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The new extension of the weighted Montgomery identity is given by using Fink identity
and is used to obtain some Ostrowski-type inequalities and estimations of the difference
of two integral means.

1. Introduction

The following Ostrowski inequality is well known [10]:

- l_i_(x—(a+b)/2)2
14 (b—a)?

b
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where f: [a,b] — R is a differentiable function such that | f*(x)| < L, for every x € [a,b].

The Ostrowski inequality has been generalized over the last years in a number of ways.
Milovanovi¢ and Pecari¢ [8] and Fink [6] have considered generalizations of (1.1) in the
form
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which is obtained from the identity
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In fact, Milovanovi¢ and Pecari¢ have proved that

(x —a)™! + (b —x)"!
nn+HY(b—-a)

K(n,00,x) = (1.5)

while Fink gave the following generalizations of this result.

TueoreM 1.1. Let f"~V) be absolutely continuous on [a,b] and let f" € L,[a,b]. Then
inequality (1.2) holds with

[(x — )"t 4 (b — x)nqﬂ]l/q
nl(b—a)

K(n,p,x) = B((n—1)g+1,q+1)"4, (1.6)

where 1 < p < o0, 1/p+1/q = 1, B is the Beta function, and

_ n—1
K(n,1,x) = %max[(x—a)",(b—x)"]. (1.7)

Let f : [a,b] — R be differentiable on [a,b] and f’ : [a,b] — R integrable on [a,b].
Then the Montgomery identity holds [9]:

1 b b ,
f0= [ F(o)de + J P, t) £ (1)dt, (1.8)

where P(x,t) is the Peano kernel defined by

t—a
b—a’ a<t=<x,
P(x,t) = i—b (1.9)
—, x<t<bh.
b—a

Now, we suppose w : [a,b] — [0,00) is some probability density function, that is, an in-
tegrable function satisfying fab w(t)dt = 1, and W (t) = [} w(x)dx for t € [a,b], W(t) =0
for t <a, and W(t) = 1 for t > b. The following identity (given by Pecari¢ in [12]) is the
weighted generalization of the Montgomery identity:

b b
Fx) = J wt) f(t)dt+L Py(x,0)f (D, (1.10)

where the weighted Peano kernel is

{W(t), a<t<x,
Py, (x,t) = (1.11)
W(t)—1, x<t<b.



A. Agli¢ Aljinovi¢ etal. 69

The aim of this paper is to give the extension of the weighted Montgomery identity
(1.10) using identity (1.2), and further, obtain some new Ostrowski-type inequalities, as
well as the generalizations of the estimations of the difference of two weighted integral
means (generalizations of the results from [1, 3, 7, 11]).

2. The extension of Montgomery identity via Fink identity

Tueorem 2.1. Let f : [a,b] — R be such that =Y is an absolutely continuous function
on [a,b] for somen > 1. If w: [a,b] — [0, c0) is some probability density function, then the
following identity holds:

b n—1 n—-1 .p
F®) =J Wt f(Ddt— S Fe(x)+ ZI w(t)Ee(t)dt
a k=1 k=14

1 b . .,
+mjﬂ (x = )" k(y,x) f 7 (y)dy (2.1)
1 b b . -
T m-Dib-a) L (L w(t)(t—y) 1k(y,t)dt)f (y)dy.
Proof. We apply identity (1.3) with f'(t)
"o n—k fRa)(t—a)k - fPB)(t-b f(b ~ f(a)
f (t kgl b—a —a
mj k(.0 D (y)dy .
S ln kf") @)~ fR ) (¢~ b)F '
k=0 b-a
+mj n 1ky,t)fn+1 (}/

Now, by putting this formula in the weighted Montgomery identity (1.10), we obtain

b
£ =J w(t) f(£)dt

k t—a)k— fR(b)(t - b)k
_an' JP (xf) (a)( )b ;‘ (b)( )dt (2.3)

b
+ m L Pw(x,t)<L (t= )" 'k(y, t)f“’“’(y)dy) dt
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Further,

b _ _ _
JPW(x,t)f(k)(a)(t a)z_f:k)(b)(t b)kdt
B f(k)(a)(x—a)k“ _f(k)(b)(x_b)kﬂ
B (b—a)(k+1)
b k k+1 k+1
f®@)(t - a)k! — O (b)(t - b) 24
_L (o) b—a) k1) dt, 24

b
J Py, )t — )" k(y, Dt

a

= Lok x)—ijbw(txt— Vk(y,t)dt
=)k = »)"k(y, byt

Now, if we replace n with n — 1, we will get (2.1). This identity is valid for n — 1 = 1, that
is, n> 1. O

Remark 2.2. We could also obtain identity (2.1) by applying identity (1.3) such that we
multiply this identity by w(x) and than integrate it to obtain

b n-1 .p b n b
J W) f()dx =~ S J w(x) Fi(x)dx + ( I w(x)dx) EJ F(o)dt
a k:1 a a a (2'5)

b b
+ mj (J W(x)(xft)”"k(t,x)dx)f(”>(t)dt.

If we subtract this identity from (1.3) we will obtain (2.1).

Remark 2.3. In the special case, if we take w(t) = 1/(b —a), t € [a,b], we will have

LS 1 Sk (@)t - a)k - fED(b)(t - b
—a,;LF"(t)dt_b—aZ k! J b—a dt

Z 1)' f(k 1) (b a)k 1+f(k 1) b) a— b)k 1]

1 (° e N (b—y)" (a—y)"
—a L (t= )" k(y,0)dt = k(}’,b)m - k(y,a)m
_-a-y)" (y-bla—y)"
~ nb-a) nb—a)

(2.6)
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We denote
1 b
I, = Wb —a) I [(y—a)b—y)"—(y=b)a—y)"1f" (y)dy. (2.7)
Then we have
1 b
L= = ar L [(a=y)" = - "1 f"V)dy+ Loy =Jo+ Lo, (2.8)
where
1 b 1 (?
b= L(b—a)f(y)dyz EJ F()dy. (2.9)
Further,
Jn = %[f(”‘z)(a)(b —a)" 2+ f" () (a—b)" ]+ -1,
BT L (2.10)
= m L (a-b)f(y)dy = “b_a L fy)dy.
So,
Jn = nil ! L&D (a)(b—a) 1+ fED(b)(a—b) 1]+, (2.11)
& (k+1)!
and then
I, = i]m"’n]l"'lo
m=2
n—1
=S U@t e @12)
k=1 .
—1 (b
- | sy

Consequently, identity (2.1) reduces to identity (1.3). So we may regard it as a weighted
Fink identity.
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Remark 2.4. Applying identity (2.1) with x = a and x = b, we get

b n—1
= [ wio fde= "k a3 j (0o

L [a—yiy-b)
(”—1)'(b—a)L(a "y =) (y)dy

1 b b
- mJ (L w(t)(t—y)"_lk(y,t)dt>f(")(y)dy,
n—1

f(tdt—znk'k *=D(a)(b - a)k~ 1+ZJ w(t)Fi(t)

(2.13)

Flb) = j
+WJ b=y Ny—-a) f"(y)dy

1 b b
w9 ), (J W(t)(f‘y)”lk(%ﬂdt)f(”’(y)dy.

So, we get the generalized trapezoid identity

%[f(a)+f(b)] J 0 f(8) dt+ZJ () F(t)dt

iR

fED@b-a) "+ fED () (a—b) ]

l\)l»—A

1 b
T o L@ 00 0 =@l

b b
! )J (J w(t)(t—y)“1k(y,t)dt>f(”)(y)dy.

S (n=-Db-a)la
(2.14)

Similarly, applying identity (2.1) with x = (a+b)/2, we get

f(420) - Lb w(t) f(Hdt + kii Lh w(h)Fe(Hdt

n—1
_Zn k[fkl(a)(b ak1+fk1(b)a b)kl]

(2.15)

Tz l)l(b a) Jb<a;b _y)nilk(y’%bww(”dy

We can regard this as the second Euler-Maclaurin formula (the generalized midpoint

identity).



A. Agli¢ Aljinovi¢ etal. 73

3. Ostrowski-type inequalities

We denote, for n > 2,
n—1 n—1 .p
Tynx) = S Filx) - ZJ Ww(t)Fe()dt. (3.1)
k=1 k=171

TaEOREM 3.1. Assume (p,q) is a pair of conjugate exponents, thatis, 1 < p, g < o0, 1/p +
1/q = 1. Let If(”) [P : [a,b] — R be an R-integrable function for some n > 1. Then, for x €
[a,b], the following inequality holds:

b
' Fo - j w() f(£)dt+ Tyn(x)

a

_(n 2 (

The constant (1/(n—2)!(b — a))(f: | fubPW(x, t)(t — y)"2k(y,t)dt|1dy)V4 is sharp for 1 <
p < oo and is the best possible for p = 1.

(3.2)

q 1/q
Jp X0t — y)"2k(y,t)dt dy) £,

Proof. From Theorem 2.1 we have

b b
(x= )" k(%) —J w(t)(t = )"k, H)dt = (n - 1)J Py, 1)(t = )" 2k(y, L.
(3.3)

We denote Ci(y) = (1/(n—2)!(b—a)) ff P, (x,t)(t — y)" %k(y,t)dt. We use identity (2.1)
and apply the Holder inequality to obtain

b
' Flo) - j W(t) f (D)t + Ty (x)

b 1/q
< ([ 1coray) e,

(3.4)

b
- ‘ f Cl(y) f® (y)dy

For the proof of the sharpness of the constant (fab |C1(y)|9dy)"4, we will find a function
f for which the equality in (3.2) is obtained.
For 1 < p < oo, take f to be such that

™ () =sgnCi(y) - | |77 (3.5)
For p = oo, take

F™(y) =sgnCi(y). (3.6)
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For p = 1, we will prove that

b b
L Ci(y) ™ (y)dt < max |Ci(y)| (J If(”’(y)ldy) (3.7)

is the best possible inequality. Suppose that |C;(y)| attains its maximum at y, € [a,b].
First we assume that C;(yy) > 0. For ¢ small enough, define f;(y) by

0, a<y=<yo,
1 n
) =1gq ) w=y=nte (3.8)
1

a(y—yo)"fl, yo+e<y<bh.

Then, for ¢ small enough,

b
L Ci(y) f"(y)dy

Yote 1 1 (ote
[amia| =1 aoy (3.9)
Yo € & Yo

Now, from inequality (3.7) we have

Yote

Yote
%J Ci(y)dy = Ci(yo) J 0 L =Cn). (3.10)

Yo N

Since

Yote

o1
lim — Ci(y)dy = C1 (), (3.11)
e—0 & Yo

the statement follows. In case C; (yp) < 0, we take

1 n—1
m(y—yo—S) , a<y<yo,

fy) = —i(y—yo—s)”, Yo<y<yo+e (3.12)
0, Yo+te<y<b,

and the rest of the proof is the same as above. O
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Remark 3.2. For w(t) =1/(b—a), n=2,and g = 1 in Theorem 3.1, we get

1 a+b

‘ f -5 [ o (e T50) () - f(a))‘

=)
=)

x b
- S=a (J -y -b)ldy+ | |(b—y)(—2x+y+a)|dy>||f”||w

b
(= k) = | (t—y)k(y,t>dt'dy)||f”||°o

—a)(b—
(x= bty - 2D gy o

- (580 - 380+ 2 ) 1f "Il
(3.13)

where §(x) = |x— (a+b)/2].
Ifinstead of g = 1 (p = o) we put p = 1, then, similarly we have

atb

‘f(x) [ (s 20 () - s ‘

1 rr
S 2—a) max{ max |(y—a)(2x—y—b)|,yr§%] |(b—y)(—2x+y+a)|}||f Il

y€lax]

11 |1 a+b\*|1 ..
=4[4+’4‘2<x‘2> H“f b

(3.14)

These two inequalities are proved in [5].

CoROLLARY 3.3. Suppose that all the assumptions of Theorem 3.1 hold. Then the following
inequality holds:

b

‘f(x) - j W() F ()t + Ty (x)

a

1

b 1/q
= PO (J [(b—y)(y—a) ' +(y—a)(b —y)”l]qdy) 1],

(3.15)
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Proof. Since 0 < W(t) < 1,t € [a,b], so |P,(x,t)| < 1. Then, for every y € [a,b], we have

b
| Pw(x,o(t—y)“k(y,t)dt'
b
< J 1Py (0| | (E— y)"2k(y0) | dt
b
< J (£ = y)"2k(y,0) | dt (3.16)

y b
_ U (y- t)”2(b—y)dt+L(t—y)”2(y—a)dt}

a

—1[(b —Ny—a)" " +(y-a)(b—y) ']

So,
b b q 1/q
(I J Py (x,1)(t - y)”’lk(y,t)dt dy)
| , v (3.17)
N (f (G- =ay "+ (y-a)b- y)“l]th)
and, by applying (3.2), the inequality is proved. 0

Remark 3.4. Inequality (3.15) reduces to the following: for n = 2,

‘f(x—J () F (D)t + Ty (x)

2 (jbw i )qd)wnf”ll
< - —a

b—a\l, 7 Y P (3.18)

1 1/q
=2(b- a)“f“)/q(jo (1- s)qsqu) F1,
=2(b—a)T"V1B(q+ 1,9+ 1)"1||f"]] .
For n =3,
b
’ Fo) - j w(t) f(£)dt+ Ty3(x)
b 1/q

(b_a)(L(b—yﬂ(y—a)q(b—a)qdy) 171, (3:19)

rrr

= (b= @B+ 1,g+ 1)V f
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Remark 3.5. 1If we use the identities (2.14) and (2.15) for n = 2 and w(t) = 1/(b — a),
t € [a,b], and then apply the Holder inequality with p = o0, g = 1, we will obtain

f(a) +f(b) _ 1 Jb (b B a)Z "
IO oar] < CLE L,
, \ (b ) (3.20)
a+ 1 a ’
5(520) - 5 [ | < Ly
By doing the same for n = 3, we have
f(a) +f(b) _ 1 Jb b —a 7 g (b - a)3 rrr
SO IO -t - )| < S,
, , (3.21)
a+ —a ’ ’ 11
() -5, L= rwl] < U
The first two inequalities were obtained in [4] and the last two in [2].
4. Estimations of the difference of two weighted integral means
In this section, we will denote, for n > 1,
n—1 n—-1 .p
T ) = X Ew - 3 [ wE @, (4.1)
k=1 k=174

for a function f : [a,b] — R such that f®*~1 is an absolutely continuous function on
[a,b].

The following results are generalizations of the results from [3] in two cases. The first
case is when [¢,d] < [a,b] and the second is when [a,b] N [¢,d] = [¢, b]. Other two pos-
sible cases, when [a,b] N [¢,d] # @ ([a,b] C [c,d] and [a,b] N [¢,d] = [a,d]) are simply
got by changea < ¢, b — d.

THEOREM 4.1. Let f :[a,b] U [c,d] — R be such that f*=V is an absolutely continuous
function on [a,b] for some n > 1, and let w : [a, ] = [0,00) and u: [¢c,d] — [0,00) be some
probability density functions. Then, if [a,b] N [¢,d] # @ and x € [a,b] N [¢,d],

b d max{b,d}
J w(t) f(t)dt—J u(t) f(1)dt — T () + TI () =J L Kny) [ )y,
- (4.2)
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where, in case [c,d] < [a,b],

n—21.[a,b]
(n— 2)'(b a)UP(x’t)t— )"kl (g, )dt] y € lacl,

[ Py (x,1)(t = )" 2kl (y,t)dt]

Ku(x,y) = | (4.3)
+(n 2)(d U Pu(x,0)(t = )" 2Ky, f)df} y € (ed,
m [J Py (x,t)(t — y)"2klab] (y,t)dt], y € (d,b],

and in case [a,b] N [c,d] = [c, b],
-1 b
CEOICE)] [L PW(x’t)(t_)/)"2k[“’h](y,t)dt:|, yelad,
-1 b
m U Pu(D)(t—y)" 2kl (%t)dt]
Koy =1 (4.4)

yr-2kled]
T 2)'(d UP (O =y 2k (yat)dt} y € (e,bl,

1 _ yn-2)led]
\(n_z)!(d_c)[LPu(t)(t "%k (y,t)dt], y € (bd.

Proof. We subtract identity (2.1) for intervals [a,b] and [c,d] to get formula (4.2). O

THEOREM 4.2. Assume (p,q) is a pair of conjugate exponents, thatis, 1 < p, g < o0, 1/p +
1/q = 1. Let | f"|P : [a,b] — R be an R-integrable function for some n > 1. Then

d
w(t) f(D)dt - J u(t) f(dt - TP (x) + TI ()

1 (4.5)
= (
max{b,d}

max{b,d} q /9
o el ) I,
for every x € [a,b] N [c,d]. The constant (|, infacl | K (x, y)|9dy) V4 in inequality (4.5) is
sharp for 1 < p < co and is the best possible for p = 1.

Proof. Use identity (4.2) and apply the Holder inequality to obtain
wt) £ (1) dt—J (0) f()dt — T (x) + TIE ()

max{b,d} max{b,d} ] 1/q
< j |Kn<x,y>||f<ﬂ><y>|dys(j, Kot ay) 51

min{a,c} minf{a,c}

(4.6)
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which proves inequality (4.5). The proofs for sharpness and best possibility are as in
Theorem 3.1. U

CoROLLARY 4.3. Suppose that all the assumptions of Theorem 4.2 hold. Then, for x € [a,b] N
[c,d],

b d
H w(t) f()dt - J u(t) f()dt - T (x) + TI ()

a

) max{b.d} i 1/q (4.7)
Sm(L ’(y—a)”_1+(max{h,d}—y) ‘ d)’) Hf(n)”p'
Proof. We have
-1 max{b,d} k[a,b] ()/,t) k[c,d] ()/at) s
Kn(x)y) = (”_2)!«[min{a,c} |:Pw(x>t) b—a _Pu(xxt) d—c (t—)’) dt
(4.8)
because P,,(x,t) =0, for x & [a,b] and P,(x,t) = 0, for x & [c,d]. Since
[a,b] lod]
12 P ), Pult), 0 KD (4.9)
we get
[a,b] lo.d]
P(x, t)% ~Pux, t)% <2, (4.10)
and then we have
n—1
5 maxibdl . 2((y—a)" '+ (max{b,d} - y)" ')
|K”("’y)|ﬁ(n—z)!L = yI"7dt = (n—1)! '
(4.11)
|
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