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1. Introduction and Results

Let X,X1, . . . , Xn be a random sample of independent identically distributed observations.
Throughout we write

μ = EX, σ2 = E(X − μ)2, ω = E(X − μ)4 (1.1)

for the mean, variance, and the fourth central moment of X, and assume that n ≥ 2. Some of
our results hold only for bounded random variables. In such cases without loss of generality
we assume that 0 ≤ X ≤ 1. Note that 0 ≤ X ≤ 1 is a natural condition in audit applications.

The sample variance σ̂2 of the sample X1, . . . , Xn is defined as

σ̂2 =
1

n − 1

n
∑

i=1

(Xi −X)
2
, (1.2)
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where X is the sample mean, nX = X1 + · · · +Xn. We can rewrite (1.2) as

σ̂2 =
1

n(n − 1)

∑

i /= j, 1≤i,j≤n

(Xi − Xj)
2

2
. (1.3)

We are interested in deviations of the statistic σ̂2 from its mean σ2 = Eσ̂2, that is, in
bounds for the tail probabilities of the statistic T = σ2 − σ̂2,

P{T ≥ t} = P

{

σ̂2 ≤ σ2 − t
}

, 0 ≤ t ≤ σ2, (1.4)

P{T ≤ −t} = P

{

σ̂2 ≥ σ2 + t
}

, t ≥ 0. (1.5)

The paper is organized as follows. In the introduction we give a description of bounds,
some comments, and references. In Section 2 we obtain sharp upper bounds for the fourth
moment. In Section 3 we give proofs of all facts and results from the introduction.

If 0 ≤ X ≤ 1, then the range of interest in (1.5) is 0 ≤ t ≤ γ2, where

γ2 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
4

− σ2 +
1

4(n − 1)
, if n is even,

1
4

− σ2 +
1

4n
, if n is odd.

(1.6)

The restriction 0 ≤ t ≤ σ2 on the range of t in (1.4) (resp., 0 ≤ t ≤ γ2 in (1.5) in cases where the
condition 0 ≤ X ≤ 1 is fulfilled) is natural. Indeed, P{T ≥ t} = 0 for t > σ2, due to the obvious
inequality σ̂2 ≥ 0. Furthermore, in the case of 0 ≤ X ≤ 1 we have P{T ≤ −t} = 0 for t > γ2 since
σ̂2 ≤ γ2 + σ2 (see Proposition 2.3 for a proof of the latter inequality).

The asymptotic (as n → ∞) properties of T (see Section 3 for proofs of (1.7) and (1.8))
can be used to test the quality of bounds for tail probabilities. Under the condition EX4 < ∞
the statistic T = σ2 − σ̂2 is asymptotically normal provided that X is not a Bernoulli random
variable symmetric around its mean. Namely, if ω > σ4, then

lim
n→∞

P

{√
nT ≥ y

√

ω − σ4
}

= 1 −Φ
(

y
)

, y ∈ R. (1.7)

If ω = σ4 (which happens if and only if X is a Bernoulli random variable symmetric around
its mean), then asymptotically T has χ2 type distribution, that is,

lim
n→∞

P

{

nT ≥ yσ2
}

= P

{

η2 − 1 ≥ y
}

, y ∈ R, (1.8)

where η is a standard normal random variable, and Φ(y) = P{η ≤ y} is the standard normal
distribution function.
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Let us recall already known bounds for the tail probabilities of the sample variance
(see (1.19)–(1.21)). We need notation related to certain functions coming back to Hoeffding
[1]. Let 0 < p ≤ 1 and q = 1 − p. Write

H
(

x; p
)

=
(

1 +
qx

p

)−qx−p
(1 − x)qx−q, 0 ≤ x ≤ 1. (1.9)

For x ≤ 0 we define H(x; p) = 1. For x > 1 we set H(x; p) = 0. Note that our notation for
the function H is slightly different from the traditional one. Let λ ≥ 0. Introduce as well the
function

Π(x;λ) = ex
(

1 +
x

λ

)−x−λ
for x ≥ 0, (1.10)

and Π(x;λ) = 1 for x ≤ 0. One can check that

H
(

x; p
) ≤ Π

(

x;
p

q

)

. (1.11)

All our bounds are expressed in terms of the function H. Using (1.11), it is easy to replace
them by bounds expressed in terms of the function Π, and we omit related formulations.

Let 0 ≤ p < 1 and σ2 ≥ 0. Assume that

p =
σ2

1 + σ2
, q =

1
1 + σ2

, p + q = 1. (1.12)

Let ε be a Bernoulli random variable such that P{ε = −σ2} = q and P{ε = 1} = p. Then Eε = 0
and Eε2 = σ2. The function H is related to the generating function (the Laplace transform) of
binomial distributions since

H
(

x; p
)

= inf
h>0

exp{−hx}E exp{hε}, (1.13)

Hn(x; p
)

= inf
h>0

exp{−hnx}E exp{h(ε1 + · · · + εn)}, (1.14)

where ε1, . . . , εn are independent copies of ε. Note that (1.14) is an obvious corollary of (1.13).
We omit elementary calculations leading to (1.13). In a similar way

Π(x;λ) = inf
h>0

exp{−hx}E exp
{

h
(

η − λ
)}

, (1.15)

where η is a Poisson random variable with parameter λ.
The functions H and Π satisfy a kind of the Central Limit Theorem. Namely, for given

0 < p < 1 and y ≥ 0 we have

lim
n→∞

Hn

(

yn−1/2

√

p

q
; p

)

= lim
n→∞

Πn
(

yn−1/2
√

λ;λ
)

= exp

{

−y
2

2

}

(1.16)
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(we omit elementary calculations leading to (1.16)). Furthermore, we have [1]

H

(

y

√

p

q
; p

)

≤ exp

{

−y
2

2

}

,
1
2
≤ p < 1, y ≥ 0, (1.17)

and we also have [2]

H

(

yp

q
; p
)

≤ exp

{

− py2

2q
(

y + 1
)

}

, 0 ≤ p ≤ 1
2
, y ≥ 0. (1.18)

Using the introduced notation, we can recall the known results (see [2, Lemma 3.2]).
Let k = [n/2] be the integer part of n/2. Assume that 0 ≤ X ≤ 1. If σ2 is known, then

P{T ≥ t} ≤ U0, U0
def= Hk

(

t

σ2
; 1 − 2σ2

)

. (1.19)

The right-hand side of (1.19) is an increasing function of σ2 ≤ 1/4 (see Section 3 for a short
proof of (1.19) as a corollary of Theorem 1.1). If σ2 is unknown but μ is known, then

P{T ≥ t} ≤ U1, U1
def= Hk

(

t

μ − μ2
; 1 − 2μ + 2μ2

)

. (1.20)

Using the obvious estimate σ2 ≤ μ(1−μ), the bound (1.20) is implied by (1.19). In cases where
both μ and σ2 are not known, we have

P{T ≥ t} ≤ U2, U2
def= Hk

(

4t;
1
2

)

, (1.21)

as it follows from (1.19) using the obvious bound σ2 ≤ 1/4.
Let us note that the known bounds (1.19)–(1.21) are the best possible in the framework

of an approach based on analysis of the variance, usage of exponential functions, and of an
inequality of Hoeffding (see (3.3)), which allows to reduce the problem to estimation of tail
probabilities for sums of independent random variables. Our improvement is due to careful
analysis of the fourth moment which appears to be quite complicated; see Section 2. Briefly
the results of this paper are the following: we prove a general bound involving μ, σ2, and the
fourth moment ω; this general bound implies all other bounds, in particular a new precise
bound involving μ and σ2; we provide as well bounds for lower tails P{T ≤ −t}; we compare
the bounds analytically, mostly as n is sufficiently large.

From the mathematical point of view the sample variance is one of the simplest
nonlinear statistics. Known bounds for tail probabilities are designed having in mind linear
statistics, possibly also for dependent observations. See a seminal paper of Hoeffding [1]
published in JASA. For further development see Talagrand [3], Pinelis [4, 5], Bentkus [6, 7],
Bentkus et al. [8, 9], and so forth. Our intention is to develop tools useful in the setting of
nonlinear statistics, using the sample variance as a test statistic.
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Theorem 1.1 extends and improves the known bounds (1.19)–(1.21). We can derive
(1.19)–(1.21) from this theorem since we can estimate the fourth moment ω via various
combinations of μ and σ2 using the boundedness assumption 0 ≤ X ≤ 1.

Theorem 1.1. Let k = [n/2] and ω0 ≥ 0.
If EX4 < ∞ and ω ≤ ω0, then

P{T ≥ t} ≤ U, U
def= Hk

(

t

σ2
; p
)

(1.22)

with

p =
σ4 +ω0

3σ4 +ω0
=

s2

1 + s2
, s2 =

σ4 +ω0

2σ4
. (1.23)

If 0 ≤ X ≤ 1 and ω ≤ ω0, then

P{T ≤ −t} ≤ L, L
def= Hk

(

2t
1 − 2σ2

; p
)

(1.24)

with

p =
2σ4 + 2ω0

1 − 4σ2 + 6σ4 + 2ω0
=

s2

1 + s2
, s2 =

2σ4 + 2ω0

(1 − 2σ2)2
. (1.25)

Both bounds U and L are increasing functions of p, ω0, and s2.

Remark 1.2. In order to derive upper confidence bounds we need only estimates of the upper
tail P{T ≥ t} (see [2]). To estimate the upper tail the condition EX4 < ∞ is sufficient. The
lower tail P{T ≤ −t} has a different type of behavior since to estimate it we indeed need the
assumption that X is a bounded random variable.

For 0 ≤ X ≤ 1 Theorem 1.1 implies the known bounds (1.19)–(1.21) for the upper tail of
T . It implies as well the bounds (1.26)–(1.29) for the lower tail. The lower tail has a bit more
complicated structure, (cf. (1.26)–(1.29) with their counterparts (1.19)–(1.21) for the upper
tail).

If σ2 is known, then

P{T ≤ −t} ≤ L0, L0
def= Hk

(

2t
1 − 2σ2

; 2σ2
)

. (1.26)

One can show (we omit details) that the bound L0 is not an increasing function of σ2. A bit
rougher inequality

P{T ≤ −t} ≤ L∗
0, L∗

0
def= Hk

(

2t;
2σ2

1 + 2σ2

)

(1.27)



6 Journal of Inequalities and Applications

0 0.25 0.5 0.75 1

μ

0

0.25

σ
2

D1

D2

D3

Figure 1: D = D1 ∪D2 ∪D3.

has the monotonicity property since L∗
0 is an increasing function of σ2. If μ is known, then

using the obvious inequality σ2 ≤ μ(1 − μ), the bound (1.27) yields

P{T ≤ −t} ≤ L1, L1
def= Hk

(

2t;
2μ − 2μ2

1 + 2μ − 2μ2

)

. (1.28)

If we have no information about μ and σ2, then using σ2 ≤ 1/4, the bound (1.27) implies

P{T ≤ −t} ≤ L2, L2
def= Hk

(

2t;
1
3

)

. (1.29)

The bounds above do not cover the situation where both μ and σ2 are known. To
formulate a related result we need additional notation. In case of 0 ≤ X ≤ 1 we use the
notation

f1 =
(

1 − μ
)

(

1
2

− μ

)

, f3 = μ

(

μ − 1
2

)

. (1.30)

In view of the well-known upper bound σ2 ≤ μ(1 − μ) for the variance of 0 ≤ X ≤ 1, we can
partition the set

D =
{(

μ, σ2
)

∈ R
2 : 0 ≤ μ ≤ 1, 0 ≤ σ2 ≤ μ

(

1 − μ
)

}

(1.31)

of possible values of μ and σ2 into a union D = D1 ∪D2 ∪D3 of three subsets

D1 =
{(

μ, σ2
)

∈ D : σ2 ≤ f1

}

, D3 =
{(

μ, σ2
)

∈ D : σ2 ≤ f3

}

, (1.32)

and D2 = D \ (D1 ∪D3); see Figure 1.

Theorem 1.3. Write k = [n/2]. Assume that 0 ≤ X ≤ 1.
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The upper tail of the statistic T satisfies

P{T ≥ t} ≤ U3, U3
def= Hk

(

t

σ2
; pu

)

(1.33)

with pu = s2/(1 + s2), where

s2 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σ4 + (1 − μ)4

2(1 − μ)2σ2
, if

(

μ, σ2) ∈ D1,

a + bσ2 + 4σ4

8σ4
, if

(

μ, σ2) ∈ D2,

σ4 + μ4

2μ2σ2
, if

(

μ, σ2) ∈ D3,

(1.34)

and where one can write

a = μ
(

1 − μ
)

(2μ − 1)2, b = 8μ2 − 8μ + 3. (1.35)

The lower tail of T satisfies

P{T ≤ −t} ≤ L3, L3
def= Hk

(

2t
1 − 2σ2

; pl
)

(1.36)

with pl = s2/(c2 + s2), where c = (1 − 2σ2)/(2σ2), and s2 is defined by (1.34).

The bounds above are obtained using the classical transform G 
→ HG,

(HG)(x) = inf
h<x

E exp{h(Y − x)} (1.37)

of survival functions G(x) = P{Y ≥ x} (cf. definitions (1.13) and (1.14) of the related
Hoeffding functions). The bounds expressed in terms of Hoeffding functions have a simple
analytical structure and are easily numerically computable.

All our upper and lower bounds satisfy a kind of the Central Limit Theorem. Namely,
if we consider an upper bound, say U = U(t) (resp., a lower bound L = L(t)) as a function of
t, then there exist limits

lim
n→∞

U

(

t√
n

)

= exp
{

−ct2
}

, lim
n→∞

L

(

t√
n

)

= exp
{

−dt2
}

(1.38)

with some positive c and d. The values of c and d can be used to compare the bounds—
the larger these constants, the better the bound. To prove (1.38) it suffices to note that with
k = [n/2]

lim
n→∞

Hk

(

x√
n

; p
)

= exp

{

−qx
2

4p

}

. (1.39)
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The Central Limit Theorem in the form of (1.7) restricts the ranges of possible values of c and
d. Namely, using (1.7) it is easy to see that c and d have to satisfy

c, d ≤ a
def=

1
2
(

ω − σ4
) . (1.40)

We provide the values of these constants for all our bounds and give the numerical
values of them in the following two cases.

(i) X is a random variable uniformly distributed in the interval [0, 1/2]. The moments
of this random variable satisfy

μ =
1
4
, σ2 =

1
48

,
(

μ, σ2
)

∈ D1, ω =
1

1280
, a = 1440. (1.41)

For μ, σ2, ω defined by (1.41), the constants c and d we give as c1, d1.

(ii) X is uniformly distributed in [0, 1], and in this case

μ =
1
2
, σ2 =

1
12

,
(

μ, σ2
)

∈ D2, ω =
1

80
, a = 90. (1.42)

For the constants c and d with μ, σ2, ω defined by (1.42) we give as c2, d2.
We have

U2: c = 4, c1 = 4, c2 = 4,

U1: c =
1

(

2μ − 2μ2
)(

1 − 2μ + 2μ2
) , c1 = 4.26 . . . , c2 = 4,

U0: c =
1

2σ2 − 4σ4
, c1 = 25.04 . . . , c2 = 7.2,

U3: c =
1

4σ4s2
, c1 = 42.60 . . . , c2 = 18, (1.43)



Journal of Inequalities and Applications 9

U: c =
1

2σ4 + 2ω0
, c1 = 411.42 . . . , c2 = 25.71 . . . , (1.44)

L2: d = 2, d1 = 2, d2 = 2,

L1: d =
1

2μ − 2μ2
, d1 = 2.66 . . . , d2 = 2,

L∗
0: d =

1
2σ2

, d1 = 24, d2 = 6,

L0: d =
1

2σ2 − 4σ4
, d1 = 25.04 . . . , d2 = 7.2,

L3: d =
1

4σ4s2
, d1 = 42.60 . . . , d2 = 18,

(1.45)

L: d =
1

2σ4 + 2ω0
, d1 = 411.42 . . . , d2 = 25.71 . . . , (1.46)

while calculating the constants in (1.44) and (1.46) we choose ω0 = ω. The quantity s2 in
(1.43) and (1.45) is defined by (1.34).

Conclusions

Our new bounds provide a substantial improvement of the known bounds. However,
from the asymptotic point of view these bounds seem to be still rather crude. To improve
the bounds further one needs new methods and approaches. Some preliminary computer
simulations show that in applications where n is finite and random variables have small
means and variances (like in auditing, where a typical value of n is 60), the asymptotic
behavior is not related much to the behavior for small n. Therefore bounds specially designed
to cover the case of finite n have to be developed.

2. Sharp Upper Bounds for the Fourth Moment

Recall that we consider bounded random variables such that 0 ≤ X ≤ 1, and that we write
μ = EX and σ2 = E(X − μ)2. In Lemma 2.1 we provide an optimal upper bound for the
fourth moment of X − λ given a shift λ ∈ R, a mean μ, and a variance σ2. The maximizers of
the fourth moment are either Bernoulli or trinomial random variables. It turns out that their
distributions, say ν, are of the following three types (i)–(iii):

(i) a two point distribution such that

ν({d}) = r, ν({1}) = p, d = μ − σ2

1 − μ
, (2.1)

r =
(1 − μ)2

(1 − μ)2 + σ2
, p =

σ2

(1 − μ)2 + σ2
; (2.2)
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(ii) a family of three point distributions depending on 1/4 < λ < 3/4 such that

ν({0}) = q, ν({d}) = r, ν({1}) = p, d ≡ dλ = 2λ − 1
2
, (2.3)

q =
σ2 − f1

dλ
, r =

μ
(

1 − μ
) − σ2

dλ(1 − dλ)
, p =

σ2 − f3

1 − dλ
, (2.4)

where we write

f1 =
(

1 − μ
)(

μ − dλ

)

, f3 = μ
(

dλ − μ
)

; (2.5)

notice that (2.4) supplies a three-point probability distribution only in cases where
the inequalities σ2 > f1 and σ2 > f3 hold;

(iii) a two point distribution such that

ν({0}) = q, ν({d}) = r, d = μ +
σ2

μ
, (2.6)

q =
σ2

μ2 + σ2
, r =

μ2

μ2 + σ2
. (2.7)

Note that the point d in (2.2)–(2.7) satisfies 0 ≤ d ≤ 1 and that the probability
distribution ν has mean μ and variance σ2.

Introduce the set

D =
{(

μ, σ2
)

∈ R
2 : μ = EX, σ2 = E

(

X − μ
)2
, 0 ≤ X ≤ 1

}

. (2.8)

Using the well-known bound σ2 ≤ μ(1 − μ) valid for 0 ≤ X ≤ 1, it is easy to see that

D =
{(

μ, σ2
)

∈ R
2 : 0 ≤ μ ≤ 1, 0 ≤ σ2 ≤ μ

(

1 − μ
)

}

. (2.9)

Let λ ∈ R. We represent the set D ⊂ R
2 as a union D = Dλ

1 ∪Dλ
2 ∪Dλ

3 of three subsets setting

Dλ
1 =

{(

μ, σ2
)

∈ D : σ2 ≤ f1

}

, Dλ
3 =

{(

μ, σ2
)

∈ D : σ2 ≤ f3

}

, (2.10)

and Dλ
2 = D \ (Dλ

1 ∪ Dλ
3), where f1 and f3 are given in (2.5). Let us mention the following

properties of the regions.

(a) If λ ≤ 1/4, then D = Dλ
1 since for such λ obviously μ(1 − μ) ≤ f1 for all 0 ≤ μ ≤ 1.

The set Dλ
3 = {(0, 0)} is a one-point set. The set Dλ

2 is empty.

(b) If λ ≥ 3/4, then D = Dλ
3 since for such λ clearly μ(1 − μ) ≤ f3 for all 0 ≤ μ ≤ 1. The

set Dλ
1 = {(1, 0)} is a one-point set. The set Dλ

2 is empty.
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For 1/4 < λ < 3/4 all three regions Dλ
1 , Dλ

2 , Dλ
3 are nonempty sets. The sets Dλ

1 and Dλ
3

have only one common point (dλ, 0) ∈ D, that is, Dλ
1 ∩Dλ

3 = {(dλ, 0)}.

Lemma 2.1. Let λ ∈ R. Assume that a random variable X satisfies

0 ≤ X ≤ 1, EX = μ, E(X − μ)2 = σ2. (2.11)

Then

E(X − λ)4 ≤ E(X∗ − λ)4 (2.12)

with a random variable X∗ satisfying (2.11) and defined as follows:

(i) if (μ, σ2) ∈ Dλ
1 , then X∗ is a Bernoulli random variable with distribution (2.2);

(ii) if (μ, σ2) ∈ Dλ
2 , then X∗ is a trinomial random variable with distribution (2.4);

(iii) if (μ, σ2) ∈ Dλ
3 , then X∗ is a Bernoulli random variable with distribution (2.7).

Proof. Writing Y = X − λ, we have to prove that if

−λ ≤ Y ≤ 1 − λ, EY = μ − λ, E(Y − EY )2 = σ2, (2.13)

then

EY 4 ≤ EY 4
∗ (2.14)

with Y∗ = X∗ − λ. Henceforth we write a = d − λ, so that Y∗ can assume only the values −λ, a,
1 − λ with probabilities q, r, p defined in (2.2)–(2.7), respectively. The distribution 
 = L(Y∗)
is related to the distribution ν = L(X∗) as 
(B) = ν(B + λ) for all B ⊂ R.

Formally in our proof we do not need the description (2.17) of measures 
 satisfying
(2.15). However, the description helps to understand the idea of the proof. Let a ∈ R and
σ2 ≥ 0. Assume that a signed measure 
 of subsets of R is such that the total variation measure

+ + 
− is a discrete measure concentrated in a three-point set {−λ, a, 1 − λ} and

∫

R


(dx) = 1,
∫

R

x
(dx) = μ − λ,

∫

R

(x − μ + λ)2
(dx) = σ2. (2.15)

Then 
 is a uniquely defined measure such that

q
def= 
({−λ}), r

def= 
({a}), p
def= 
({1 − λ}) (2.16)

satisfy

q =
σ2 +

(

a − μ + λ
)(

1 − μ
)

a + λ
, r =

μ
(

1 − μ
) − σ2

(a + λ)(1 − a − λ)
, p =

σ2 − (

a − μ + λ
)

μ

1 − a − λ
.

(2.17)
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We omit the elementary calculations leading to (2.17). The calculations are related to solving
systems of linear equations.

Let a, b, c ∈ R. Consider the polynomial

P(t) = (t − c)(b − t)(t − a)2 ≡ c0 + c1t + c2t
2 + c3t

3 − t4, t ∈ R. (2.18)

It is easy to check that

c3 = 0 ⇐⇒ b + c + 2a = 0. (2.19)

The proofs of (i)–(iii) differ only in technical details. In all cases we find a, b, and c
(depending on λ, μ and σ2) such that the polynomial P defined by (2.18) satisfies P(t) ≥ 0
for −λ ≤ t ≤ 1 − λ, and such that the coefficient c3 in (2.18) vanishes, c3 = 0. Using c3 = 0,
the inequality P(t) ≥ 0 is equivalent to t4 ≤ c0 + c1t + c2t

2, which obviously leads to EY 4 ≤
c0 + c1(μ − λ) + c2σ

2. We note that the random variable Y∗ assumes the values from the set

{t : P(t) = 0} =
{

t : c0 + c1t + c2t
2 = t4

}

. (2.20)

Therefore we have

EY 4 ≤ c0 + c1
(

μ − λ
)

+ c2σ
2 = EY 4

∗ , (2.21)

which proves the lemma.

(i) Now (μ, σ2) ∈ Dλ
1 . We choose c = 1− λ and a = μ− λ−σ2/(1−μ). In order to ensure

c3 = 0 (cf. (2.19)) we have to take

b = −c − 2a ≡ −2μ − 1 + 3λ +
2σ2

1 − μ
. (2.22)

If b ≤ −λ, then P(t) ≥ 0 for all −λ ≤ t ≤ 1 − λ. The inequality b ≤ −λ is equivalent to

σ2 ≤ (

1 − μ
)

(

μ − 2λ +
1
2

)

≡ f1 ⇐⇒
(

μ, σ2
)

∈ Dλ
1 . (2.23)

To complete the proof we note that the random variable Y∗ = X∗ − λ with X∗
defined by (2.2) assumes its values in the set {a, 1 − λ} ⊂ {t : P(t) = 0}. To find
the distribution of Y∗ we use (2.17). Setting a = μ−λ−σ2/(1−μ) in (2.17) we obtain
q = 0 and r, p as in (2.2).

(ii) Now (μ, σ2) ∈ Dλ
2 or, equivalently σ2 > f1 and σ2 > f3. Moreover, we can assume

that 1/4 < λ < 3/4 since only for such λ the region Dλ
2 is nonempty. We choose

c = 1 − λ and b = −λ. Then P(t) ≥ 0 for all −λ ≤ t ≤ 1 − λ. In order to ensure c3 = 0
(cf. (2.19)) we have to take

a = −b + c

2
≡ λ − 1

2
. (2.24)
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By our construction {t : P(t) = 0} = {−λ, a, 1 − λ}. To find a distribution of Y∗
supported by the set {−λ, a, 1 − λ} we use (2.17). It follows that X∗ = Y∗ + λ has the
distribution defined in (2.4).

(iii) We choose c = −λ and a = μ−λ+σ2/μ. In order to ensure c3 = 0 (cf. (2.19)) we have
to take

b = −c − 2a ≡ 3λ − 2μ − 2σ2

μ
. (2.25)

If b ≥ 1 − λ, then P(t) ≥ 0 for all −λ ≤ t ≤ 1 − λ. The inequality b ≥ 1 − λ is equivalent
to

σ2 ≤ μ

(

2λ − μ − 1
2

)

≡ f3 ⇐⇒
(

μ, σ2
)

∈ Dλ
3 . (2.26)

To conclude the proof we notice that the random variable Y∗ = X∗ − λ with X∗ given by (2.7)
assumes values from the set {−λ, a} ⊂ {t : P(t) = 0}.

To prove Theorems 1.1 and 1.3 we apply Lemma 2.1 with λ = μ. We provide the bounds
of interest as Corollary 2.2. To prove the corollary it suffices to plug λ = μ in Lemma 2.1
and, using (2.2)–(2.7), to calculate E(X∗ − μ)4 explicitly. We omit related elementary however
cumbersome calculations. The regions D1, D2, and D3 are defined in (1.32).

Corollary 2.2. Let a random variable 0 ≤ X ≤ 1 have mean μ and variance σ2. Then

E(X − μ)4 ≤

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

σ6(1 − μ)−2 − σ4 + σ2(1 − μ)2, if
(

μ, σ2) ∈ D1,

μ
(

1 − μ
)

(

μ − 1
2

)2

+ σ2
(

2μ2 − 2μ +
3
4

)

, if
(

μ, σ2) ∈ D2,

σ6μ−2 − σ4 + σ2μ2, if
(

μ, σ2) ∈ D3.

(2.27)

Proposition 2.3. Let 0 ≤ X ≤ 1. Then, with probability 1, the sample variance satisfies σ̂2 ≤ γ2 + σ2

with γ2 given by (1.6).

Proof. Using the representation (1.3) of the sample variance as an U-statistic, it suffices to
show that the function f : Rn → R,

f(x) =
∑

i /= k, 1≤i,k≤n
(xi − xk)

2, x = (x1, . . . , xn) ∈ R
n, (2.28)

in the domain

D = {x ∈ R
n : 0 ≤ x1 ≤ 1, . . . , 0 ≤ xn ≤ 1} (2.29)

satisfies f ≤ 2n(n− 1)(γ2 + σ2). The function f is convex. To see this, it suffices to check that f
restricted to straight lines is convex. Any straight line can be represented as L = {x+th : t ∈ R}
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with some x, h ∈ R
n. The convexity of f on L is equivalent to the convexity of the function

g(t) def= f(x + th) of the real variable t ∈ R. It is clear that the second derivative g ′′(t) = 2f(h)
is nonnegative since f ≥ 0. Thus both g and f are convex.

Since both f and D are convex, the function f attains its maximal value on the
boundary of D. Moreover, the maximal value of f is attained on the set of extremal points
of D. In our case the set of the extremal points is just the set of vertexes of the cube D.
In other words, the maximal value of f is attained when each of x1, . . . , xn is either 0 or 1.
Since f is a symmetric function, we can assume that the maximal value of f is attained when
x1 = · · · = xm = 1 and xm+1 = · · · = xn = 0 with some m = 0, . . . , n. Using (2.28), the
corresponding value of f is 2m(n − m). Maximizing with respect to m we get f ≤ n2/2, if
n is even, and f ≤ (n2 − 1)/2, if n is odd, which we can rewrite as the desired inequality
f ≤ 2n(n − 1) (γ2 + σ2).

3. Proofs

We use the following observation which in the case of an exponential function comes back
to Hoeffding [1, Section 5]. Assume that we can represent a random variable, say T , as a
weighted mixture of other random variables, say T1, . . . , Tm, so that

T = α1T1 + · · · + αmTm, α1, . . . , αm ≥ 0, α1 + · · · + αm = 1, (3.1)

where αs are nonrandom numbers. Let f be a convex function. Then, using Jensen’s
inequality f(T) ≤ α1f(T1) + · · · + αmf(Tm), we obtain

Ef(T) ≤ α1Ef(T1) + · · · + αmEf(Tm). (3.2)

Moreover, if random variables T1, . . . , Tm are identically distributed, then

Ef(T) ≤ Ef(T1). (3.3)

One can specialize (3.3) for U-statistics of the second order. Let u(x, y) = u(y, x) be a
symmetric function of its arguments. For an i.i.d. sample X1, . . . , Xn consider the U-statistic

U =
1

n(n − 1)

∑

i /= k, 1≤i,k≤n
u(Xi,Xk). (3.4)

Write

V =
1
k
(u(X1, X2) + u(X3, X4) + · · · + u(X2k−1, X2k)), k =

[n

2

]

. (3.5)

Then (3.3) yields

Ef(U) ≤ Ef(V ) (3.6)
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for any convex function f . To see that (3.6) holds, let π = (π(1), . . . , π(n)) be a permutation
of 1, . . . , n. Define V (π) as (3.5) replacing the sample X1, . . . , Xn by its permutation
Xπ(1), . . . , Xπ(n). Then (see [1, Section 5])

U =
1
n!

∑

π

V (π), (3.7)

which means that U allows a representation of type (3.1) with m = n! and all V (π) identically
distributed, due to our symmetry and i.i.d. assumptions. Thus, (3.3) implies (3.6).

Using (1.3) we can write

T =
1

n(n − 1)

∑

i /= k, 1≤i,j≤n
u
(

Xi,Xj

)

(3.8)

with u(x, y) = σ2 − (x − y)2/2. By an application of (3.6) we derive

Ef(T) ≤ Ef

(

Zk

k

)

, Ef(−T) ≤ Ef

(

−Zk

k

)

, k =
[n

2

]

(3.9)

for any convex function f , where Zk = Y1 + · · · + Yk is a sum of i.i.d. random variables such
that

Y1
D= σ2 − (X1 −X2)2

2
. (3.10)

Consider the following three families of functions depending on parameters t, h ∈ R:

f
(

y
)

=
(y − h)+
(t − h)

, t ∈ R, h < t, (3.11)

f
(

y
)

=
(y − h)2

+

(t − h)2
, t ∈ R, h < t, (3.12)

f
(

y
)

= exp
{

h
(

y − t
)}

, t ∈ R, h > 0. (3.13)

Any of functions f given by (3.11) dominates the indicator function y 
→ I{y ∈ [t,∞)} of the
interval [t,∞). Therefore P{T ≥ t} ≤ Ef(T). Combining this inequality with (3.9), we get

P{T ≥ t} ≤ inf
h
E f

(

Zk

k

)

, P{T ≤ −t} ≤ inf
h
Ef

(

−Zk

k

)

(3.14)

with Zk being a sum of k i.i.d. random variables specified in (3.10). Depending on the choice
of the family of functions f given by (3.11), the inf in (3.14) is taken over h < t or h > 0,
respectively.
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Proposition 3.1. One has

E(X1 −X2)
4 = 2ω + 6σ4. (3.15)

If 0 ≤ X ≤ 1, then ω = E(X − μ)4 ≤ σ2 − 3σ4.

Proof. Let us prove (3.15). Using the i.i.d. assumption, we have

E(X1 −X2)
4 = E

(

(X1 − μ) + (μ −X2)
)4

= 2E(X − μ)4 − 8E
(

X1 − μ
)

(X2 − μ)3 + 6E(X1 − μ)2(X2 − μ)2

= 2ω + 6σ4.

(3.16)

Let us prove that ω ≤ σ2 − 3σ4. If 0 ≤ X ≤ 1, then (X1 −X2)
2 ≤ 1. Using (3.15) we have

2ω + 6σ4 = E(X1 −X2)
4 ≤ E(X1 −X2)

2 = 2σ2, (3.17)

which yields the desired bound for ω.

Proposition 3.2. Let Y be a bounded random variable such that a ≤ Y ≤ b with some nonrandom
a, b ∈ R. Then for any convex function g : [a, b] → R one has

Eg(Y ) ≤ Eg(ε), (3.18)

where ε is a Bernoulli random variable such that EY = Eε and P{ε = a} + P{ε = b} = 1.
If Y ≤ b for some b > 0, and EY = 0, EY 2 ≤ r2, then (3.18) holds with

g
(

y
)

=
(

y − h
)2
+, h ∈ R, g

(

y
)

= exp
{

hy
}

, h ≥ 0, (3.19)

and a Bernoulli random variable ε such that Eε = 0, var ε = r2,

pr
def= P{ε = b} =

r2

b2 + r2
, qr

def= P

{

ε = −r
2

b

}

=
b2

b2 + r2
, (3.20)

pr + qr = 1.

Proof. See [2, Lemmas 4.3 and 4.4].

Proof of Theorem 1.1. The proof is based on a combination of Hoeffding’s observation (3.6)
using the representation (3.8) of T as a U-statistic, of Chebyshev’s inequality involving
exponential functions, and of Proposition 3.2. Let us provide more details. We have to prove
(1.22) and (1.24).
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Let us prove (1.22). We apply (3.14) with the family (3.13) of exponential functions f .
We get

P{T ≥ t} ≤ inf
h>0

exp{−ht}E exp
{

hZk

k

}

. (3.21)

By (3.10), the sum Zk = Y1 + · · · + Yk is a sum of k copies of a random variable, say Y , such
that

Y = σ2 − (X1 −X2)2

2
. (3.22)

We note that

Y ≤ σ2, EY = 0, EY 2 =
ω + σ4

2
≤ ω0 + σ4

2
. (3.23)

Indeed, the first two relations in (3.23) are obvious; the third one is implied by ω ≤ ω0,

EY 2 =
E(X1 −X2)4

4
− σ4, (3.24)

and E(X1 −X2)
4 = 2ω + 6σ4; see Proposition 3.1.

Let M stand for the class of random variables Y satisfying (3.23). Taking into account
(3.21), to prove (1.22) it suffices to check that

J
def= inf

h>0
exp{−ht} sup

Y1,...,Yk∈M
E exp

{

hZk

k

}

= Hk

(

t

σ2
; p
)

, (3.25)

where Zk is a sum of k independent copies Y1, . . . , Yk of Y . It is clear that the left-hand side of
(3.25) is an increasing function of ω0. To prove (3.25), we apply Proposition 3.2. Conditioning
k times on all random variables except one, we can replace all random variables Y1, . . . , Yk by
Bernoulli ones. To find the distribution of the Bernoulli random variables we use (3.23). We
get

sup
Y∈M

E exp
{

hZk

k

}

= E exp
{

hSk

k

}

, (3.26)

where Sk = ε1 + · · · + εk is a sum of k independent copies of a Bernoulli random variable, say
ε, such that Eε = 0 and P{ε = σ2} = p with p as in (1.23), that is, p = (σ4 + ω0)/(3σ4 + ω0).
Note that in (3.26) we have the equality since ε ∈ M.
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Using (3.26) we have

J = inf
h>0

exp{−ht}E exp
{

hSk

k

}

=
(

inf
h>0

exp
{

−ht
k

}

E exp
{

hε

k

})k

=
(

inf
h>0

exp
{

− ht

σ2

}

E exp
{

hε

σ2

})k

= Hk

(

t

σ2
; p
)

.

(3.27)

To see that the third equality in (3.27) holds, it suffices to change the variable h by kh/σ2. The
fourth equality holds by definition (1.13) of the Hoeffding function since ε/σ2 is a Bernoulli
random variable with mean zero and such that P{ε/σ2 = 1} = p. The relation (3.27) proves
(3.25) and (1.22).

A proof of (1.24) repeats the proof of (1.22) replacing everywhere T and Y by −T and
−Y , respectively. The inequality Y ≤ σ2 in (3.23) has to be replaced by −Y ≤ 1/2 − σ2, which
holds due to our assumption 0 ≤ X ≤ 1. Respectively, the probability p now is given by
(1.25).

Proof of (1.19). The bound is an obvious corollary of Theorem 1.1 since by Proposition 3.1 we
have ω ≤ σ2 − 3σ4, and therefore we can choose ω0 = σ2 − 3σ4. Setting this value of ω0 into
(1.22), we obtain (1.19).

Proof of (1.26) and (1.27). To prove (1.26), we set ω0 = σ2 − 3σ4 in (1.24). Such choice of ω0 is
justified in the proof of (1.19).

To prove (1.27) we use (1.26). We have to prove that

H

(

2t
1 − 2σ2

; 2σ2
)

≤ H

(

2t;
2σ2

1 + 2σ2

)

, (3.28)

and that the right-hand side of (3.28) is an increasing function of σ2. By the definition of the
Hoeffding function we have

H

(

2t
1 − 2σ2

; 2σ2
)

= inf
h>0

exp
{

− 2ht
1 − 2σ2

}

E exp{hδ}

= inf
h>0

exp{−2ht}E exp
{

h
(

1 − 2σ2
)

δ
}

,

(3.29)

where δ is a Bernoulli random variable such that P{δ = 1} = 2σ2 and Eδ = 0. It is easy
to check that δ assumes as well the value −2σ2/(1 − 2σ2) with probability 1 − 2σ2. Hence
−2σ2/(1 − 2σ2) ≤ δ ≤ 1. Therefore −2σ2 ≤ (1 − 2σ2)δ ≤ 1 − 2σ2, and we can write

E exp
{

h
(

1 − 2σ2
)

δ
}

≤ sup
W∈M

E exp{hW}, (3.30)
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where M is the class of random variables W such that EW = 0 and −2σ2 ≤ W ≤ 1. Combining
(3.29) and (3.30) we obtain

H

(

2t
1 − 2σ2

; 2σ2
)

≤ inf
h>0

exp{−2ht} sup
W∈M

E exp{hW}. (3.31)

The definition of the latter sup in (3.31) shows that the right-hand side of (3.31) is an
increasing function of σ2. To conclude the proof of (1.27) we have to check that the right-
hand sides of (3.28) and (3.31) are equal. Using (3.18) of Proposition 3.2, we get E exp{hW} ≤
E exp{hε}, where ε is a mean zero Bernoulli random variable assuming the values −2σ2 and
1 with positive probabilities such that P{ε = 1} = 2σ2/(1 + 2σ2). Since ε ∈ M, we have

sup
W∈M

E exp{hW} = E exp{hε}. (3.32)

Using the definition of the Hoeffding function we see that the right-hand sides of (3.28) and
(3.31) are equal.

Proof of Theorem 1.3. We use Theorem 1.1. In bounds of this theorem we substitute the value
of ω0 being the right-hand side of (2.27), where a bound of type ω ≤ ω0 is given. We omit
related elementary analytical manipulations.

Proof of the Asymptotic Relations (1.7) and (1.8). To describe the limiting behavior of T we use
Hoeffding’s decomposition. We can write

n(n − 1)
2σ2

T = (n − 1)
∑

1≤i≤n
u1(Xi) +

∑

1≤i<k≤n
u2(Xi,Xk) (3.33)

with kernels u1 and u2 such that

u1(x) =
σ2 − (x − μ)2

2σ2
, u2(x) =

(

x − μ
)(

y − μ
)

σ2
. (3.34)

To derive (3.33), use the representation of T as a U-statistic (3.8). The kernel functions u1 and
u2 are degenerated, that is, Eu1(X) = 0 and Eu2(X, x) = 0 for all x ∈ R. Therefore

var
(

n(n − 1)
2σ2

T

)

= n(n − 1)2 varu1 +
n(n − 1)

2
varu2 (3.35)

with

varu1 =
ω − σ4

4σ4
, varu2 = 1, ω = E(X − μ)4. (3.36)
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It follows that in cases where ω > σ4 the statistic T is asymptotically normal:

√
nT√

ω − σ4
−→ η, as n −→ ∞, (3.37)

where η is a standard normal random variable. It is easy to see that ω = σ4 if and only if
X is a Bernoulli random variable symmetric around its mean. In this special case we have
u1(X) ≡ 0, and (3.33) turns to

n(n − 1)T
σ2

D= (ε1 + · · · + εn)
2 − n, (3.38)

where ε1, . . . , εn are i.i.d. Rademacher random variables. It follows that

ω = σ4 =⇒ (n − 1)T
σ2

−→ η2 − 1, as n −→ ∞, (3.39)

which completes the proof of (1.7) and (1.8).
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