WEIGHTED POINCARÉ-TYPE ESTIMATES FOR CONJUGATE A-HARMONIC TENSORS

YUMING XING

Received 14 August 2004

We prove Poincaré-type estimates involving the Hodge codifferential operator and Green's operator acting on conjugate A-harmonic tensors.

1. Preliminary

In a survey paper [1], Agarwal and Ding summarized the advances achieved in the study of A-harmonic equations. Some recent results about A-harmonic equations can also be found in $[2,3,5,6]$. The purpose of this note is to establish some estimates about Green's operator and the Hodge codifferential operator d^{*}, which will enrich the existing literature in the field of A-harmonic equations.

Let Ω be a connected open subset of $\mathbb{R}^{n}, n \geq 2, B$ a ball in \mathbb{R}^{n} and ρB denote the ball with the same center as B and with $\operatorname{diam}(\rho B)=\rho \operatorname{diam}(B)$. The n-dimensional Lebesgue measure of a set $E \subseteq \mathbb{R}^{n}$ is denoted by $|E|$. We call w a weight if $w \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right)$ and $w>0$ a.e. For $0<p<\infty$ and a weight $w(x)$, we denote the weighted L^{p}-norm of a measurable function f over E by $\|f\|_{p, E, w^{\alpha}}=\left(\int_{E}|f(x)|^{p} w^{\alpha} d x\right)^{1 / p}$, where α is a real number. Let $\Lambda^{l}=\Lambda^{l}\left(\mathbb{R}^{n}\right)$ be the linear space of all l-forms $\omega(x)=\sum_{I} \omega_{I}(x) d x_{I}=\sum \omega_{i_{1} i_{2} \cdots i_{l}}(x) d x_{i_{1}} \wedge$ $d x_{i_{2}} \wedge \cdots \wedge d x_{i_{l}}, l=0,1, \ldots, n$. Assume that $D^{\prime}\left(\Omega, \Lambda^{l}\right)$ is the space of all differential l forms and $L^{p}\left(\Omega, \Lambda^{l}\right)$ is the space of all L^{p}-integrable l-forms, which is a Banach space with norm $\|\omega\|_{p, \Omega}=\left(\int_{\Omega}|\omega(x)|^{p} d x\right)^{1 / p}=\left(\int_{\Omega}\left(\sum_{I}\left|\omega_{I}(x)\right|^{2}\right)^{p / 2} d x\right)^{1 / p}$. We denote the exterior derivative by $d: D^{\prime}\left(\Omega, \Lambda^{l}\right) \rightarrow D^{\prime}\left(\Omega, \Lambda^{l+1}\right)$ for $l=0,1, \ldots, n-1$. Its formal adjoint operator $d^{*}: D^{\prime}\left(\Omega, \Lambda^{l+1}\right) \rightarrow D^{\prime}\left(\Omega, \Lambda^{l}\right)$ is given by $d^{*}=(-1)^{n l+1} * d *$ on $D^{\prime}\left(\Omega, \Lambda^{l+1}\right), l=$ $0,1, \ldots, n-1$, where $*$ is the Hodge star operator. We call u and v a pair of conjugate A-harmonic tensor in Ω if u and v satisfy the conjugate A-harmonic equation

$$
\begin{equation*}
A(x, d u)=d^{*} v \tag{1.1}
\end{equation*}
$$

in Ω, where $A: \Omega \times \Lambda^{l}\left(\mathbb{R}^{n}\right) \rightarrow \Lambda^{l}\left(\mathbb{R}^{n}\right)$ satisfies conditions: $|A(x, \xi)| \leq a|\xi|^{p-1}$ and $\langle A(x, \xi), \xi\rangle \geq|\xi|^{p}$ for almost every $x \in \Omega$ and all $\xi \in \Lambda^{l}\left(\mathbb{R}^{n}\right)$. Here $a>0$ is a constant. In this paper, we always assume that p is the fixed exponent associated with (1.1), $1<p<\infty$ and $p^{-1}+q^{-1}=1$.

The following weak reverse Hölder inequality about $d^{*} v$ appears in [3].
Lemma 1.1. Let u and v be a pair of solutions of (1.1) in $\Omega, \sigma>1$ and $0<s, t<\infty$. Then there exists a constant C, independent of v, such that $\left\|d^{*} v\right\|_{s, B} \leq C|B|^{(t-s) / s t}\left\|d^{*} v\right\|_{t, \sigma B}$ for all balls B with $\sigma B \subset \Omega$.

Setting the differential form $u=d^{*} v$ in [2, Corollary 2.6], we obtain the following Poincaré-type inequality for Green's operator.

$$
\begin{equation*}
\left\|G\left(d^{*} v\right)-\left(G\left(d^{*} v\right)\right)_{B}\right\|_{p, B} \leq C\left\|d^{*} v\right\|_{p, B} . \tag{1.2}
\end{equation*}
$$

Definition 1.2. A weight $w(x)$ is called an A_{r}-weight for some $r>1$ on a subset $E \subset \mathbb{R}^{n}$, write $w \in A_{r}(E)$, if $w(x)>0$ a.e., and

$$
\begin{equation*}
\sup _{B}\left(\frac{1}{|B|} \int_{B} w d x\right)\left(\frac{1}{|B|} \int_{B}\left(\frac{1}{w}\right)^{1 /(r-1)} d x\right)^{(r-1)}<\infty \tag{1.3}
\end{equation*}
$$

for any ball $B \subset E$.
We also need the following well-known reverse Hölder inequality for A_{r}-weights.
Lemma 1.3. If $w \in A_{r}$, then there exist constants $\beta>1$ and C, independent of w, such that $\|w\|_{\beta, B} \leq C|B|^{(1-\beta) / \beta}\|w\|_{1, B}$ for all balls $B \subset \mathbb{R}^{n}$.

The following generalized Hölder inequality will be used repeatedly in this paper.
Lemma 1.4. Let $0<\alpha<\infty, 0<\beta<\infty$, and $s^{-1}=\alpha^{-1}+\beta^{-1}$. If f and g are measurable functions on \mathbb{R}^{n}, then $\|f g\|_{s, E} \leq\|f\|_{\alpha, E} \cdot\|g\|_{\beta, E}$ for any $E \subset \mathbb{R}^{n}$.

The following lemma appears in [6].
Lemma 1.5. Let u and v be a pair of solutions of (1.1) in a domain Ω. Then, there exists a constant C, independent of u and v, such that

$$
\begin{equation*}
\|d u\|_{p, D, w^{\alpha}}^{p} \leq\left\|d^{*} v\right\|_{q, D, w^{\alpha}}^{q} \leq C\|d u\|_{p, D, w^{\alpha}}^{p} \tag{1.4}
\end{equation*}
$$

for any subset $D \subset \Omega$. Here w is any weight and $\alpha>0$ is any constant.

2. Main results and proofs

Now, we prove the following A_{r}-weighted Poincaré-type inequality for Green's operator G acting on solutions of (1.1).

Theorem 2.1. Let u and v be a pair of solutions of (1.1) in Ω, and assume that $\omega \in A_{r}(\Omega)$ for some $r>1, \sigma>1,0<\alpha \leq 1$, and $1+\alpha(r-1)<q<\infty$. Then, there exists a constant C, independent of u and v, such that

$$
\begin{equation*}
\left\|G\left(d^{*} v\right)-\left(G\left(d^{*} v\right)\right)_{B}\right\|_{q, B, w^{\alpha}}^{q} \leq C\|d u\|_{p, \sigma B, w^{\alpha}}^{p} \tag{2.1}
\end{equation*}
$$

for all balls B with $\sigma B \subset \Omega$.

Proof. First, we assume that $0<\alpha<1$. Let $s=q /(1-\alpha)$. Using Hölder inequality we get

$$
\begin{align*}
&\left(\int_{B}\left|G\left(d^{*} v\right)-\left(G\left(d^{*} v\right)\right)_{B}\right|^{q} w^{\alpha} d x\right)^{1 / q} \\
& \leq\left(\int_{B}\left(\left|G\left(d^{*} v\right)-\left(G\left(d^{*} v\right)\right)_{B}\right| w^{\alpha / q}\right)^{q} d x\right)^{1 / q} \\
& \leq\left(\int_{B}\left|G\left(d^{*} v\right)-\left(G\left(d^{*} v\right)\right)_{B}\right|^{s} d x\right)^{1 / s}\left(\int_{B} w^{\alpha s /(s-q)} d x\right)^{(s-q) / q s} \tag{2.2}\\
&=\left\|G\left(d^{*} v\right)-\left(G\left(d^{*} v\right)\right)_{B}\right\|_{s, B}\left(\int_{B} w d x\right)^{\alpha / q}
\end{align*}
$$

Select $t=q /(\alpha(r-1)+1)$, then $t<q$. Using Lemma 1.1 and (1.2), we find that

$$
\begin{equation*}
\left\|G\left(d^{*} v\right)-\left(G\left(d^{*} v\right)\right)_{B}\right\|_{s, B} \leq C_{1}\left\|d^{*} v\right\|_{s, B} \leq C_{2}|B|^{(t-s) / t s}\left\|d^{*} v\right\|_{t, \sigma B} \tag{2.3}
\end{equation*}
$$

for all balls B with $\sigma B \subset \Omega$. Since $1 / t=1 / q+(q-t) / q t$, by Hölder inequality again, we have

$$
\begin{align*}
\left\|d^{*} v\right\|_{t, \sigma B} & =\left(\int_{\sigma B}\left(\left|d^{*} v\right| w^{\alpha / q} w^{-\alpha / q}\right)^{t} d x\right)^{1 / t} \\
& \leq\left(\int_{\sigma B}\left|d^{*} v\right|^{q} w^{\alpha} d x\right)^{1 / q}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{\alpha t /(q-t)} d x\right)^{(q-t) / q t} \tag{2.4}\\
& =\left(\int_{\sigma B}\left|d^{*} v\right|^{q} w^{\alpha} d x\right)^{1 / q}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{1 /(r-1)} d x\right)^{\alpha(r-1) / q} .
\end{align*}
$$

Combining (2.2), (2.3), and (2.4) yields

$$
\begin{align*}
& \left(\int_{B}\left|G\left(d^{*}\right)-\left(G\left(d^{*} v\right)\right)_{B}\right|^{q} w^{\alpha} d x\right)^{1 / q} \\
& \quad \leq C_{2}|B|^{(t-s) / t s}\left(\int_{B} w d x\right)^{\alpha / q}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{1 /(r-1)} d x\right)^{\alpha(r-1) / q}\left(\int_{\sigma B}\left|d^{*} v\right|^{q} w^{\alpha} d x\right)^{1 / q} \tag{2.5}
\end{align*}
$$

Noting that $w \in A_{r}$, we have

$$
\begin{align*}
& \left(\int_{B} w d x\right)^{\alpha / q}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{1 /(r-1)} d x\right)^{\alpha(r-1) / q} \\
& \quad \leq\left(|\sigma B|^{r}\left(\frac{1}{|\sigma B|} \int_{\sigma B} w d x\right)\left(\frac{1}{|\sigma B|} \int_{\sigma B}\left(\frac{1}{w}\right)^{1 /(r-1)} d x\right)^{(r-1)}\right)^{\alpha / q} \leq C_{3}|B|^{\alpha r / q} . \tag{2.6}
\end{align*}
$$

Substituting (2.6) into (2.5) with $(t-s) / t s+\alpha r / q=0$, it follows that

$$
\begin{equation*}
\left(\int_{B}\left|G\left(d^{*} v\right)-\left(G\left(d^{*} v\right)\right)_{B}\right|^{q} w^{\alpha} d x\right)^{1 / q} \leq C_{4}\left(\int_{\sigma B}\left|d^{*} v\right|^{q} w^{\alpha} d x\right)^{1 / q} \tag{2.7}
\end{equation*}
$$

Applying Lemma 1.5 and (2.7), we conclude that

$$
\begin{equation*}
\left\|G\left(d^{*} v\right)-\left(G\left(d^{*} v\right)\right)_{B}\right\|_{q, B, w^{\alpha}}^{q} \leq C_{5}\left\|d^{*} v\right\|_{q, \sigma B, w^{\alpha}}^{q} \leq C_{6}\|d u\|_{p, \sigma B, w^{\alpha}}^{p} . \tag{2.8}
\end{equation*}
$$

We have proved that (2.1) is true if $0<\alpha<1$.
Next, we show that (2.1) is also true for $\alpha=1$. By Lemma 1.3, there exist constants $\beta>1$ and $C_{7}>0$, such that

$$
\begin{equation*}
\|w\|_{\beta, B} \leq C_{7}|B|^{(1-\beta) / \beta}\|w\|_{1, B} \tag{2.9}
\end{equation*}
$$

for any ball $B \subset \mathbb{R}^{n}$. Choose $s=q \beta /(\beta-1)$, then $1<q<s$ and $\beta=s /(s-q)$. Since $1 / q=$ $1 / s+(s-q) / q s$, using Lemma 1.4 and (2.9), we obtain

$$
\begin{align*}
\left(\int_{B} \mid\right. & \left.G\left(d^{*} v\right)-\left.\left(G\left(d^{*} v\right)\right)_{B}\right|^{q} w d x\right)^{1 / q} \\
& \leq\left(\int_{B}\left|G\left(d^{*} v\right)-\left(G\left(d^{*} v\right)\right)_{B}\right|^{s} d x\right)^{1 / s}\left(\int_{B}\left(w^{1 / q}\right)^{q s /(s-q)} d x\right)^{(s-q) / s q} \tag{2.10}\\
\quad & =\left\|G\left(d^{*} v\right)-\left(G\left(d^{*} v\right)\right)_{B}\right\|_{s, B} \cdot\|w\|_{\beta, B}^{1 / q} \\
& \leq C_{8}\left\|G\left(d^{*} v\right)-\left(G\left(d^{*} v\right)\right)_{B}\right\|_{s, B} \cdot|B|^{(1-\beta) / \beta q}\|w\|_{1, B}^{1 / q} .
\end{align*}
$$

Now, choose $t=q / r$, then $t<q$. From Lemma 1.1 and (1.2), we have

$$
\begin{equation*}
\left\|G\left(d^{*} v\right)-\left(G\left(d^{*} v\right)\right)_{B}\right\|_{s, B} \leq C_{9}\left\|d^{*} v\right\|_{s, B} \leq C_{10}|B|^{(t-s) / s t}\left\|d^{*} v\right\|_{t, \sigma B} . \tag{2.11}
\end{equation*}
$$

Using Hölder inequality again, we find that

$$
\begin{align*}
\left\|d^{*} v\right\|_{t, \sigma B} & =\left(\int_{\sigma B}\left(\left|d^{*} v\right| w^{1 / q} w^{-1 / q}\right)^{t} d x\right)^{1 / t} \\
& \leq\left(\int_{\sigma B}\left|d^{*} v\right|^{q} w d x\right)^{1 / q}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{t /(q-t)} d x\right)^{(q-t) / q t} \tag{2.12}\\
& =\left(\int_{\sigma B}\left|d^{*} v\right|^{q} w d x\right)^{1 / q}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{1 /(r-1)} d x\right)^{(r-1) / q} .
\end{align*}
$$

Combining (2.11) and (2.12) yields

$$
\begin{align*}
& \left\|G\left(d^{*} v\right)-\left(G\left(d^{*} v\right)\right)_{B}\right\|_{s, B} \\
& \quad \leq C_{11}|B|^{(t-s) / s t}\left(\int_{\sigma B}\left|d^{*} v\right|^{q} w d x\right)^{1 / q}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{1 /(r-1)} d x\right)^{(r-1) / q} . \tag{2.13}
\end{align*}
$$

Since $w \in A_{r}$, we obtain

$$
\begin{equation*}
\left(\int_{B} w d x\right)^{1 / q}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{1 /(r-1)} d x\right)^{(r-1) / q} \leq C_{12}|B|^{r / q} \tag{2.14}
\end{equation*}
$$

Substituting (2.13) into (2.10) and using (2.14), we find that

$$
\begin{align*}
& \left\|G\left(d^{*} v\right)-\left(G\left(d^{*} v\right)\right)_{B}\right\|_{q, B, w} \\
& \quad \leq C_{13}|B|^{(1-\beta) / \beta q}|B|^{(t-s) / s t} \left\lvert\,\left\|d^{*} v\right\|_{q, \sigma B, w}\|w\|_{1, B}^{1 / q}\left(\int_{\sigma B}\left(\frac{1}{w}\right)^{1 /(r-1)} d x\right)^{(r-1) / q}\right. \tag{2.15}\\
& \quad \leq C_{14}|B|^{(1-\beta) / \beta q}|B|^{(t-s) / s t}|B|^{r / q}\left\|d^{*} v\right\|_{q, \sigma B, w} \leq C_{15}\left\|d^{*} v\right\|_{q, \sigma B, w} .
\end{align*}
$$

Combining Lemma 1.5 and (2.15), we conclude that

$$
\begin{equation*}
\left\|G\left(d^{*} v\right)-\left(G\left(d^{*} v\right)\right)_{B}\right\|_{q, B, w}^{q} \leq C_{16}\left\|d^{*} v\right\|_{q, \sigma B, w}^{q} \leq C_{17}\|d u\|_{p, \sigma B, w}^{p} . \tag{2.16}
\end{equation*}
$$

This ends the proof of Theorem 2.1.
For any weight w, we define the weighted norm of $\omega \in W^{1, p}\left(\Omega, \Lambda^{l}, w^{\alpha}\right)$ in Ω by

$$
\begin{equation*}
\|\omega\|_{W^{1, p}(\Omega), w^{\alpha}}=\operatorname{diam}(\Omega)^{-1}\|\omega\|_{p, \Omega, w^{\alpha}}+\|\nabla \omega\|_{p, \Omega, W^{\alpha}}, \quad 0<p<\infty . \tag{2.17}
\end{equation*}
$$

Now we can give the following Sobolev norm estimates for Green operator in terms of Hodge codifferential operator.

Theorem 2.2. Let u and v be a pair of solutions of (1.1) in Ω, and assume that $\omega \in A_{r}(\Omega)$ for some $r>1, \sigma>1,0<\alpha \leq 1$, and $r<p<\infty$. Then, there exists a constant C, independent of u and v, such that

$$
\begin{equation*}
\left\|G(u)-(G(u))_{B}\right\|_{W^{1, p}(B), w^{\alpha}}^{p} \leq C\left\|d^{*} v\right\|_{q, \sigma B, w^{\alpha}}^{q} \tag{2.18}
\end{equation*}
$$

for all balls B with $\sigma B \subset \Omega$. Here α is any constant with $0<\alpha \leq 1$.
Proof. We know that Green's operator commutes with d in [4], that is, for any smooth differential form u, we have $d G(u)=G d(u)$. Since $|\nabla \omega|=|d \omega|$ for any differential form ω, we have $\|\nabla G(u)\|_{p, B}=\|d G(u)\|_{p, B}=\|G(d u)\|_{p, B} \leq C_{1}\|d u\|_{p, B}$ from [2, Lemma 2.1]. Using the same method as we did above, we can also have the following A_{r}-weighted inequalities

$$
\begin{gather*}
\left\|G(u)-(G(u))_{B}\right\|_{p, B, w^{\alpha}} \leq C_{2} \operatorname{diam}(B)\|d u\|_{p, \sigma B, w^{\alpha}}, \tag{2.19}\\
\left\|\nabla\left(G(u)-(G(u))_{B}\right)\right\|_{p, B, w^{\alpha}} \leq C_{3}\|d u\|_{p, \sigma B, w^{\alpha}}
\end{gather*}
$$

Combining (2.17) and (2.19), it follows that

$$
\begin{align*}
& \| G(u)-(G(u))_{B} \|_{W^{1, p}(B), w^{\alpha}} \\
&=\operatorname{diam}(B)^{-1}\left\|G(u)-(G(u))_{B}\right\|_{p, B, w^{\alpha}}+\left\|\nabla\left(G(u)-(G(u))_{B}\right)\right\|_{p, B, w^{\alpha}} \tag{2.20}\\
& \quad \leq \operatorname{diam}(B)^{-1} \cdot C_{2} \operatorname{diam}(B)\|d u\|_{p, \sigma_{1} B, w^{\alpha}}+C_{3}\|d u\|_{p, \sigma_{2} B, w^{\alpha}} \\
& \quad \leq C_{4}\|d u\|_{p, \sigma B, w^{\alpha}},
\end{align*}
$$

6 Weighted Poincaré-type estimates

here $\sigma=\max \left(\sigma_{1}, \sigma_{2}\right)$ with $\sigma B \subset M$. Applying Lemma 1.5 and (2.20), we conclude that

$$
\begin{equation*}
\left\|G(u)-(G(u))_{B}\right\|_{W^{1, p}(B), w^{\alpha}}^{p} \leq C_{5}\|d u\|_{p, \sigma B, w^{\alpha}}^{p} \leq C_{5}\left\|d^{*} v\right\|_{q, \sigma B, w^{\alpha}}^{q} . \tag{2.21}
\end{equation*}
$$

Therefore, we have completed the proof of Theorem 2.2.

References

[1] R. P. Agarwal and S. Ding, Advances in differential forms and the A-harmonic equation, Math. Comput. Modelling 37 (2003), no. 12-13, 1393-1426.
[2] S. Ding, Integral estimates for the Laplace-Beltrami and Green's operators applied to differential forms on manifolds, Z. Anal. Anwendungen 22 (2003), no. 4, 939-957.
[3] , The weak reverse Hölder inequality for conjugate A-harmonic tensors, preprint, 2004.
[4] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Graduate Texts in Mathematics, vol. 94, Springer-Verlag, New York, 1983.
[5] Y. Xing, Weighted integral inequalities for solutions of the A-harmonic equation, J. Math. Anal. Appl. 279 (2003), no. 1, 350-363.
[6] , Analogues of the Poincaré inequality for conjugate A-harmonic tensor, preprint, 2004.
Yuming Xing: Department of Mathematics, Harbin Institute of Technology, Harbin, China
E-mail address: xyuming@hit.edu.cn

