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Let {X,Xn;n ≥ 1} be a sequence of independent and identically distributed (i.i.d.) random
variables and X is in the domain of attraction of the normal law and EX = 0. For 1 ≤ p < 2, b > −1,
we prove the precise asymptotics in Davis law of large numbers for

∑∞
n=1((logn)

b/n)E{(|Sn|/Vn)−
ε(2 logn)(2−p)/(2p)} + as ε ↘ 0.
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1. Introduction and Main Result

Throughout this paper, we let {X,Xn;n ≥ 1} be a sequence of i.i.d. random variables and X is
in the domain of attraction of the normal law and EX = 0. Put

Sn =
n∑

k=1

Xk, V 2
n =

n∑

i=1

X2
i . (1.1)

Also let logn = ln(n ∨ e). Then by the well-known Davis laws of large numbers [1],

∞∑

n=1

logn
n

P

(

|Sn| ≥ ε
√
n logn

)

< ∞, ε > 0, (1.2)

if and only if EX = 0 and EX2 < ∞.
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Gut and Spătaru [2] proved its precise asymptotics as follows.

Theorem A. Suppose that EX1 = 0 and EX2
1 = σ2 < ∞. Then for 0 ≤ δ ≤ 1,

lim
ε↘0

ε2(δ+1)
∞∑

n=1

(
logn

)δ

n
P

(

|Sn| ≥ ε
√
n logn

)

=
μ(2δ+2)

δ + 1
σ2δ+2, (1.3)

where μ(2δ+2) stands for the (2δ + 2)th absolute moment of the standard normal distribution.

It is well known that, for i.i.d. random variables, Chow [3] discussed the complete
moment convergence, and got the following result.

Theorem B. Let {X,Xn;n ≥ 1} be a sequence of i.i.d. random variables with EX1 = 0 . Assume
p ≥ 1, α > 1/2, pα > 1, and E(|X|p + |X| log(1 + |X|)) < ∞. Then for any ε > 0,

∞∑

n=1

npα−2−αE
{

max
j≤n

|Sj | − εnα

}

+
< ∞. (1.4)

On the other hand, the past decade has witnessed a significant development on the

limit theorems for the so-called self-normalized sum Sn/Vn, Vn =
√∑n

i=1 X
2
i . Bentkus and

Götze [4] obtained Berry-Esseen inequalities for self-normalized sums. Wang and Jing [5]
derived exponential nonuniform Berry-Esseen bound. Giné et al. [6], established asymptotic
normality of self-normalized sums.

Theorem C. Let {X,Xn;n ≥ 1} be a sequence of i.i.d. random variables with EX1 = 0 . Then for any
x ∈ R,

lim
n→∞

P

(
Sn

Vn
≤ x

)

= Φ (x) (1.5)

holds, if and only if X is in the domain of attraction of the normal law, where Φ(x) is the distribution
function of the standard normal random variable.

Shao [7] showed a self-normalization large deviation result for P(Sn/Vn ≥ x
√
n)

without any moment conditions.

Theorem D. Let {xn;n ≥ 1} be a sequence of positive numbers with xn → ∞ and xn = o(
√
n) as

n → ∞. If EX = 0 and EX2I(|X| ≤ x) is slowly varying as x → ∞, then

lim
n→∞

x−2
n lnP

(
Sn

Vn
≥ xn

)

= −1
2
. (1.6)

Since then, many subsequent developments of self-normalized sums have been
obtained. For example, Csörgő et al. [8] have established Darling-Erdös theorem for self-
normalized sums, and they [9] have also obtained Donsker’s theorem for self-normalized
partial sums processes.
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Inspired by the above results, in this note we study the precise asymptotics in Davis
law of large numbers for the moment of self-normalized sums. Our main result is as follows.

Theorem 1.1. Suppose X is in the domain of attraction of the normal law and EX = 0. Then, for
b > −1 and 1 ≤ p < 2, one has

lim
ε↘0

ε2p(b+1)/(2−p)
∞∑

n=1

(
logn

)b

n
E

{ |Sn|
Vn

− ε
(
2 logn

)(2−p)/(2p)
}

+

=
2−b−1

(
2 − p

)

(b + 1)
(
2pb + p + 2

)E|N|(2pb+p+2)/(2−p),
(1.7)

here and in the sequel,N is the standard normal random variable.

Remark 1.2. If p = 1 and 0 < σ2 = EX2 < ∞, by the strong law of large numbers, we have
V 2
n/n → σ2, a.s. Then, we can easily obtain the following result:

lim
ε↘0

ε2(b+1)
∞∑

n=1

(
logn

)b

n3/2
E

{

|Sn| − εσ
√
2n logn

}

+
=

σ2−b−1

(b + 1) (2b + 3)
E|N|2b+3. (1.8)

Remark 1.3. As is well known, the strong approximation method is taken in order to obtain
such an analogous result, however, this method is not applicable here.

2. Proof of Theorem 1.1

In this section, we set A(ε) = exp(M/ε2p/(2−p)), for M > 1 and ε > 0. Here and in the sequel,
C will denote positive constants, possibly varying from place to place, and [x] means the
largest integer ≤ x. The proof of Theorem 1.1 is based on the following propositions.

Proposition 2.1. For b > −1, one has

lim
ε↘0

ε2p(b+1)/(2−p)
∞∑

n=1

(
logn

)b

n
E
{
|N| − ε

(
2 logn

)(2−p)/(2p)}

+

=
2−b−1

(
2 − p

)

(b + 1)
(
2pb + p + 2

)E|N|(2pb+p+2)/(2−p).
(2.1)
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Proof. Via the change of variable y = ε(2 log t)(2−p)/(2p), we have

lim
ε↘0

ε2p(b+1)/(2−p)
∞∑

n=1

(
logn

)b

n
E
{
|N| − ε

(
2 logn

)(2−p)/(2p)}

+

= lim
ε↘0

ε2p(b+1)/(2−p)
∞∑

n=1

(
logn

)b

n

∫∞

ε(2 logn)(2−p)/(2p)
P (|N| ≥ x)dx

= lim
ε↘0

ε2p(b+1)/(2−p)
∫∞

e

(
log t

)b

t

∫∞

ε(2 log t)(2−p)/(2p)
P (|N| ≥ x)dxdt

= lim
ε↘0

p2−b

2 − p

∫∞

ε2(2−p)/(2p)
y(2p/(2−p))(b+1)−1

∫∞

y

P (|N| ≥ x)dxdy

= lim
ε↘0

p2−b

2 − p

∫∞

ε2(2−p)/(2p)
P (|N| ≥ x)

∫x

ε2(2−p)/(2p)
y(2p/(2−p))(b+1)−1dydx

= lim
ε↘0

2−b−1

(b + 1)

∫∞

ε2(2−p)/(2p)
P (|N| ≥ x)

(
x(2p/(2−p))(b+1) − ε(2p/(2−p))(b+1) · 2b+1

)
dx

= lim
ε↘0

2−b−1

(b + 1)

∫∞

ε2(2−p)/(2p)
x(2p/(2−p))(b+1)P (|N| ≥ x)dx

=
2−b−1

(
2 − p

)

(b + 1)
(
2pb + p + 2

)E|N|(2pb+p+2)/(2−p).

(2.2)

Proposition 2.2. For b > −1, one has

lim
ε↘0

ε2p(b+1)/(2−p)
∑

n≤A(ε)

(
logn

)b

n

∣
∣
∣
∣E

{ |Sn|
Vn

−ε(2 logn)(2−p)/(2p)
}

+
−E

{
|N|−ε(2 logn)(2−p)/(2p)

}

+

∣
∣
∣
∣=0.

(2.3)

Proof. Set Δn = supx∈R|P((|Sn|)/Vn ≥ x) − P(|N| ≥ x)|. Then, by (1.5), it is easy to see Δn → 0
as n → ∞. Observe that

lim
ε↘0

ε2p(b+1)/(2−p)
∑

n≤A(ε)

(
logn

)b

n

∣
∣
∣
∣E

{ |Sn|
Vn

− ε
(
2 logn

)(2−p)/(2p)
}

+
− E

{
|N| − ε

(
2 logn

)(2−p)/(2p)}

+

∣
∣
∣
∣

= lim
ε↘0

ε2p(b+1)/(2−p)
∑

n≤A(ε)

(
logn

)b

n

×
∣
∣
∣
∣

∫∞

0
P

( |Sn|
Vn

≥ x + ε
(
2 logn

)(2−p)/(2p)
)

dx −
∫∞

0
P
(
|N| ≥ x + ε

(
2 logn

)(2−p)/(2p))
dx

∣
∣
∣
∣
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≤ lim
ε↘0

ε2p(b+1)/(2−p)
∑

n≤A(ε)

(
logn

)b

n

∫∞

0

∣
∣
∣
∣P

( |Sn|
Vn

≥ x + ε
(
2 logn

)(2−p)/(2p)
)

−
∫∞

0
P
(
|N| ≥ x + ε

(
2 logn

)(2−p)/(2p))
∣
∣
∣
∣dx

≤ lim
ε↘0

ε2p(b+1)/(2−p)
∑

n≤A(ε)

(
logn

)b

n
(Δn1 + Δn2 + Δn3 + Δn4) , (2.4)

where

Δn1 =
∫min(logn,1/

√
Δn)

0

∣
∣
∣
∣P

( |Sn|
Vn

≥ x + ε
(
2 logn

)(2−p)/(2p)
)

− P
(
|N| ≥ x + ε

(
2 logn

)(2−p)/(2p))∣∣
∣dx,

Δn2 =
∫n1/4

min(logn,1/
√

Δn)

∣
∣
∣
∣P

( |Sn|
Vn

≥ x + ε
(
2 logn

)(2−p)/(2p)
)

− P
(
|N| ≥ x + ε

(
2 logn

)(2−p)/(2p))∣∣
∣dx,

Δn3 =
∫n1/2

n1/4

∣
∣
∣
∣P

( |Sn|
Vn

≥ x + ε
(
2 logn

)(2−p)/(2p)
)

− P
(
|N| ≥ x + ε

(
2 logn

)(2−p)/(2p))
∣
∣
∣
∣dx,

Δn4 =
∫∞

n1/2

∣
∣
∣
∣P

|Sn|
Vn

≥ x + ε
(
2 logn

)(2−p)/(2p) − P
(
|N| ≥ x + ε

(
2 logn

)(2−p)/(2p))
∣
∣
∣
∣dx.

(2.5)

Thus for Δn1, it is easy to see

Δn1 ≤
√
Δn −→ 0, as n −→ ∞. (2.6)

Now we are in a position to estimate Δn2. From (1.6), and by applying −X′
is to it, we can

obtain that for large enough n and any 0 < a ≤ 1/4, there exist C and b such that P(|Sn|/Vn >
x) ≤ Ce−((1/2)−a)x

2
for b < x < n1/2/b. In particular, for b < x < n1/2/b, there exists C > 0 such

that

P

( |Sn|
Vn

> x

)

≤ Ce−x
2/4. (2.7)
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Hence, by Markov’s inequality and (2.7), we have

Δn2 ≤
∫n1/4

min(logn,1/
√

Δn)
e−(x+ε(2 logn)

(2−p)/2p)2/4dx +
∫n1/4

min(logn,1/
√
(Δn))

C
(
x + ε

(
2 logn

)(2−p)/(2p))2
dx

≤
∫n1/4

min(logn,1/
√

Δn)
e−x

2/4dx +
∫n1/4

min(logn,1/
√
(Δn))

C

x2
dx −→ 0, as n −→ ∞.

(2.8)

For Δn3, by Markov’s inequality and (2.7), we have

Δn3 ≤
∫n1/2

n1/4
P

( |Sn|
Vn

≥ n1/4
)

dx +
∫n1/2

n1/4

C
(
x + ε

(
2 logn

)(2−p)/(2p))2
dx

≤ e−
√
n/4

(
n1/2 − n1/4

)
+
∫n1/2

n1/4

C

x2
dx −→ 0, as n −→ ∞.

(2.9)

From Cauchy inequality, it follows that

|Sn|
Vn

≤ √
n. (2.10)

Therefore

Δn4 =
∫∞

n1/2
P
(
|N| ≥ x + ε

(
2 logn

)(2−p)/(2p))
dx

≤
∫∞

n1/2

C
(
x + ε

(
2 logn

)(2−p)/(2p))2
dx

≤
∫∞

n1/2

C

x2
dx −→ 0, as n −→ ∞.

(2.11)

Denote Δ′
n = Δn1 + Δn2 + Δn3 + Δn4, then, since the weighted average of a sequence that

converges to 0 also converges to 0, it follows that, for anyM > 1,

lim
ε↘0

ε2p(b+1)/(2−p)
∑

n≤A(ε)

(
logn

)b

n

∣
∣
∣
∣E

{ |Sn|
Vn

− ε
(
2 logn

)(2−p)/(2p)
}

+
− E

{
|N| − ε

(
2 logn

)(2−p)/(2p)}

+

∣
∣
∣
∣

≤ lim
ε↘0

ε2p(b+1)/(2−p)
∑

n≤A(ε)

(
logn

)b

n
Δ′

n −→ 0, as ε ↘ 0.

(2.12)

The proof is completed.
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Proposition 2.3. For b > −1, one has

lim
M→∞

lim
ε↘0

ε2p(b+1)/(2−p)
∑

n>A(ε)

(
logn

)b

n
E
{
|N| − ε

(
2 logn

)(2−p)/(2p)}

+
= 0. (2.13)

Proof. Note that

ε2p(b+1)/(2−p)
∑

n>A(ε)

(
logn

)b

n
E
{
|N| − ε

(
2 logn

)(2−p)/(2p)}

+

≤ ε2p(b+1)/(2−p)
∫∞

A(ε)

(
logn

)b

t

∫∞

ε(2 log t)(2−p)/(2p)
P (|N| ≥ x)dx dt

≤
∫∞
√
2M

y(2p/(2−p))(b+1)−1
∫∞

y

P (|N| ≥ x)dx dy

=
∫∞
√
2M

P (|N| ≥ x)
∫x

√
2M

y(2p/(2−p))(b+1)−1dy dx

≤ C

∫∞
√
2M

x(2p/(2−p))(b+1)P (|N| ≥ x)dx −→ 0, as M −→ ∞.

(2.14)

So this proposition is proved now.

Proposition 2.4. For b > −1, one has

lim
M→∞

lim
ε↘0

ε2p(b+1)/(2−p)
∑

n>A(ε)

(
logn

)b

n
E

{ |Sn|
Vn

− ε
(
2 logn

)(2−p)/(2p)
}

+
= 0. (2.15)

Proof. Note that

ε2p(b+1)/(2−p)
∑

n>A(ε)

(
logn

)b

n
E

{ |Sn|
Vn

− ε
(
2 logn

)(2−p)/(2p)
}

+

= ε2p(b+1)/(2−p)
∑

n>A(ε)

(
logn

)b

n

∫∞

0
P

( |Sn|
Vn

≥ x + ε
(
2 logn

)(2−p)/(2p)
)

dx

= B1 + B2 + B3,

(2.16)



8 Journal of Inequalities and Applications

where

B1 = ε2p(b+1)/(2−p)
∑

n>A(ε)

(
logn

)b

n

∫n1/4

0
P

( |Sn|
Vn

≥ x + ε
(
2 logn

)(2−p)/(2p)
)

dx,

B2 = ε2p(b+1)/(2−p)
∑

n>A(ε)

(
logn

)b

n

∫n1/2

n1/4
P

( |Sn|
Vn

≥ x + ε
(
2 logn

)(2−p)/(2p)
)

dx,

B3 = ε2p(b+1)/(2−p)
∑

n>A(ε)

(
logn

)b

n

∫∞

n1/2
P

( |Sn|
Vn

≥ x + ε
(
2 logn

)(2−p)/(2p)
)

dx.

(2.17)

For B1, by (2.7), we have

B1 ≤ Cε2p(b+1)/(2−p)
∑

n>A(ε)

(
logn

)b

n

∫n1/4

0
e−(x+ε(2 logn)

(2−p)/(2p))2/4dx

≤ Cε2p(b+1)/(2−p)
∑

n>A(ε)

(
logn

)b

n

∫∞

0
e−(x+ε(2 logn)

(2−p)/(2p))2/4dx

= Cε2p(b+1)/(2−p)
∑

n>A(ε)

(
logn

)b

n

∫∞

ε(2 logn)(2−p)/(2p)
e−x

2/4dx

≤ Cε2p(b+1)/(2−p)
∫∞

A(ε)

(
logn

)b

t

∫∞

ε(2 log t)(2−p)/(2p)
e−x

2/4dxdt

≤ C

∫∞
√
2M

y(2p/(2−p))(b+1)−1
∫∞

y

e−x
2/4dxdy

= C

∫∞
√
2M

e−x
2/4

∫x

√
2M

y(2p/(2−p))(b+1)−1dydx

≤ C

∫∞
√
2M

x(2p/(2−p))(b+1)e−x
2/4dx −→ 0, as M −→ ∞.

(2.18)

For B2, using (2.7) again, we have

B2 ≤ ε2p(b+1)/(2−p)
∑

n>A(ε)

(
logn

)b

n

(
n1/2 − n1/4

)
P

( |Sn|
Vn

≥ n1/4 + ε
(
2 logn

)(2−p)/(2p)
)

≤ Cε2p(b+1)/(2−p)
∑

n>A(ε)

(
logn

)b

n

(
n1/2 − n1/4

)
e−(n

1/4+ε(2 logn)(2−p)/(2p))2/4
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≤ Cε2p(b+1)/(2−p)
∑

n>A(ε)

(
logn

)b

n

(
n1/2 − n1/4

)
e−

√
n/4e−ε

2(2 logn)(2−p)/p/4

≤ Cε2p(b+1)/(2−p)
∑

n>A(ε)

(
logn

)b

n
e−ε

2(2 logn)(2−p)/p/4

≤ Cε2p(b+1)/(2−p)
∫∞

A(ε)

(
logn

)b

t
e−ε

2(2 log t)(2−p)/p/4dt

(

by letting z =
ε2
(
2 log t

)(2−p)/p

4

)

≤ C

∫∞

(2M)(2−p)/p/4
z(p(b+1))/(2−p)−1e−zdz −→ 0, as M −→ ∞.

(2.19)

By noting that (2.10), it is easily seen that

B3 = 0. (2.20)

Combining (2.18), (2.19), and (2.20), the proposition is proved.

Our main result follows from the propositions using the triangle inequality.
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