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1. Introduction

In 1965, L. Keng Hua discovered the following inequality.

Theorem 1.1 [2]. If δ,λ > 0 and x1, . . . ,xn ∈R, then

(
δ−

n∑
i=1

xi

)2

+ λ
n∑
i=1

xi
2 ≥ λδ2

λ+n
. (1.1)

In (1.1), the equality holds if and only if x1 = ··· = xn = δ/(λ+n).

This inequality played an important role in number theory and has been generalized
in several directions [1, 3–6]. One of its generalizations states the following.

Theorem 1.2 [5, Corollary 2.7]. Let X be a real or complex normed space with dual X∗,
and suppose p,q > 1 and 1/p+1/q = 1. If δ,λ > 0, x ∈ X , and f ∈ X∗, then

∣∣δ− f (x)
∣∣p + λp−1‖x‖p ≥

(
λ

λ+‖ f ‖q
)p−1

δp. (1.2)

In (1.2), the equality holds if and only if f (x)= ‖ f ‖‖x‖ and ‖x‖ = δ‖ f ‖q−1/(λ+‖ f ‖q).
In this paper, we give a new interpretation of the inequality (1.2) and consider whether

the coefficients λp−1 and (λ/(λ+‖ f ‖q))p−1 are best possible. For this purpose, we divide
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both sides of (1.2) by (λ/(λ+ ‖ f ‖q))p−1δp, and then replace x/δ by x. Thus we obtain a
replica of Theorem 1.2.

Theorem 1.3. Let X be a real or complex normed space with dual X∗, and suppose p,q > 1
and 1/p+1/q = 1. If λ > 0, x ∈ X , and f ∈ X∗, then

(
λ+‖ f ‖q

λ

)p−1∣∣1− f (x)
∣∣p + (λ+‖ f ‖q)p−1‖x‖p ≥ 1. (1.3)

In (1.3), the equality holds if and only if f (x)= ‖ f ‖‖x‖ and ‖x‖ = ‖ f ‖q−1/(λ+‖ f ‖q).
Clearly, Theorems 1.2 and 1.3 are equivalent. So, we turn our attention to Theorem 1.3,

which is more convenient for us. Put

Ω= {(∣∣1− f (x)
∣∣,‖x‖) : x ∈ X

}
. (1.4)

Then Ω is a subset of R+×R+, where R+ = {s∈R : s≥ 0}. Moreover, we have

Ω⊂ {(s, t)∈R+×R+ : s+‖ f ‖ t ≥ 1
}
, (1.5)

because |1− f (x)|+‖ f ‖‖x‖ ≥ 1−| f (x)|+‖ f ‖‖x‖ ≥ 1 for all x ∈ X . While the inequal-
ity (1.3) has the form

asp + btp ≥ 1 ∀(s, t)∈Ω, (1.6)

where a and b are nonnegative constants. If we know all the nonnegative constants a and
b such that (1.6) holds, then wemay determine whether the coefficients ((λ+‖ f ‖q)/λ)p−1
and (λ+‖ f ‖q)p−1 in (1.3) are best possible.

2. General theory

Let k and � be positive numbers. LetΩ be an index set such that

Ω⊂ {(s, t)∈R+×R+ : ks+ �t ≥ 1
}
. (2.1)

For such an index set Ω and any p > 0, we consider the domain

D(p;Ω)= {(a,b)∈R+×R+ : asp + btp ≥ 1∀(s, t)∈Ω
}
. (2.2)

We wish to identify the domain D(p;Ω).
We first consider the case p > 1.We define a function hp,k,� on the open interval (kp,∞)

by

hp,k,�(a)= �pa(
aq−1− kq

)p−1 (
a > kp

)
, (2.3)
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where q is the number satisfying 1/p+1/q = 1. It is easily seen that the function hp,k,� is
decreasing and strictly convex, and that the graph of b = hp,k,�(a) has the asymptotic lines
a= kp and b = �p. Next, we put

S(k,�)= {(s, t)∈R+×R+ : ks+ �t = 1
}
. (2.4)

In other words, S(k,�) is the line segment connecting two points (1/k,0) and (0,1/�).
Also, we write Ω for the closure ofΩ in the Euclidean plane R×R.

Theorem 2.1. Let k and � be positive numbers and let Ω be an index set such that Ω ⊂
{(s, t) ∈ R+ ×R+ : ks+ �t ≥ 1}. Suppose that p > 1 and 1/p + 1/q = 1. Then the following
assertions hold.

(i) If a > kp, then

asp +hp,k,�(a)tp ≥ 1 ∀(s, t)∈Ω. (2.5)

In (2.5), the equality holds if and only if (s, t) = ((k/a)q−1, (aq−1− kq)/�aq−1) ∈Ω.
This attaining point (s, t) lies on the line segment S(k,�).

(ii) D(p;Ω)⊃ {(a,b)∈R+×R+ : a > kp, b≥ hp,k,�(a)}.
(iii) If S(k,�)⊂Ω, then

D(p;Ω)= {(a,b)∈R+×R+ : a > kp, b≥ hp,k,�(a)
}
. (2.6)

The formula (2.6) says that when a > kp and b = hp,k,�(a), the pair (a,b) is one of the
best possible constants such that (1.6) holds.

Before proving Theorem 2.1, we make some remarks on the domains which appear in
(ii) and (iii). Evidently, the domain D(p;Ω) has the property that

(α,β)∈D(p;Ω), a≥ α, b ≥ β =⇒ (a,b)∈D(p;Ω). (2.7)

Next, for each (s, t)∈ S(k,�), we put

L(p;s, t)= {(a,b)∈R×R : asp + btp = 1
}
,

Δ(p;s, t)= {(a,b)∈R×R : asp + btp ≥ 1
}
.

(2.8)

In the ab-plane, L(p;s, t) denotes a straight line, and Δ(p;s, t) denotes the closed upper
half plane whose boundary is the line L(p;s, t), while the domain {(a,b)∈R+×R+ : a >
kp, b ≥ hp,k,�(a)} consists of the points above or on the curve b = hp,k,�(a) (a > kp). These
domains have a relation in the following sense.

Lemma 2.2. For positive numbers k and �, the following assertions hold.
(i) If � is a family of the lines {L(p;s, t) : (s, t)∈ S(k,�)}, then the envelope of � is given

by b = hp,k,�(a) (a > kp).

(ii) {(a,b)∈R+×R+ : a > kp, b ≥ hp,k,�(a)} =
⋂

(s,t)∈S(k,�)Δ(p;s, t).
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Proof. (i) Since S(k,�)= {(s, (1− ks)/�) : 0≤ s≤ 1/k}, the family of lines � is represented
by

spa+
(
1− ks

�

)p

b = 1
(
0≤ s≤ 1

k

)
. (2.9)

We here remark that each line of � has no singular point. Now, put

F(a,b,s)= spa+
(1− ks)p

�p
b− 1. (2.10)

Then

∂F

∂s
(a,b,s)= psp−1a− pk(1− ks)p−1

�p
b. (2.11)

Consider the simultaneous equations F(a,b,s)= 0 and (∂F/∂s)(a,b,s)= 0. If 0 < s < 1/k,
then the equation (∂F/∂s)(a,b,s)= 0 yields

b= �psp−1

k(1− ks)p−1
a, (2.12)

and so the equation F(a,b,s)= 0 becomes

spa+ sp−1
1− ks

k
a− 1= 0, (2.13)

or, equivalently, a= k/sp−1, which implies b = �p/(1− ks)p−1. Let us delete the letter s in
the resulting equations

a= k

sp−1
, b = �p

(1− ks)p−1

(
0 < s <

1
k

)
. (2.14)

Since the former equation yields s= (k/a)q−1, the latter equation becomes

b = �p(
1− k(k/a)q−1

)p−1 = �pa(
aq−1− kq

)p−1 = hp,k,�(a). (2.15)

Also, 0 < s < 1/k if and only if a = k/sp−1 > kp. Thus the envelope of � is given by b =
hp,k,�(a) (a > kp).

(ii) Visualize the domains {(a,b) ∈ R+ ×R+ : a > kp, b ≥ hp,k,�(a)} and Δ(p;s, t) for
(s, t)∈ S(k,�), in the ab-plane. Next, note that the first domain is strictly convex set. Then
we can see (ii) directly from (i). �

We are now in a position to prove Theorem 2.1.

Proof of Theorem 2.1. (i) Suppose α > kp and β = hp,k,�(α). To see (2.5), we show that
αsp +βtp ≥ 1 for all (s, t)∈Ω. Choose (s, t)∈Ω arbitrarily. Then we have ks+ �t ≥ 1. So,
we can easily find the point (σ ,τ) in S(k,�) such that σ ≤ s and τ ≤ t. By Lemma 2.2(ii),
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we have

(α,β)∈ {(a,b)∈R+×R+ : a > kp, b ≥ hp,k,�(a)
}= ⋂

(s,t)∈S(k,�)
Δ(p;s, t)⊂ Δ(p;σ ,τ).

(2.16)

Hence ασ p +βτp ≥ 1. Thus we have

αsp +βtp ≥ ασ p +βτp ≥ 1, (2.17)

which was to be proved for (2.5).
Let us check the equality condition of (2.5). Suppose that αsp + βtp = 1 for some

(s, t) ∈Ω. Then two inequalities in (2.17) become the equalities. Hence (s, t) = (σ ,τ) ∈
S(k,�) and ασ p +βτp = 1. The last equationmeans that the point (α,β) lies on the straight
line

σ pa+ τ pb = 1, (2.18)

which is a member L(p;σ ,τ) of �. Also, the point (α,β) lies on the graph of b = hp,k,�(a)
(a > kp), because α > kp and β = hp,k,�(α). Here we recall from Lemma 2.2(i) that the
curve b = hp,k,�(a) (a > kp) is the envelope of �. These facts and the strict convexity of
hp,k,� imply that the line (2.18) is tangent to the graph of b= hp,k,�(a) (a > kp) at the point
(α,β). Let us find this tangent line. Since a routine computation shows that h′p,k,�(a) =
−kq�p/(aq−1− kq)p, the desired tangent line is formulated as

b− �pα(
αq−1− kq

)p−1 =− kq�p(
αq−1− kq

)p (a−α), (2.19)

that is,

(
k

α

)q
a+

(
αq−1− kq

)p
�pαq

b = 1. (2.20)

Since this denotes the line (2.18), we have

σ p =
(
k

α

)q
, τ p =

(
αq−1− kq

)p
�pαq

, (2.21)

and so σ = (k/α)q−1, τ = (αq−1 − kq)/�αq−1. Thus we obtain (s, t) = (σ ,τ) ∈ S(k,�) and
(s, t)= ((k/α)q−1, (αq−1− kq)/�αq−1).

Conversely, if (s, t)= ((k/a)q−1, (aq−1− kq)/�aq−1), then

asp +hp,k,�(a)tp = a
(
k

a

)q
+

�pa(
aq−1− kq

)p−1 ·
(
aq−1− kq

)p
�paq

= kq

aq−1
+
aq−1− kq

aq−1
= 1,

(2.22)

which is the equality in (2.5).
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(ii) By (i), we see that if α > kp and β = hp,k,�(α), then (α,β) ∈ D(p,Ω). Hence (ii)
follows immediately from the property (2.7).

(iii) By (ii), it suffices to show thatD(p;Ω)⊂ {(a,b)∈R+×R+ : a > kp, b ≥ hp,k,�(a)}.
Pick (α,β)∈D(p;Ω). For each (s, t)∈ S(k,�), there exists a sequence {(sn, tn)} in Ω such
that sn → s and tn → t, because S(k,�)⊂Ω. Noting that (α,β)∈D(p;Ω) and (sn, tn)∈Ω,
we have αsnp +βtnp ≥ 1. Letting n→∞, we obtain αsp +βtp ≥ 1. Hence (α,β)∈ Δ(p;s, t).
Since this holds for all (s, t) ∈ S(k,�), it follows that (α,β) ∈⋂(s,t)∈S(k,�)Δ(p;s, t). Hence
Lemma 2.2(ii) shows that (α,β) ∈ {(a,b) ∈ R+×R+ : a > kp, b ≥ hp,k,�(a)}. Thus (iii) is
proved. �

Next, we consider the case 0 < p ≤ 1.

Theorem 2.3. Let k and � be positive numbers and let Ω be an index set such that Ω ⊂
{(s, t)∈R+×R+ : ks+ �t ≥ 1}. Suppose that 0 < p ≤ 1. Then the following assertions hold.

(i) The inequality kpsp + �ptp ≥ 1 holds for all (s, t)∈Ω. If 0 < p < 1, then the equality
holds if and only if (s, t)= (1/k,0) or (0,1/�).

(ii) D(p;Ω)⊃ {(a,b)∈R+×R+ : a≥ kp, b ≥ �p}.
(iii) If (1/k,0) and (0,1/�) belong to Ω, then D(p;Ω)= {(a,b)∈R+×R+ : a≥ kp, b ≥

�p}.
Proof. (i) Since the case p = 1 is trivial, we assume that 0 < p < 1. For any (s, t) ∈ Ω,
we have ks,�t ≥ 0 and ks+ �t ≥ 1. By Minkowski’s inequality, we obtain kpsp + �ptp ≥ 1.
Also, an easy consideration implies that the equality holds precisely when (ks,�t)= (1,0)
or (0,1), namely (s, t)= (1/k,0) or (0,1/�).

(ii) The inequality in (i) implies (kp,�p)∈D(p;Ω). Hence (ii) follows from (2.7).

(iii) By (ii), it suffices to show that D(p;Ω)⊂ {(a,b)∈R+×R+ : a≥ kp, b ≥ �p}. Pick
(α,β) ∈ D(p;Ω). We must show that α ≥ kp and β ≥ �p. Since (1/k,0) ∈Ω, we can find
the sequence {(sn, tn)} in Ω such that sn → 1/k and tn → 0. Noting that (α,β) ∈ D(p;Ω)
and (sn, tn) ∈ Ω, we see that αsnp + βtnp ≥ 1. Letting n→∞, we have α/kp ≥ 1, namely
α≥ kp. Similarly, we obtain β ≥ �p. Thus we proved (iii). �

We close the general theory with the opposite inequalities obtained similarly.

Theorem 2.4. Let k and � be positive numbers and let Ω′ be an index set such that Ω′ ⊂
{(s, t)∈R+×R+ : ks+ �t ≤ 1}. Suppose that 0 < p < 1 and 1/p+1/q = 1. Put

D′(p;Ω′)= {(a,b)∈R+×R+ : asp + btp ≤ 1∀(s, t)∈Ω′}. (2.23)

Define hp,k,�(a)= �p(1− kqa1−q)1−p for 0≤ a < kp. Then the following assertions hold.
(i) If 0≤ a < kp, then asp + hp,k,�(a)tp ≤ 1 for all (s, t)∈Ω′. Here, the equality holds if

and only if (s, t)= ((a/k)1−q, (1− kqa1−q)/�)∈Ω′. This attaining point (s, t) lies on
the line segment S(k,�).

(ii) D′(p;Ω′)⊃ {(a,b)∈R+×R+ : a < kp, b ≤ hp,k,�(a)}.
(iii) If S(k,�)⊂Ω′, then D′(p;Ω′)= {(a,b)∈R+×R+ : a < kp, b ≤ hp,k,�(a)}.
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Theorem 2.5. Let k and � be positive numbers and let Ω′ be an index set such that Ω′ ⊂
{(s, t)∈R+×R+ : ks+ �t ≤ 1}. Suppose that p ≥ 1. Define the domain D′(p;Ω′) by (2.23).
Then the following assertions hold.

(i) The inequality kpsp + �ptp ≤ 1 holds for all (s, t) ∈ Ω′. If p > 1, then the equality
holds if and only if (s, t)= (1/k,0) or (0,1/�).

(ii) D′(p;Ω′)⊃ {(a,b)∈R+×R+ : a≤ kp, b ≤ �p}.
(iii) If (1/k,0) and (0,1/�) belong to Ω′, then D′(p;Ω′) = {(a,b) ∈ R+ ×R+ : a ≤ kp,

b ≤ �p}.

3. The best possibility of Hua type inequality

We now return to Theorem 1.3. We give a new proof of Theorem 1.3 by using Theorem
2.1.

Proof of Theorem 1.3. If f is a zero functional on X , then the statements of Theorem 1.3
are trivial. So, we assume that f is nonzero. Set k = 1 and � = ‖ f ‖. Then k,� > 0. Put
Ω = {(|1− f (x)|,‖x‖) : x ∈ X}. As we saw in Section 1, we have Ω ⊂ {(s, t) ∈ R+×R+ :
ks+ �t ≥ 1}. Since p > 1, it follows from Theorem 2.1(i) that if a > kp = 1, then

asp +hp,k,�(a)tp ≥ 1 ∀(s, t)∈Ω. (3.1)

In (3.1), the equality holds if and only if s= (1/a)q−1 and t = (aq−1− 1)/‖ f ‖aq−1.
Note that ((λ+‖ f ‖q)/λ)p−1 > 1. We now take a= ((λ+‖ f ‖q)/λ)p−1. Then

hp,k,�(a)= ‖ f ‖p((λ+‖ f ‖q)/λ)p−1(((
λ+‖ f ‖q)/λ)− 1

)p−1 = (λ+‖ f ‖q)p−1. (3.2)

Hence, in this case, (3.1) becomes (1.3). Also, the equality condition is

∣∣1− f (x)
∣∣= λ

λ+‖ f ‖q , ‖x‖ =
((
λ+‖ f ‖q)/λ)− 1
‖ f ‖(λ+‖ f ‖q)/λ = ‖ f ‖q−1

λ+‖ f ‖q . (3.3)

Here the latter equation yields

∣∣1− f (x)
∣∣≥ 1−∣∣ f (x)∣∣≥ 1−‖ f ‖‖x‖ = 1− ‖ f ‖q

λ+‖ f ‖q =
λ

λ+‖ f ‖q (3.4)

and so the former equation says that the two inequalities above are the equalities. This im-
plies that 0≤ f (x)≤ 1 and | f (x)| = ‖ f ‖‖x‖. Hence f (x)= ‖ f ‖‖x‖. Thus if the equality
holds in (1.3), then f (x)= ‖ f ‖‖x‖ and ‖x‖ = ‖ f ‖q−1/(λ+‖ f ‖q). The converse is easily
checked by a simple computation.

Next, we show that

S(k,�)⊂Ω in the above setting. (3.5)

Pick (σ ,τ) ∈ S(k,�) arbitrarily. Then kσ + �τ = 1, namely, σ + ‖ f ‖τ = 1. Noting that
‖ f ‖ = sup{| f (e)| : e ∈ X , ‖e‖ = 1}, we can find a sequence {en} in X such that ‖en‖ = 1,
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f (en) ≥ 0 and f (en) → ‖ f ‖. Put xn = τen for n = 1,2, . . ., and consider the sequence
{(|1− f (xn)|,‖xn‖)} in Ω. Then we have

∣∣∣∣1− f
(
xn
)∣∣− σ

∣∣≤ ∣∣1− f
(
xn
)− σ

∣∣
= ∣∣1− τ f

(
en
)− (1−‖ f ‖τ)∣∣= τ

∣∣ f (en)−‖ f ‖∣∣−→ 0
(3.6)

as n→∞. Also, ‖xn‖ = τ‖en‖ = τ. Hence (|1− f (xn)|,‖xn‖)→ (σ ,τ). Thus we conclude
that (σ ,τ)∈Ω, and (3.5) was proved.

Once we have established (3.5), we can apply Theorem 2.1(iii) in the setting of
Theorem 1.3. Thus we conclude that the pair of coefficients

((
λ+‖ f ‖q

λ

)p−1
,
(
λ+‖ f ‖q)p−1

)
(3.7)

is one of the best pairs of nonnegative constants (a,b) such that a|1− f (x)|p + b‖x‖p ≥ 1
for all x ∈ X . In this sense, we can say that the inequality (1.3) is best possible. Moreover,
we know the best possibility of the inequalities (1.1) and (1.2), because Theorem 1.2 is
equivalent to Theorem 1.1 and Theorem 1.3 is a special case of Theorem 1.2. �
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