]. By Lemma 3.2(i),
we have x — y € Q, U Q4. Then

1/2
w(1/2)°

lx—yll =max{la—cl|, [b-dl} <1<1+ (3.26)

Case 2. x,y € Q,. If x, y lies in the same segment, then [|x — y|| < 1. We now suppose
that x = (—1,a) and y = (—¢,1) where a,c € [0,1].

Subcase 2.1. a < (1/2)/y(1/2) and ¢ < (1/2)/w(1/2). Then

1/2

lx+yll =]|(-1=¢,1+a)||, = max{l+c, 1+a} <1+ v/ (3.27)
Subcase 2.2. a = (1/2)/y(1/2) or ¢ = (1/2)/y(1/2). Put z = (- 1,1), then
1/2 1/2
lx=yll <llx—zll+llz—yll=1-a+1—-c<1+1- / <1 / (3.28)

y(72) = Ty

From now on, we may assume without loss of generality that there is § € [1/2,1] such
that y(B) < y(¢) for all t € [0,1]. Indeed, J(£-€w) = J(£5-€w) Where §(t) = y(1 —¢t) for
allt € [0,1].

Case 3. x € Q and y € Qy. Let x = (a,b), y = (—¢, 1) where a,b,c € [0,1]. We consider
three subcases.

Subcase 3.1. a < (1/2)/y(1/2) or ¢ < (1/2)/y(1/2). Then

1/2

lx—yll =||[(a+c,b—1)||, =max{a+c, 1 -b} <1+ v/ (3.29)
Subcase 3.2. (1/2)/y(1/2) <a < c. Then b < (1/2)/y(1/2) and
lx+yll = |[(@a=cb+ 1|, = maxic—a, 1+b} <1+ /2 (3.30)
’ * ’ v(1/2)

Subcase 3.3. (1/2)/w(1/2) < ¢ < a. We write a = (1 —to)/y(ty), b = to/y(ty) where t; =
b/(a+b) and 0 < t, < 1/2. By the convexity of ¥ and w(t) = y(B) forall 0 <t <1, we
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have y(ty) = y(1/2) and so 1/y(ty) < 1/y(1/2). By Lemma 3.1(i),

lx+yll =[|(a,b)+ (=, || < ||(a—c,b+1)]|,
1
=a—c+b+l=m+1—c (331)
1 1/2 1/2
< +1-— =1+ .
v(1/2) v(1/2) v(1/2)

Case 4. x € Q; and y € Q,. Let x = (a,b), y = (—1,c) where a,b,c € [0,1]. We consider
three subcases.

Subcase 4.1. b < (1/2)/y(1/2) or ¢ < (1/2)/y(1/2). Then

1/2

lx+yll =|[(a=1,b+¢)||, =max{l —a, b+c} <1+ v/ (3.32)
Subcase 4.2. (1/2)/y(1/2) < b < c. Then a < (1/2)/y(1/2) and
llx—yll =||(1+a,b-c)||, =max{l+a,c—b} <1+ 1/2 ) (3.33)
’ % ’ v(1/2)

Subcase 4.3. (1/2)/y(1/2) < ¢ < b. We write a = (1 —ty)/w(ty), b = to/y(ty), where ty) =
b/(a+b)and 1/2 <ty < 1. We choose « = b/(a+2b — 1), then

_1-2a

<ac<l, a b+1. (3.34)

N | —

Sinceb—c<l+aandb<1,

b-c 1
<

m E <fh=a (335)

Let

-1
“—t+1 ifo<t<a,
o (3.36)

t ifa<t<l.
We see that y,(ty) = y(t). By the convexity of y, we have

y(t) <yu(t) Vi<t (3.37)
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Therefore,

b-
lx =yl =ll(a+1,b-0)], = (1+a+b—c>w(ﬁg_c)

s(1+a+h—c)1//a< b-c ): “;l(b—c)+l+a+b—c

l+a+b-c
PP S P L DR B (3.38)
04 (04 (04
g 2e-1 12 12 B3a-1 1
v(1/2)  w(1/2) 20 y(1/2)
1/2 Va(1/2) 1/2
=1 1- <1 .
v T T v T T v

Finally, we conclude that

1/2
J(8y-e) <1+ v(1/2) (3.39)
Now, we put xo = ((1/2)/w(1/2),(1/2)/w(1/2)) and yo = (—1,1), then
1/2
lall = loll =1, o= yoll =1+ 2 (3.0
Thus,
J(8y-a) = min o~ yoll, lxo +yoll} = 14— (3.41)
v ’ v(1/2)
This together with (3.39) completes the proof. O
CoROLLARY 3.8 [4, Example 2.4(2)]. Let 1 < p < co, then
1\ P
J(€p-te) =1+ (E) . (3.42)
Indeed, y,(1/2) = 2VP~L.
We now obtain the bounds for J(£,-¢;).
CoROLLARY 3.9. Let v € V,. Then
2 min y() = J(6,-€1) < > + » min y(¢) (3.43)
oo Vi =) =5 mn v '

Proof. Note that y*(1/2) = maxo<¢<1(1/2)/y(t) = 1/2ming<;<; ¥(t). By Theorem 3.7, we
have J(£y+-€~) = 1 + ming<;<; ¥(t). Applying Proposition 1.1(iv), the assertion is ob-
tained. O

We now improve the upper bound for J(£,-£1) (see also Corollary 3.4).
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CoROLLARY 3.10. Let 1 < p < 0. Then

3 1\ VP
](fp—el) < E + (5> . (3.44)

In particular, if p = 2, then

. 4 3 /1\*Vr
](€p—€1) smm{w, E‘f’ (£> } (345)

The following corollary follows by Theorem 3.7 and Corollary 3.9.

CoROLLARY 3.11. Let v € V. Then
(i) &y-Lo is uniformly nonsquare if and only if Y # Yo,
(ii) €y-€, is uniformly nonsquare if and only if v # .

We can say more about the uniform nonsquareness of £,,-£,.

Tueorem 3.12. Let y,¢ € ¥,. Then all £,-£, except £,-€, and £-Lo are uniformly non-
square.

Proof. If y = ¢, we are done by [10, Corollary 3]. Assume that ¢ # ¢. We prove that £,-£,
is uniformly nonsquare. Suppose not, that is, there are x, y € Sgw_g¢ such that [|x + ylly, =
2. We consider three cases.

Case 1. x,y € Q. Then

Ixlly,1 = lIxlly = llxlly,p =1,

3.46
yllys = Iylly = Iyl = 1. (3.46)
It follows by Lemma 3.2(i) that x + y € Q; and x — y € Q, U Q4. Therefore
lx+plly1 =[x+ yllye =2,
v P (3.47)

2=lx=yllyp <llx=yli=llx=ylly1=2.

Hence ||x + y|ly,1 = 2 and this implies that £, -€, is not uniformly nonsquare. By Corollary
3.11(ii), we have y = y,. Again, since &, -€, = £,-£, is not uniformly nonsquare, ¢ = y; =
y; a contradiction.

Case 2. x,y € Q. It is similar to Case 1, so we omit the proof.

Case 3. x:=(a,b) €Q, and y:=(—c,d) € Q, where a,b,c,d € [0,1]. Since [[x + y|ly o = 2,
the line segment joining x and y must lie in the sphere. In particular, there is a« € [0,1]
such that

0,1) =ax+(1—a)y. (3.48)

It follows that b = 1 since b,d < 1. Similarly consider x and — y instead of x and y, we can
also conclude that a = 1. Hence [[(1,1)|ly = |(1,1)lly,, = 1, that is, y(1/2) = 1/2. Then
¥ = Yo and s0 €y-£, = €w-€, is not uniformly nonsquare. By Corollary 3.11(i), we have
¢ = Y = ¥; a contradiction. O
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