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We give some refinements of the inequalities of Aczél, Popoviciu, and Bellman. Also, we give some
results related to power sums.

1. Introduction

The well-known Aczél’s inequality [1] (see also [2, page 117]) is given in the following result.

Theorem 1.1. Let n be a fixed positive integer, and let A,B, ak, bk (k = 1, . . . , n) be real numbers
such that

A2 −
n∑

k=1

a2
k > 0, B2 −

n∑

k=1

b2k > 0, (1.1)

then

(
A2 −

n∑

k=1

a2
k

)1/2(
B2 −

n∑

k=1

b2k

)1/2

≤ AB −
n∑

k=1

akbk, (1.2)

with equality if and only if the sequences A, a1, . . . , .an and B, b1, . . . , bn are proportional.

A related result due to Bjelica [3] is stated in the following theorem.
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Theorem 1.2. Let n be a fixed positive integer, and let p,A, B, ak, bk (k = 1, . . . , n) be nonnegative
real numbers such that

Ap −
n∑

k=1

a
p

k > 0, Bp −
n∑

k=1

b
p

k > 0, (1.3)

then, for 0 < p ≤ 2, one has

(
Ap −

n∑

k=1

a
p

k

)1/p(
Bp −

n∑

k=1

b
p

k

)1/p

≤ AB −
n∑

k=1

akbk. (1.4)

Note that quotation of the above result in [4, page 58] is mistakenly stated for all p ≥ 1.
In 1990, Bjelica [3] proved that the above result is true for 0 < p ≤ 2. Mascioni [5], in 2002,
gave the proof for 1 < p ≤ 2 and gave the counter example to show that the above result is
not true for p > 2. Dı́az-Barreo et al. [6] mistakenly stated it for positive integer p and gave a
refinement of the inequality (1.4) as follows.

Theorem 1.3. Let n, p be positive integers, and let A,B, ak, bk, (k = 1, . . . , n) be nonnegative real
numbers such that (1.3) is satisfied, then for 1 ≤ j < n, one has

(
Ap −

n∑

k=1

a
p

k

)(
Bp −

n∑

k=1

b
p

k

)
≤ R(A,B, ak, bk) ≤

(
AB −

n∑

k=1

akbk

)p

, (1.5)

where

R(A,B, ak, bk) =

⎛
⎜⎝ p

√√√√Ap −
j∑

k=1

a
p

k
p

√√√√Bp −
j∑

k=1

b
p

k
−

n∑

k=j+1

akbk

⎞
⎟⎠

p

. (1.6)

Moreover, Dı́az-Barreo et al. [6] stated the above result as Popoviciu’s generalization
of Aczél’s inequality given in [7]. In fact, generalization of inequality (1.2) attributed to
Popoviciu [7] is stated in the following theorem (see also [2, page 118]).

Theorem 1.4. Let n be a fixed positive integer, and let p, q,A, B, ak, bk (k = 1, . . . , n) be nonnegative
real numbers such that

Ap −
n∑

k=1

a
p

k > 0, Bq −
n∑

k=1

b
q

k > 0. (1.7)

Also, let 1/p + 1/q = 1, then, for p > 1, one has

(
Ap −

n∑

k=1

a
p

k

)1/p(
Bq −

n∑

k=1

b
q

k

)1/q

≤ AB −
n∑

k=1

akbk. (1.8)

If p < 1 (p /= 0), then reverse of the inequality (1.8) holds.
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The well-known Bellman’s inequality is stated in the following theorem [8] (see also
[2, pages 118-119]).

Theorem 1.5. Let n be a fixed positive integer, and let p,A, B, ak, bk (k = 1, . . . , n) be nonnegative
real numbers such that (1.3) is satisfied. If p ≥ 1, then

(
Ap −

n∑

k=1

a
p

k

)1/p

+

(
Bp −

n∑

k=1

b
p

k

)1/p

≤
(
(A + B)p −

n∑

k=1

(ak + bk)p
)1/p

. (1.9)

Dı́az-Barreo et al. [6] gave a refinement of the above inequality for positive integer p.
They proved the following result.

Theorem 1.6. Let n, p be positive integers, and let A,B, ak, bk, (k = 1, . . . , n) be nonnegative real
numbers such that (1.3) is satisfied, then for 1 ≤ j < n, one has

(
Ap −

n∑

k=1

a
p

k

)1/p

+

(
Bp −

n∑

k=1

b
p

k

)1/p

≤ R̃(A,B, ak, bk) ≤
(
(A + B)p −

n∑

k=1

(ak + bk)p
)1/p

,

(1.10)

where

R̃(A,B, ak, bk) =

⎡
⎢⎣

⎛
⎜⎝ p

√√√√Ap −
j∑

k=1

a
p

k +
p

√√√√Bp −
j∑

k=1

b
p

k

⎞
⎟⎠

p

−
n∑

k=j+1

(ak + bk)p

⎤
⎥⎦

1/p

. (1.11)

In this paper, first we give a simple extension of a Theorem 1.2 with Aczél’s inequality.
Further, we give refinements of Theorems 1.2, 1.4, and 1.5. Also, we give some results related
to power sums.

2. Main Results

To give extension of Theorem 1.2, we will use the result proved by Pečarić and Vasić in 1979
[9, page 165].

Lemma 2.1. Let p, q,A, ak (k = 1, . . . , n) be nonnegative real numbers such thatAp −∑n
k=1 a

p

k
> 0,

then for 0 < p ≤ q, one has

(
Ap −

n∑

k=1

a
p

k

)1/p

≤
(
Aq −

n∑

k=1

a
q

k

)1/q

. (2.1)
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Theorem 2.2. Let n be a fixed positive integer, and let p,A, B, ak, bk (k = 1, . . . , n) be nonnegative
real numbers such that (1.3) is satisfied, then, for 0 < p ≤ 2, one has

(
Ap −

n∑

k=1

a
p

k

)1/p(
Bp −

n∑

k=1

b
p

k

)1/p

≤
(
A2 −

n∑

k=1

a2
k

)1/2(
B2 −

n∑

k=1

b2k

)1/2

≤ AB −
n∑

k=1

akbk.

(2.2)

Proof. By using condition (1.3) in Lemma 2.1 for 0 < p ≤ 2, we have

(
Ap −

n∑

k=1

a
p

k

)1/p

≤
(
A2 −

n∑

k=1

a2
k

)1/2

,

(
Bp −

n∑

k=1

b
p

k

)1/p

≤
(
B2 −

n∑

k=1

b2k

)1/2

.

(2.3)

These imply

(
Ap −

n∑

k=1

a
p

k

)1/p(
Bp −

n∑

k=1

b
p

k

)1/p

≤
(
A2 −

n∑

k=1

a2
k

)1/2(
B2 −

n∑

k=1

b2k

)1/2

. (2.4)

Now, applying Azcél’s inequality on right-hand side of the above inequality gives us the
required result.

Let p and q be positive real numbers such that 1/p + 1/q = 1, then the well-known
Hölder’s inequality states that

n∑

k=1

akbk ≤
(

n∑

k=1

a
p

k

)1/p( n∑

k=1

b
q

k

)1/q

, (2.5)

where ak, bk (k = 1, . . . , n) are positive real numbers.
If 0 < p ≤ q, then the well-known inequality of power sums of order p and q states that

(
n∑

k=1

b
q

k

)1/q

≤
(

n∑

k=1

b
p

k

)1/p

, (2.6)

where bk (k = 1, . . . , n) are positive real numbers (c.f [9, page 165]).
Now, if 1 < p ≤ 2, then q ≥ 2 and using inequality (2.6) in (2.5), we get

n∑

k=1

akbk ≤
(

n∑

k=1

a
p

k

)1/p( n∑

k=1

b
p

k

)1/p

. (2.7)
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We use the inequality (2.7) and the Hölder’s inequality to prove the further
refinements of the Theorems 1.2 and 1.4.

Theorem 2.3. Let j and n be fixed positive integers such that 1 ≤ j < n, and let p,A, B, ak, bk (k =
1, . . . , n) be nonnegative real numbers such that (1.3) is satisfied. Let one denote

M =

(
Ap −

j∑

k=1

a
p

k

)1/p

, N =

(
Bp −

j∑

k=1

b
p

k

)1/p

. (2.8)

(i) If 0 < p ≤ 2, then

(
Ap −

n∑

k=1

a
p

k

)1/p(
Bp −

n∑

k=1

b
p

k

)1/p

≤ MN −
n∑

k=j+1

akbk ≤ AB −
n∑

k=1

akbk.

(2.9)

(ii) If 1 < p ≤ 2, then

(
Ap −

n∑

k=1

a
p

k

)1/p(
Bp −

n∑

k=1

b
p

k

)1/p

≤ MN −
⎛
⎝

n∑

k=j+1

a
p

k

⎞
⎠

1/p⎛
⎝

n∑

k=j+1

b
p

k

⎞
⎠

1/p

≤ MN −
n∑

k=j+1

akbk.

(2.10)

Proof.

(i) First of all, we observe that M,N > 0 and also 0 < p ≤ 2, therefore by Theorem 1.2,
we have

MN ≤ AB −
j∑

k=1

akbk. (2.11)

We can write

(
Ap −

n∑

k=1

a
p

k

)1/p(
Bp −

n∑

k=1

a
p

k

)1/p

=

⎛
⎝Mp −

n∑

k=j+1

a
p

k

⎞
⎠

1/p⎛
⎝Np −

n∑

k=j+1

b
p

k

⎞
⎠

1/p

. (2.12)
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By applying Theorem 1.2 for 0 < p ≤ 2 on right-hand side of the above equation, we get

(
Ap −

n∑

k=1

a
p

k

)1/p(
Bp −

n∑

k=1

a
p

k

)1/p

≤ MN −
n∑

k=j+1

akbk. (2.13)

By using inequality (2.11) on right-hand side of the above expression follows the required
result.

(ii) Since

Ap −
n∑

k=1

a
p

k
= Ap −

j∑

k=1

a
p

k
−

n∑

k=j+1

a
p

k
(2.14)

and denoting a = (
∑n

k=j+1 a
p

k
)
1/p

, b = (
∑n

k=j+1 b
p

k
)
1/p

,
then

(
Ap −

n∑

k=1

a
p

k

)1/p(
Bp −

n∑

k=1

a
p

k

)1/p

= (Mp − ap)1/p(Np − bp)1/p. (2.15)

It is given that Mp − ap > 0 and Np − bp > 0, therefore by using Theorem 1.2, for n = 1, on
right-hand side of the above equation, we get

(
Ap −

n∑

k=1

a
p

k

)1/p(
Bp −

n∑

k=1

a
p

k

)1/p

≤ MN − ab = MN −
⎛
⎝

n∑

k=j+1

a
p

k

⎞
⎠

1/p⎛
⎝

n∑

k=j+1

b
p

k

⎞
⎠

1/p

,

(2.16)

since 1 < p ≤ 2, so by using (2.7)

≤ MN −
n∑

k=j+1

akbk. (2.17)

Theorem 2.4. Let j and n be fixed positive integers such that 1 ≤ j < n, and let p, q,A, B, ak, bk (k =
1, . . . , n) be nonnegative real numbers such that (1.7) is satisfied. Also let 1/p+1/q = 1,M be defined
in (2.8) and

Ñ =

(
Bq −

j∑

k=1

b
q

k

)1/q

, (2.18)
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then, for p > 1, one has

(
Ap −

n∑

k=1

a
p

k

)1/p(
Bq −

n∑

k=1

b
q

k

)1/q

≤ MÑ −
⎛
⎝

n∑

k=j+1

a
p

k

⎞
⎠

1/p⎛
⎝

n∑

k=j+1

b
q

k

⎞
⎠

1/q

≤ MÑ −
n∑

k=j+1

akbk

≤ AB −
n∑

k=1

akbk.

(2.19)

Proof. First of all, note that M,Ñ > 0, therefore by generalized Aczél’s inequality, we have

MÑ ≤ AB −
j∑

k=1

akbk. (2.20)

Now,

Ap −
n∑

k=1

a
p

k = Ap −
j∑

k=1

a
p

k −
n∑

k=j+1

a
p

k, (2.21)

and denote a = (
∑n

k=j+1 a
p

k
)
1/p

, b = (
∑n

k=j+1 b
q

k
)
1/p

.
Then

(
Ap −

n∑

k=1

a
p

k

)1/p(
Bp −

n∑

k=1

b
q

k

)1/q

= (Mp − ap)1/p
(
Ñq − bq

)1/q
. (2.22)

It is given that Mp − ap > 0 and Ñq − bq > 0, therefore by using Theorem 1.4, for n = 1, on
right-hand side of the above equation, we get

(
Ap −

n∑

k=1

a
p

k

)1/p(
Bq −

n∑

k=1

b
q

k

)1/q

≤ MÑ − ab = MÑ −
⎛

⎝
n∑

k=j+1

a
p

k

⎞

⎠
1/p⎛

⎝
n∑

k=j+1

b
q

k

⎞

⎠
1/q

,

(2.23)

by applying Hölder’s inequality

≤ MÑ −
n∑

k=j+1

akbk, (2.24)
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by using inequality (2.20)

≤ AB −
j∑

k=1

akbk −
n∑

k=j+1

akbk

= AB −
n∑

k=1

akbk.

(2.25)

In [6], a refinement of Bellman’s inequality is given for positive integer p; here, we
give further refinements of Bellman’s inequality for real p ≥ 1. We will use Minkowski’s
inequality in the proof and recall that, for real p ≥ 1 and for positive reals ak, bk (k = 1, . . . , n),
the Minkowski’s inequality states that

(
n∑

k=1

(ak + bk)p
)1/p

≤
(

n∑

k=1

a
p

k

)1/p

+

(
n∑

k=1

b
p

k

)1/p

. (2.26)

Theorem 2.5. Let j and n be fixed positive integers such that 1 ≤ j < n, and let p,A, B, ak, bk (k =
1, . . . , n) be nonnegative real numbers such that (1.3) is satisfied. Also let M and N be defined in (2.8).
If p ≥ 1, then

(
Ap −

n∑

k=1

a
p

k

)1/p

+

(
Bp −

n∑

k=1

b
p

k

)1/p

≤

⎡
⎢⎣(M +N)p −

⎧
⎪⎨

⎪⎩

⎛
⎝

n∑

k=j+1

a
p

k

⎞
⎠

1/p

+

⎛
⎝

n∑

k=j+1

b
p

k

⎞
⎠

1/p
⎫
⎪⎬

⎪⎭

p⎤
⎥⎦

1/p

≤
⎛

⎝(M +N)p −
n∑

k=j+1

(ak + bk)p
⎞

⎠
1/p

≤
(
(A + B)p −

n∑

k=1

(ak + bk)p
)1/p

.

(2.27)

Proof. First of all, note that M,N > 0 and p ≥ 1, therefore by using Bellman’s inequality, we
have

M +N ≤
(
(A + B)p −

j∑

k=1

(ak + bk)p
)1/p

. (2.28)
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Now,

Ap −
n∑

k=1

a
p

k
= Ap −

j∑

k=1

a
p

k
−

n∑

k=j+1

a
p

k
, (2.29)

and denote a = (
∑n

k=j+1 a
p

k)
1/p

, b = (
∑n

k=j+1 b
p

k)
1/p

.
Then

(
Ap −

n∑

k=1

a
p

k

)1/p

+

(
Bp −

n∑

k=1

b
p

k

)1/p

= (Mp − ap)1/p + (Np − bp)1/p. (2.30)

It is given thatMp −ap > 0 andNp −bp > 0, therefore by using Bellman’s inequality, for n = 1,
on right-hand side of the above equation, we get

(
Ap −

n∑

k=1

a
p

k

)1/p

+

(
Bq −

n∑

k=1

b
q

k

)1/q

≤ [
(M +N)p − (a + b)p

]1/p =

⎡
⎢⎣(M +N)p −

⎧
⎪⎨

⎪⎩

⎛

⎝
n∑

k=j+1

a
p

k

⎞

⎠
1/p

+

⎛

⎝
n∑

k=j+1

b
p

k

⎞

⎠
1/p

⎫
⎪⎬

⎪⎭

p⎤
⎥⎦

1/p

,

(2.31)

by applying Minkowski’s inequality

≤
⎡

⎣(M +N)p −
n∑

k=j+1

(ak + bk)p
⎤

⎦
1/p

, (2.32)

and by using inequality (2.28)

≤
⎡

⎣(A + B)p −
j∑

k=1

(ak + bk)p −
n∑

k=j+1

(ak + bk)p
⎤

⎦
1/p

=

[
(A + B)p −

n∑

k=1

(ak + bk)p
]1/p

.

(2.33)

Remark 2.6. In [10], Hu and Xu gave the generalized results related to Theorems 2.4 and 2.5.

3. Some Further Remarks on Power Sums

The following theorem [9, page 152] is very useful to give results related to power sums in
connection with results given in [11, 12].
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Theorem 3.1. Let (x1, . . . , xn) ∈ In, where I = (0, a] is interval in � and x1 −x2 − · · · −xn ∈ I. Also
let f : I → � be a function such that f(x)/x is increasing on I, then

f

(
x1 −

n∑

i=2

xi

)
≤ f(x1) −

n∑

i=2

f(xi). (3.1)

Remark 3.2. If f(x)/x is strictly increasing on I, then strict inequality holds in (3.1).

Here, it is important to note that if we consider

f(x) = xq/p, p, q ∈ �, p /= 0, (3.2)

then f(x)/x is increasing on (0,∞) for 0 < p ≤ q. By using it in Theorem 3.1, we get

(
x1 −

n∑

i=2

xi

)q/p

≤ x
q/p

1 −
n∑

i=2

x
q/p

i . (3.3)

This implies Lemma 2.1 by substitution, xi → x
p

i .
In this section, we use Theorem 3.1 to give some results related to power sums as given

in [11–13], but here we will discuss only the nonweighted case.
In [11], we introduced Cauchy means related to power sums; here, we restate the

means without weights.
Let x = (x1, . . . , xn) be a positive n-tuple, then for r, s, t ∈ (0,∞) we defined

As
t,r(x) =

⎧
⎨

⎩
(r − s)
(t − s)

(∑n
i=1 x

s
i

)t/s −∑n
i=1 x

t
i

(∑n
i=1 x

s
i

)r/s −∑n
i=1 x

r
i

⎫
⎬

⎭

1/(t−r)

, t /= r, r /= s, t /= s,

As
s,r(x) = As

r,s(x) =

⎧
⎨

⎩
(r − s)

s

(∑n
i=1 x

s
i

)
log

∑n
i=1 x

s
i − s

∑n
i=1 x

s
i logxi

(∑n
i=1 x

s
i

)r/s −∑n
i=1 x

r
i

⎫
⎬

⎭

1/(s−r)

, s /= r,

As
r,r(x) = exp

⎛
⎜⎝

1
(s − r)

+

(∑n
i=1 x

s
i

)r/s log
∑n

i=1 x
s
i − s

∑n
i=1 x

r
i logxi

s
{(∑n

i=1 x
s
i

)r/s −∑n
i=1 x

r
i

}

⎞
⎟⎠, s /= r,

As
s,s(x) = exp

((∑n
i=1 x

s
i

)(
log

∑n
i=1 x

s
i

)2 − s2
∑n

i=1 x
s
i

(
logxi

)2

2s
{(∑n

i=1 x
s
i

)
log

(∑n
i=1 x

s
i

) − s
∑n

i=1 x
s
i logxi

}
)
.

(3.4)

We proved that As
t,r(x) is monotonically increasing with respect to t and r.

In this section, we give exponential convexity of a positive difference of the inequality
(3.1) by using parameterized class of functions. We define new means and discuss their
relation to the means defined in [11]. Also, we prove mean value theorem of Cauchy type.

It is worthwhile to recall the following.
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Definition 3.3. A function h : (a, b) → � is exponentially convex if it is continuous and

n∑

i,j=1

uiujh
(
xi + xj

) ≥ 0, (3.5)

for all n ∈ � and all choices ui ∈ �, i = 1, 2, . . . , n, and xi ∈ (a, b), such that xi +xj ∈ (a, b), 1 ≤
i, j ≤ n.

Proposition 3.4. Let f : (a, b) → �. The following propositions are equivalent:

(i) f is exponentially convex,

(ii) f is continuous and

n∑

i,j=1

vivjf

(
xi + xj

2

)
≥ 0, (3.6)

for every vi ∈ � and for every xi ∈ (a, b), 1 ≤ i ≤ n.

Corollary 3.5. If h : (a, b) → (0,∞) is exponentially convex function, then h is a log-convex
function.

3.1. Exponential Convexity

Lemma 3.6. Let t ∈ � and ϕt : (0,∞) → � be the function defined as

ϕt(x) =

⎧
⎪⎨

⎪⎩

xt

(t − 1)
, t /= 1,

x logx, t = 1,
(3.7)

then ϕt(x)/x is strictly increasing function on (0,∞) for each t ∈ �.

Proof. Since

(
ϕt(x)
x

)′
= xt−2 > 0, ∀x ∈ (0,∞), (3.8)

therefore ϕt(x)/x is strictly increasing function on (0,∞) for each t ∈ �.

Theorem 3.7. Let x = (x1, . . . , xn) be a positive n-tuple (n ≥ 2) such that x1 − x2 − · · · − xn > 0, and
let

Λt(x) = ϕt(x1) −
n∑

i=2

ϕt(xi) − ϕt

(
x1 −

n∑

i=2

xi

)
. (3.9)
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(a) For m ∈ �, let p1, . . . , pm be arbitrary real numbers, then the matrix

[
Λ(pi+pj )/2

]
where 1 ≤ i, j ≤ m (3.10)

is a positive semidefinite matrix.

(b) The function t 	→ Λt, t ∈ � is exponentially convex.

(c) The function t 	→ Λt, t ∈ � is log convex.

Proof. (a) Define a function

F(x) =
n∑

i,j=1

uiujϕpij (x), where pij =

(
pi + pj

)

2
, (3.11)

then

(
F(x)
x

)′
=

(
n∑

i=1

uix
(pi−2)/2

)2

≥ 0 ∀x ∈ (0,∞). (3.12)

This implies that F(x)/x is increasing function on (0,∞). So using F in the place of f in (3.1),
we have

n∑

i,j=1

uiujΛϕpij
≥ 0. (3.13)

Hence, the given matrix is positive semidefinite.
(b) Since after some computation we have that limt→ 1Λt = Λ1 so t 	→ Λt is continuous

on �, then by Proposition 3.4, we have that t 	→ Λt is exponentially convex.
(c) Since ϕt(x)/x is strictly increasing function on (0,∞), so by Remark 3.2, we have

ϕt

(
x1 −

n∑

i=2

xi

)
< ϕt(x1) −

n∑

i=2

ϕt(xi) , (3.14)

it follows that Λt(x) > 0. Now, by Corollary 3.5, we have that t 	→ Λt is log convex.

Let us introduce the following.
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Definition 3.8. Let x = (x1, . . . , xn) be a positive n-tuple (n ≥ 2) such that xs
1 − xs

2 − · · · − xs
n > 0

for s ∈ (0,∞), then for t, r, s ∈ (0,∞), we define

Cs
t,r(x) =

⎧
⎨

⎩
(r − s)
(t − s)

xt
1 −

∑n
i=2 x

t
i −

(
xs
1 −

∑n
i=2 x

s
i

)t/s

xr
1 −

∑n
i=2 x

r
i −

(
xs
1 −

∑n
i=2 x

s
i

)r/s

⎫
⎬

⎭

1/(t−r)

, t /= r, r /= s, t /= s,

Cs
s,r(x)

= Cs
r,s(x)

=

⎛

⎝ (r − s)
s

sxs
1 log x1 − s

∑n
i=2 x

s
i log xi −

(
xs
1 −

∑n
i=2 x

s
i

)
log

(
xs
1 −

∑n
i=2 x

s
i

)

xr
1 −

∑n
i=2 x

r
i −

(
xs
1 −

∑n
i=2 x

s
i

)r/s

⎞

⎠
1/(s−r)

,

s /= r,

Cs
r,r(x)

= exp

⎛
⎜⎝

1
(s − r)

+
sxr

1 log x1 − s
∑n

i=2 x
r
i log xi −

(
xs
1 −

∑n
i=2 x

s
i

)r/s log
(
xs
1 −

∑n
i=1 x

s
i

)

s
{
xr
1 −

∑n
i=2 x

r
i −

(
xs
1 −

∑n
i=2 x

s
i

)r/s}

⎞
⎟⎠,

s /= r,

Cs
s,s(x)

= exp

(
s2xs

1(logx1)2 − s2
∑n

i=2 x
s
i

(
logxi

)2 − (
xs
1 −

∑n
i=2 x

s
i

)(
log(xs

1 −
∑n

i=2 x
s
i )
)2

2s
{
sxs

1 logx1 − s
∑n

i=2 x
s
i logxi −

(
xs
1 −

∑n
i=2 x

s
i

)
log

(
xs
1 −

∑n
i=2 x

s
i

)}
)
.

(3.15)

Remark 3.9. Let us note that Cs
s,r(x) = Cs

r,s(x) = limt→ sC
s
t,r(x) = limt→ sC

s
r,t(x), C

s
r,r(x) =

limt→ rC
s
t,r(x), and Cs

s,s(x) = limr→ sCs
r,r(x).

Remark 3.10. If in Cs
t,r(x) we substitute x1 by (

∑n
i=1 x

s
i )

1/s, then we get As
t,r(x), and if we

substitute x1 by (xs
i −

∑n
i=2 x

s
i )

1/s in As
t,r(x), we get Cs

t,r(x).

In [11], we have the following lemma.

Lemma 3.11. Let f be a log-convex function and assume that if x1 ≤ y1, x2 ≤ y2, x1 /=x2, y1 /=y2,
then the following inequality is valid:

(
f(x2)
f(x1)

)1/(x2−x1)

≤
(

f
(
y2

)

f
(
y1

)
)1/(y2−y1)

. (3.16)

Theorem 3.12. Let x = (x1, . . . , xn) be positive n-tuple (n ≥ 2) such that xs
1 − xs

2 − · · · − xs
n > 0 for

s ∈ (0,∞), then for r, t, u, v ∈ (0,∞) such that r ≤ u, t ≤ v, one has

Cs
t,r(x) ≤ Cs

v,u(x). (3.17)



14 Journal of Inequalities and Applications

Proof. Let Λs be defined by (3.9). Now taking x1 = r, x2 = t, y1 = u, y2 = v, where
r /= t, u/=v, r, t, u, v /= 1, and f(s) = Λs in Lemma 3.11, we have

(
(r − 1)
(t − 1)

xt
1 −

∑n
i=2 x

t
i −

(
x1 −

∑n
i=2 xi

)t

xr
1 −

∑n
i=2 x

r
i −

(
x1 −

∑n
i=2 xi

)r

)1/(t−r)

≤
(

(u − 1)
(v − 1)

xv
1 −

∑n
i=2 x

v
i −

(
x1 −

∑n
i=2 xi

)v

xu
1 −

∑n
i=2 x

u
i −

(
x1 −

∑n
i=2 xi

)u

)1/(v−u)
.

(3.18)

Since s > 0, by substituting xi = xs
i , t = t/s, r = r/s, u = u/s, and v = v/s, where

r, t, u, v /= s, in above inequality, we get

⎛

⎝ (r − s)
(t − s)

xt
1 −

∑n
i=2 x

t
i −

(
xs
1 −

∑n
i=2 x

s
i

)t/s

xr
1 −

∑n
i=2 x

r
i −

(
xs
1 −

∑n
i=2 x

s
i

)r/s

⎞

⎠
s/(t−r)

≤
⎛
⎝ (u − s)

(v − s)
xv
1 −

∑n
i=2 x

v
i −

(
xs
1 −

∑n
i=2 x

s
i

)v/s

xu
1 −

∑n
i=2 x

u
i −

(
xs
1 −

∑n
i=2 x

s
i

)u/s

⎞
⎠

s/(v−u)

.

(3.19)

By raising power 1/s, we get (3.17) for r, t, u, v /= s, r /= t and u/=v.
From Remark 3.9, we get that (3.17) is also valid for r = t or u = v or r, t, u, v = s.

Remark 3.13. If we substitute x1 by (
∑n

i=1 x
s
i )

1/s, then monotonicity of Cs
t,r(x) implies the

monotonicity of As
t,r(x), and if we substitute x1 by (xs

i −
∑n

i=2 x
s
i )

1/s, then monotonicity of
As

t,r(x) implies monotonicity of Cs
t,r(x).

3.2. Mean Value Theorems

We will use the following lemma [11] to prove the related mean value theorems of Cauchy
type.

Lemma 3.14. Let f ∈ C1(I), where I = (0, a] such that

m ≤ xf ′(x) − f(x)
x2

≤ M. (3.20)

Consider the functions φ1, φ2 defined as

φ1(x) = Mx2 − f(x),

φ2(x) = f(x) −mx2,
(3.21)

then φi(x)/x for i = 1, 2 are monotonically increasing functions.



Journal of Inequalities and Applications 15

Theorem 3.15. Let (x1, . . . , xn) ∈ In, where I is a compact interval such that I ⊆ (0,∞) and x1 −
x2 − · · · − xn ∈ I. If f ∈ C1(I), then there exists ξ ∈ I such that

f(x1) −
n∑

i=2

f(xi) − f

(
x1 −

n∑

i=2

f(xi )

)

=
ξf ′(ξ) − f(ξ)

ξ2

⎧
⎨

⎩x2
1 −

n∑

i=2

x2
i −

(
x1 −

n∑

i=2

xi

)2
⎫
⎬

⎭.

(3.22)

Proof. Since I is compact and f ∈ C(I), therefore let

M = max
{
xf ′(x) − f(x)

x2 : x ∈ I

}
, m = min

{
xf ′(x) − f(x)

x2 : x ∈ I

}
. (3.23)

In Theorem 3.1, setting f = φ1 and f = φ2, respectively, as defined in Lemma 3.14, we get the
following inequalities:

f(x1) −
n∑

i=2

f(xi) − f

(
x1 −

n∑

i=2

xi

)
≤ M

⎧
⎨

⎩x2
1 −

n∑

i=2

x2
i −

(
x1 −

n∑

i=2

xi

)2
⎫
⎬

⎭,

f(x1) −
n∑

i=2

f(xi) − f

(
x1 −

n∑

i=2

xi

)
≥ m

⎧
⎨

⎩x2
1 −

n∑

i=2

x2
i −

(
x1 −

n∑

i=2

xi

)2
⎫
⎬

⎭.

(3.24)

If f(x) = x2, then f(x)/x is strictly increasing function on I, therefore by Theorem 3.1, we
have

x2
1 −

n∑

i=2

x2
i −

(
x1 −

n∑

i=2

xi

)2

> 0. (3.25)

Now, by combining inequalities (3.24), we get

m ≤ f(x1) −
∑n

i=2 f(xi) − f
(
x1 −

∑n
i=2 xi

)

x2
1 −

∑n
i=2 x

2
i −

(
x1 −

∑n
i=2 xi

)2 ≤ M. (3.26)

Finally, by condition (3.20), there exists ξ ∈ I, such that

f(x1) −
∑n

i=2 f(xi) − f
(
x1 −

∑n
i=2 xi

)

x2
1 −

∑n
i=2 x

2
i −

(
x1 −

∑n
i=2 xi

)2 =
ξf ′(ξ) − f(ξ)

ξ2
(3.27)

as required.
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Theorem 3.16. Let (x1, . . . , xn) ∈ In, where I is a compact interval such that I ⊆ (0,∞) and x1 −
x2 − · · · − xn ∈ I. If f, g ∈ C1(I), then there exists ξ ∈ I such that the following equality is true:

f(x1) −
∑n

i=2 f(xi) − f
(
x1 −

∑n
i=2 xi

)

g(x1) −
∑n

i=2 g(xi) − g
(
x1 −

∑n
i=2 xi

) =
ξf ′(ξ) − f(ξ)
ξg ′(ξ) − g(ξ)

(3.28)

provided that the denominators are nonzero.

Proof. Let a function k ∈ C1(I) be defined as

k = c1f − c2g, (3.29)

where c1 and c2 are defined as

c1 = g(x1) −
n∑

i=2

g(xi) − g

(
x1 −

n∑

i=2

xi

)
,

c2 = f(x1) −
n∑

i=2

f(xi) − f

(
x1 −

n∑

i=2

xi

)
.

(3.30)

Then, using Theorem 3.15, with f = k, we have

0 =

(
c1

(
ξf ′(ξ) − f(ξ)

)

ξ2
− c2

(
ξg ′(ξ) − g(ξ)

)

ξ2

)⎧
⎨

⎩x2
1 −

n∑

i=2

x2
i −

(
x1 −

n∑

i=2

xi

)2
⎫
⎬

⎭. (3.31)

Since x2
1 −

∑n
i=2 x

2
i − (x1 −

∑n
i=2 xi)

2 > 0, therefore (3.31) gives

c2
c1

=
ξf ′(ξ) − f(ξ)
ξg ′(ξ) − g(ξ)

. (3.32)

Putting in (3.30), we get (3.28).
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