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We find an upper bound for the �p norm of the n × n matrix whose i j entry is
(i, j)s/[i, j]r , where (i, j) and [i, j] are the greatest common divisor and the least com-
mon multiple of i and j and where r and s are real numbers. In fact, we show that if
r > 1/p and s < r − 1/p, then ‖((i, j)s/[i, j]r)n×n‖p < ζ(r p)2/pζ(r p− sp)1/p/ζ(2r p)1/p for
all positive integers n, where ζ is the Riemann zeta function.
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1. Introduction

Let S = {x1,x2, . . . ,xn} be a set of distinct positive integers, and let f be an arithmetical
function. Let (S) f denote the n× n matrix having f evaluated at the greatest common
divisor (xi,xj) of xi and xj as its i j entry, that is, (S) f = ( f ((xi,xj))). Analogously, let [S] f
denote the n× n matrix having f evaluated at the least common multiple [xi,xj] of xi
and xj as its i j entry, that is, [S] f = ( f ([xi,xj])). The matrices (S) f and [S] f are referred
to as the GCD and LCMmatrix on S associated with f respectively. Smith [12] calculated
det(S) f when S is a factor-closed set and det[S] f in a more special case. Since Smith a
large number of results on GCD and LCMmatrices have been presented in the literature.
For general accounts see, for example, [3, 5–8].

Norms of GCD matrices have not been studied much in the literature. Some results
are obtained in [1, 4], see also the references of [4] and [10, Chapter 3].

Let p ∈ Z+. The �p norm of an n×nmatrixM is defined as

‖M‖p =
( n∑

i=1

n∑
j=1

∣∣mij

∣∣p)1/p

. (1.1)
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Let r,s∈ R. It is known [1, Theorem 3] that if r > 1/p, then

lim
n→∞

∥∥∥∥∥
(

1
[i, j]r

)
n×n

∥∥∥∥∥
p

= ζ(pr)3/p

ζ(2pr)1/p
. (1.2)

We here generalize this result by showing that if r > 1/p and s < r− 1/p, then

lim
n→∞

∥∥∥∥∥
(
(i, j)s

[i, j]r

)
n×n

∥∥∥∥∥
p

= ζ(pr)2/pζ(pr− ps)1/p

ζ(2pr)1/p
, (1.3)

see Theorem 3.1. This result also sharpens the rough estimation

∥∥∥∥∥
(
(i, j)s

[i, j]r

)
n×n

∥∥∥∥∥
p

=O(1) (1.4)

given in [4, Theorem 3.1(3)].

2. Preliminaries

In this section we review the basic results on arithmetical functions needed in this paper.
For more comprehensive treatments on arithmetical functions we refer to [2, 9–11].

The Dirichlet convolution f ∗ g of two arithmetical functions f and g is defined as

( f ∗ g)(n)=
∑
d|n

f (d)g(n/d). (2.1)

Let Nu, u ∈ R, denote the arithmetical function defined as Nu(n) = nu for all n ∈ Z+,
and let E denote the arithmetical function defined as E(n)= 1 for all n∈ Z+. The Jordan
totient function Jk(n), k ∈ Z+, is defined as the number of k-tuples a1,a2, . . . ,ak (mod n)
such that the greatest common divisor of a1,a2, . . . ,ak and n is 1. By convention, Jk(1)= 1.
The Möbius function μ is the inverse of E under the Dirichlet convolution. It is well
known that Jk =Nk ∗μ. This suggests we define

Ju(n)=
(
Nu∗μ

)
(n)=

∑
d|n

duμ(n/d) (2.2)

for all u∈ R. Since μ is the inverse of E under the Dirichlet convolution, we have

nu =
∑
d|n

Ju(d). (2.3)

An arithmetical function f is said to be multiplicative if f (1)= 1 and

f (mn)= f (m) f (n) (2.4)

whenever (m,n)= 1, and an arithmetical function f is said to be completely multiplica-
tive if f (1)= 1 and (2.4) holds for allm and n. For example, the functionNu is completely
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multiplicative. Each completely multiplicative function f distributes over the Dirichlet
convolution, that is,

f (g ∗h)= ( f g)∗ ( f h) (2.5)

for all arithmetical functions g and h. The inverse f −1 of a completely multiplicative
function f under the Dirichlet convolution is given as

f −1 = μ f . (2.6)

The Dirichlet series of an arithmetical function f is defined as

∞∑
n=1

f (n)
ns

, (2.7)

where we assume (for brevity) that s is a real number. The Riemann zeta function is
defined as

ζ(s)=
∞∑
n=1

1
ns
, (2.8)

where s > 1. If the series
∑∞

n=1 f (n)/ns and
∑∞

n=1 g(n)/ns converge absolutely for s > s0,
then

∞∑
n=1

f (n)
ns

∞∑
n=1

g(n)
ns

=
∞∑
n=1

( f ∗ g)(n)
ns

(2.9)

and this last series converges absolutely for s > s0. Further, if the inverse f −1 of f under
the Dirichlet convolution exists, then

∞∑
n=1

f −1(n)
ns

=
( ∞∑

n=1

f (n)
ns

)−1
(2.10)

and this series also converges absolutely for s > s0.

3. Results

Theorem 3.1. Let r > 1/p and s < r− 1/p. Then

lim
n→∞

∥∥∥∥∥
(
(i, j)s

[i, j]r

)
n×n

∥∥∥∥∥
p

= ζ(r p)2/pζ(r p− sp)1/p

ζ(2r p)1/p
. (3.1)

Proof. Denote

sn =
n∑
i=1

n∑
j=1

(i, j)sp

[i, j]r p
. (3.2)
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Since (i, j)[i, j]= i j, we have for all p, r, s

sn =
n∑
i=1

n∑
j=1

(i, j)(r+s)p

ir p jr p
. (3.3)

It is clear that

sn <
∞∑
i=1

∞∑
j=1

(i, j)(r+s)p

ir p jr p
. (3.4)

Making the change of variables λ= (i, j), i= uλ and j = vλ, we see that

sn <
∞∑
u=1

∞∑
v=1

∞∑
λ=1

λ(s−r)p

urpvrp

=
( ∞∑

u=1

1
urp

)( ∞∑
v=1

1
vrp

)( ∞∑
λ=1

1
λ(r−s)p

)

= ζ(r p)2ζ(r p− sp).

(3.5)

Note that all these series have only positive terms and r p, r p− sp > 1. Thus, {sn} is in-
creasing and bounded above, and so limn→∞ sn = S exists. We deduce that the double
series

∑∑
((i, j)sp/[i, j]r p) converges absolutely, with sum S.

We calculate the number S as follows. We have

S=
∞∑
i=1

∞∑
j=1

(i, j)sp

[i, j]r p
=

∞∑
i=1

∞∑
j=1

(i, j)(r+s)p

ir p jr p
. (3.6)

From (2.3) we obtain

S=
∞∑
i=1

1
ir p

∞∑
j=1

1
jr p

∑
d|(i, j)

J(r+s)p(d)

=
∞∑
i=1

1
ir p
∑
d|i

J(r+s)p(d)
∑

1≤ j<∞
j≡0 (mod d)

1
jr p

.

(3.7)

Since r p > 1, we can write

S= ζ(r p)
∞∑
i=1

1
ir p
∑
d|i

J(r+s)p(d)

drp
. (3.8)

Since the function 1/drp (i.e., the function N−r p) is completely multiplicative in d, on the
basis of (2.2) and (2.5) we have

S= ζ(r p)
∞∑
i=1

1
ir p
(
E∗Nsp∗μN−r p)(i). (3.9)
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Since the function 1/ir p (i.e., the function N−r p again) is completely multiplicative in i,
on the basis of (2.5) again we have

S= ζ(r p)
∞∑
i=1

(
N−r p∗N−(r p−sp)∗μN−2r p)(i). (3.10)

Since r p,r p− sp > 1, we can apply (2.6)–(2.10) to obtain

S= ζ(r p)ζ(r p)ζ(r p− sp)/ζ(2r p). (3.11)

This completes the proof of Theorem 3.1. �

Corollary 3.2. Let r > 1/p and s < r− 1/p. Then, for all n∈ Z+,

∥∥∥∥∥
(
(i, j)s

[i, j]r

)
n×n

∥∥∥∥∥
p

<
ζ(r p)2/pζ(r p− sp)1/p

ζ(2r p)1/p
. (3.12)

The spectral norm of an n×nmatrixM is defined as

‖M‖S =max
{√

λ : λ is an eigenvalue of M∗M
}
. (3.13)

Corollary 3.3. Let r > 1/2 and s < r− 1/2. Then, for all n∈ Z+,

∥∥∥∥∥
(
(i, j)s

[i, j]r

)
n×n

∥∥∥∥∥
S

<
ζ(2r)ζ

(
2(r− s)

)1/2
ζ(4r)1/2

. (3.14)

Proof. It is known that ‖M‖S ≤ ‖M‖2. Thus Corollary 3.3 follows from Corollary 3.2.
�
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