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Let D denote the open unit disk in the complex plane and let dA(z) denote the normalized area
measure on D. For α > −1 and Φ a twice differentiable, nonconstant, nondecreasing, nonnegative,
and convex function on [0,∞), the Bergman-Orlicz space LΦ

α is defined as follows LΦ
α = {f ∈

H(D) :
∫
D
Φ(log+|f(z)|)(1 − |z|2)αdA(z) < ∞}. Let ϕ be an analytic self-map of D. The composition

operator Cϕ induced by ϕ is defined by Cϕf = f ◦ ϕ for f analytic in D. We prove that the
composition operator Cϕ is compact on LΦ

α if and only if Cϕ is compact on A2
α, and Cϕ has closed

range on LΦ
α if and only if Cϕ has closed range on A2

α.
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1. Introduction

Let D be the open unit disk in the complex plane and let ϕ be an analytic self-map of D. The
composition operator Cϕ induced by ϕ is defined by Cϕf = f ◦ ϕ for f analytic in D. The idea
of studying the general properties of composition operators originated from Nordgren [1].
As a sequence of Littlewood’s subordinate theorem, each ϕ induces a bounded composition
operator on the Hardy spaces Hp(D) for all p (0 < p < ∞) and the weighted Bergman spaces
A

p
α(D) for all p (0 < p < ∞) and for all α (−1 < α < ∞). Thus, boundedness of composition

operators on these spaces becomes very clear. Nextly, a natural problem is how to characterize
the compactness of composition operators on these spaces, which once was a central problem
for mathematicians who were interested in the theory of composition operators. The study of
compact composition operators was started by Schwartz, who obtained the first compactness
theorem in his thesis [2], showing that the integrability of (1 − |ϕ|)−1 over ∂D implied the
compactness of Cϕ on Hp. The work was continued by Shapiro and Taylor [3], who showed
that Cϕ was not compact on H2 whenever ϕ had a finite angular derivative at some point of
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∂D. Moreover, MacCluer and Shapiro [4] pointed out that nonexistence of the finite angular
derivatives of ϕ was a sufficient condition for the compactness of Cϕ on A

p
α but it failed on

Hp. So looking for an appropriate tool of characterizing the compactness of Cϕ on Hp was
difficult at that time. Fortunately, Shapiro [5] developed relations between the essential norm
ofCϕ onH2 and the Nevanlinna counting function of ϕ, and he obtained a nice essential norm
formula of Cϕ in 1987. As a result, he completely gave a characterization of the compactness
of Cϕ in terms of the function properties of ϕ.

Another solution to the compactness of Cϕ on H2 was done by the Aleksandrov
measures which was introduced by Cima and Matheson [6]. It is well known that the
harmonic function R((λ + ϕ(z))/(λ − ϕ(z))) can be expressed by the Possion integral

R
λ + ϕ(z)
λ − ϕ(z)

=
∫

∂D

P(z, ζ)dmλ(ζ) (1.1)

for each λ ∈ ∂D. Cima and Matheson applied σλ the singular part of mλ to give the following
expression:

∥∥Cϕ

∥∥2
e
= sup

λ∈∂D
‖σλ‖. (1.2)

They showed that Cϕ was compact on H2 if and only if all the measures mλ were absolutely
continuous.

The study of compactness of composition operators is also an important subject on
other analytic function spaces, and we have chosen two typical examples above, and for more
related materials one can consult [7, 8]. Another natural interesting subject is the composition
operator with closed range. Considering angular derivatives of ϕ, it is known that Cϕ is
compact on A2 if and only if ϕ fails to have finite angular derivatives on ∂D, in this case, Cϕ

does not have closed range since Cϕ is not a finite rank operator. And if ϕ has finite angular
derivatives on ∂D, then ϕ is necessarily a finite Blaschke product and hence one can easily
verify thatCϕ has closed range onA2. Zorboska has given a necessary and sufficient condition
for Cϕ with closed range on H2, and she also has done on A

p
α [9]. Luecking [10] considered

the same question on Dirichlet space after Zorboska’s work. Recently, Kumar and Partington
[11] have studied the weighted composition operators with closed range on Hardy spaces
and Bergman spaces.

This paper will study the compactness of composition operator on Bergman-Orlicz
space. We are mainly inspired by the following results.

(i) Liu et al. [12] showed that composition operator was bounded on Hardy-Orlicz
space. Lu and Cao [13] also showed that composition operator was bounded on
Bergman-Orlicz space.

(ii) A composition operator was compact on the Nevanlinna class N if and only if it
was compact on H2 [14].

(iii) If a composition operator was compact on Hp for some p > 0, then it was compact
on Hp for all p > 0 [3]. Moreover, paper [15] compared the compactness of
composition operators on Hardy-Orlicz spaces and on Hardy spaces. All these
results lead us to wonder whether there is a equivalence for the compactness of
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Cϕ on A2
α and on the Bergman-Orlicz space, and whether there is a equivalence for

the closed range of Cϕ on A2
α and on the Bergman-Orlicz space. In this paper, we

are going to give affirmative answers for the proceeding questions.

2. Preliminaries

Let H(D) denote the space of all analytic functions on D. Let dA(z) denote the normalized
area measure on D, that is, A(D) = 1. Let S denote the class of strongly convex functions
Φ : [0,+∞) → [0,+∞), which satisfies

(i) Φ(0) = Φ′(0) = 0, Φ(t)/t → ∞ as t → ∞,

(ii) Φ′′ exists on [0,+∞),

(iii) Φ(2t) ≤ CΦ(t) for some positive constant C and for all t > 0.

For Φ ∈ S and α > −1 the Bergman-Orlicz space LΦ
α is defined as follows:

LΦ
α =
{
f ∈ H(D) :

∥∥f
∥∥
Φ =
∫

D

Φ
(
log+
∣∣f(z)

∣∣)
(
1 − |z|2

)α
dA(z) < ∞

}
, (2.1)

where log+x = max{0, logx}. Although ‖ · ‖Φ does not define a norm in LΦ
α , it holds that

the d(f, g) = ‖f − g‖Φ defines a metric on LΦ
α , and makes LΦ

α into a complete metric space.
Obviously, the inequalities

log+x ≤ log(1 + x) ≤ 1 + log+x, x ≥ 0,

2log+x ≤ log
(
1 + x2

)
≤ 1 + 2log+x, x ≥ 0,

(2.2)

and the fact that Φ is nondecreasing convex function imply that

Φ
(
log+x

) ≤ Φ
(
log(1 + x)

) ≤ Φ
(
1 + log+x

)

≤ 1
2
Φ(2) +

1
2
Φ
(
2 log+x

)

≤ 1
2
Φ(2) +

1
2
CΦ
(
log+x

)
,

Φ
(
log+x

) ≤ Φ
(
2 log+x

) ≤ Φ
(
log
(
1 + x2

))

≤ Φ
(
1 + 2 log+(x)

)

≤ 1
2
Φ(2) +

1
2
Φ
(
4 log+x

)

≤ 1
2
Φ(2) +

1
2
CΦ
(
log+x

)
.

(2.3)
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Then f ∈ LΦ
α if and only if

∫

D

Φ
(
log
(
1 +
∣
∣f(z)

∣
∣))
(
1 − |z|2

)α
dA(z) < ∞ (2.4)

or if and only if

∫

D

Φ
(
log
(
1 +
∣
∣f(z)

∣
∣2
))(

1 − |z|2
)α

dA(z) < ∞. (2.5)

Throughout this paper, constants are denoted by C, they are positive and may differ
from one occurrence to the other. The notation a � b means that there is a positive constant
C such that a ≤ Cb. Moreover, if both a � b and b � a hold, we write a 
 b and say that a is
asymptotically equivalent to b.

In this section we will prove several auxiliary results which will be used in the proofs
of the main results in this paper.

Lemma 2.1. If f ∈ LΦ
α , then

∥∥f
∥∥
Φ 
 Φ

(
log
(
1 + f(0)|2

))
+
∫

D

fΦ(z)
(
1 − |z|2

)α
dA(z), (2.6)

where Δ is Laplacian and fΦ(z) = ΔΦ(log(1 + |f(z)|2)).

Proof. By the Green Theorem, if u, v ∈ C2(Ω), where Ω is a domain in the plane with smooth
boundary, then

∫

Ω
(uΔv − vΔu)dx dy =

∫

∂Ω

(
u
∂v

∂n
− v

∂u

∂n

)
ds. (2.7)

Let 0 < ε < r < 1, u(z) = log(r/|z|), v(z) = Φ(log(1 + |f(z)|2)), and Ω = {z ∈ D : ε < |z| < r}.
Since Δu(z) = 0, by (2.7) we have

∫

Ω
ΔΦ
(
log
(
1 +
∣∣f(z)

∣∣2
))

log
r

|z|dx dy + log
r

ε

∫

|z|=ε

∂

∂n
Φ
(
log
(
1 +
∣∣f(z)

∣∣2
))

ds

=
∫

|z|=r

Φ
(
log
(
1 +
∣∣f(z)

∣∣2
))

r
ds −

∫

|z|=ε

Φ
(
log
(
1 +
∣∣f(z)

∣∣2
))

ε
ds.

(2.8)

Since (∂/∂n)(Φ(log(1 + |f(z)|2))) is bounded near to 0, we get

lim
ε→ 0

log
r

ε

∫

|z|=ε

∂

∂n
Φ
(
log
(
1 +
∣∣f(z)

∣∣2
))

ds = 0. (2.9)
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Let ε → 0 in (2.8), we have

∫

|z|<r
ΔΦ
(
log
(
1 +
∣
∣f(z)

∣
∣2
))

log
r

|z|dx dy

=
∫2π

0
Φ
(
log
(
1 +
∣
∣
∣f
(
reiθ
)∣∣
∣
2
))

dθ − 2πΦ
(
log
(
1 +
∣
∣f(0)

∣
∣2
))

.

(2.10)

Integrating equality (2.10) with respect to r from 0 to 1, we obtain

∫1

0

∫

|z|<r
ΔΦ
(
log
(
1 +
∣
∣f(z)

∣
∣2
))

log
r

|z|
(
1−r2

)α
rdr dA(z)=

∥
∥f
∥
∥
Φ − 2π

α + 1
Φ
(
log
(
1 +
∣
∣f(0)

∣
∣2
))

.

(2.11)

Thus

∥∥f
∥∥
Φ =

2π
α + 1

Φ
(
log
(
1 +
∣∣f(0)

∣∣2
))

+
∫1

0

∫

|z|<r
ΔΦ
(
log
(
1 +
∣∣f(z)

∣∣2
))

log
r

|z|
(
1 − r2

)α
rdr dA(z)

=
2π
α + 1

Φ
(
log
(
1 +
∣∣f(0)

∣∣2
))

+
∫

D

ΔΦ
(
log
(
1 +
∣∣f(z)

∣∣2
))

dA(z)
∫1

|z|
log

r

|z|
(
1 − r2

)α
rdr.

(2.12)

Since
∫1
|z| log(r/|z|)(1 − r2)αrdr 
 (1 − z|2)2+α,

∥∥f
∥∥
Φ 
 2π

α + 1
Φ
(
log
(
1 +
∣∣f(0)

∣∣2
))

+
∫

D

ΔΦ
(
log
(
1 +
∣∣f(z)

∣∣2
))(

1 − |z|2
)α

dA(z)


 Φ
(
log
(
1 +
∣∣f(0)

∣∣2
))

+
∫

D

fΦ
(
1 − |z|2

)α
dA(z),

(2.13)

the proof is complete.

Let ϕ be an analytic self-map of D. The generalized Nevanlinna counting function of ϕ
is defined by

Nϕ,α+2(w) =
∑

z∈ϕ−1(w)

(
log

1
|z|
)α+2

. (2.14)
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Lemma 2.2 (see [9]). If ϕ is an analytic self-map of D and g is a nonnegative measurable function in
D, then

∫

D

g ◦ ϕ(z)∣∣ϕ′(z)
∣
∣2
(
log

1
|z|
)α+2

dA(z) =
∫

D

g(z)Nϕ,α+2(z)dA(z). (2.15)

Lemmas 2.1 and 2.2 (see [9]) can lead to the following corollary.

Corollary 2.3. Let ϕ be an analytic self-map of D and f ∈ H(D), then

∥
∥f ◦ ϕ∥∥ 
 Φ

(
1 + log

∣
∣f ◦ ϕ(0)∣∣2

)
+
∫

D

fΦ(w)Nα+2(w)dA(w). (2.16)

We will end this section with the following lemma, which illustrates that the counting
functional δz : f �→ f(z) is continuous on LΦ

α .

Lemma 2.4. Let f ∈ LΦ
α , then

∣∣f(z)
∣∣ ≤ exp

⎛

⎜
⎝Φ−1

⎛

⎜
⎝

C
∥∥f
∥∥
Φ

(
1 − |z|2

)α+2

⎞

⎟
⎠

⎞

⎟
⎠ ∀ z in D. (2.17)

Proof. By the subharmonicity of map z �→ log(1 + |f(z)|), we get

log
(
1 +
∣∣f(z)

∣∣) ≤ 1
Aα(D(z, (1 − |z|)/2))

∫

D(z,(1−|z|)/2)
log
(
1 +
∣∣f(z)

∣∣)
(
1 − z|2

)α
dA(z). (2.18)

Since Φ(log(1 + |f(z)|)) is convex and increasing, we have

Φ
(
log
(
1 +
∣∣f(z)

∣∣)) ≤ 1
Aα(D(z, (1 − |z|)/2))

∫

D(z,(1−|z|)/2)
Φ
(
log
(
1 +
∣∣f(z)

∣∣))dAα(z)

≤ C

(1 − |z|2)α+2
∫

D(z,(1−|z|)/2)
Φ
(
log
(
1 +
∣∣f(z)

∣∣))dAα(z)

≤ C

(1 − |z|2)α+2
∫

D

Φ
(
log
(
1 +
∣∣f(z)

∣∣))dAα(z)

≤ C
∥∥f
∥∥
Φ

(
1 − |z|2

)α+2 .

(2.19)
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Since Φ(log+x) ≤ Φ(log(1 + x)), we get

Φ
(
log+
∣∣f(z)

∣∣) ≤ C
∥
∥f
∥
∥
Φ

(
1 − |z|2

)α+2 , (2.20)

that is, log+|f(z)| ≤ Φ−1(C‖f‖Φ/(1 − |z|2)α+2). Thus |f(z)| ≤ exp(Φ−1(C‖f‖Φ/(1 − |z|2)α+2)).

3. Compactness

In this section, we are going to investigate the equivalence between compactness of
composition operator on the Bergman-Orlicz space LΦ

α and on the weighted Bergman space
A2

α. The following lemma characterizes the compactness of Cϕ on LΦ
α in terms of sequential

convergence, whose proof is similar to that in [7, Proposition 3.11].

Lemma 3.1. Let ϕ be an analytic self-map of D, bounded operator Cϕ is compact on LΦ
α if and only if

whenever {fn} is bounded in LΦ
α and fn → 0 uniformly on compact subsets of D, then ‖Cϕfn‖Φ → 0

as n → ∞.

In order to characterize the compactness of Cϕ, we need to introduce the notion of
Carleson measure. For |ξ| = 1 and δ > 0 we define Qδ(ξ) = {z ∈ D : |z − ξ| < δ}. A positive
Borel measure μ on D is called a Carleson measure if sup|ξ|=1μ(Qδ(ξ)) = O(δα+2). Moreover, if
μ satisfies the additional condition limδ→ 0μ(Qδ(ξ))/δα+2 = 0, μ is called a vanishing Carleson
measure (see [16] for the further information of Carleson measure). The following result for
the compactness of Cϕ on A2

α is useful in the proof of Theorem 3.3.

Lemma 3.2 (see [14, 17]). Let ϕ be an analytic self-map of D. Then the following statements are
equivalent:

(i)Cϕ is compact onA2
α, (ii)lim|z|→ 1(Nϕ,α+2(z)/(1 − |z|2)α+2) = 0, and (iii) the pull measure

μϕ is a vanshing Carleson measure on D.

Theorem 3.3. Let ϕ be an analytic self-map of D, then Cϕ is compact on A2
α if and only if Cϕ is

compact on LΦ
α .

Proof. First we assume that Cϕ is compact on A2
α. Choose a sequence {fn} that is bounded

by a positive constant M in LΦ
α and converges to zero uniformly on compact subsets of D.

By Lemma 3.1, it is enough to show that ‖fn ◦ ϕ‖Φ → 0 as n → ∞. Let ε > 0, we can find

0 < r < 1 such that Nϕ,α+2(z) < ε(1 − |z|2)α+2 for all |z| > r. Since fn → 0 uniformly on
compact subsets of D as n → ∞, so is f ′

n. Thus we can choose N > 0 such that |fn| < ε and
|f ′

n| < ε on rD, whenever n > N. Hence for such n we have

∥∥Cϕfn
∥∥
Φ ≤ Φ

(
log
(
1 +
∣∣fn ◦ ϕ(0)

∣∣2
))

+
∫

D

fΦ
n Nϕ,α+2dA(w). (3.1)
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As |fn ◦ ϕ(0)| → 0 as n → ∞ and Φ(log(1 + |fn ◦ ϕ(0)|2)) → 0 as n → ∞, we only need to
verify that

∫
D
fΦ
n Nϕ,α+2dA(w) → 0 as n → ∞. Now

∫

D

fΦ
n Nϕ,α+2dA(w) =

∫

rD

fΦ
n Nϕ,α+2dA(w) +

∫

D\rD
fΦ
n Nϕ,α+2dA(w) = I + II. (3.2)

We first prove that the first term in previous equality is bounded by a constant multiple of ε

I =
∫

rD

fΦ
n Nϕ,α+2dA(w)

=
∫

rD

[
Φ′′
(
log
(
1 +
∣
∣fn(w)

∣
∣2
))∣
∣fn(w)

∣
∣2 + Φ′

(
log
(
1 +
∣
∣fn(w)

∣
∣2
))]

×
∣∣fn(w)′

∣∣2

(
1 +
∣∣fn(w)

∣∣2
)2Nϕ,α+2(w)dA(w)

≤ [Φ′′(log(1 + ε)
)
ε + Φ′(log(1 + ε)

)]
ε

∫

rD

Nϕ,α+2(w)dA(w)

≤ [Φ′′(log(1 + ε)
)
ε + Φ′(log(1 + ε)

)]
ε.

(3.3)

Now, we show that the previous second term above is also bounded by a constant multiple
of ε

II =
∫

D\rD
fΦ
n Nϕ,α+2dA(w) ≤ εfΦ

n (w)
(
1 − |w|2

)α ≤ ε
∥∥∥fΦ

n

∥∥∥ ≤ Mε. (3.4)

Conversely, we assume that Cϕ is compact on LΦ
α . By Lemma 3.2, we need to verify

that μϕ is a vanishing Carleson measure. For 0 < δ < 1 and ξ ∈ ∂D we write a = (1 − δ)ξ

and ga(z) = (1 − |a|2)α+2/(1 − az)2α+4. Then |ga| ∈ L1(D, dAα). Put G(z) = Φ(|ga(z)|).G is well
defined, beacuse G is nondecreasing on range of |ga|. Since Φ−1 is concave, there is a constant
C > 0 such that Φ−1(t) ≤ Ct for enough big t. Thus we get G(z) ∈ L1(D, dAα). Set h(z) =
exp
∫2π
0 ((eit + z)/(eit − z))G(eit)dt. Since Φ(log+|h(z)|) = Φ(G(z)) = |ga(z)| ∈ L1(D, dAα), it

means that h ∈ LΦ
α . Let fa(z) = (1 − |a|)h(z). Then clearly fa → 0 uniformly on compact

subsets of D as |a| → 1. Moreover,

∥∥fa
∥∥
Φ =
∫

D

Φ
(
log+
∣∣fa(z)

∣∣)dAα(z) ≤
∫

D

Φ
(
log+|h(z)|)dAα(z)

=
∫

D

(
1 − |a|2

)α+2

|1 − az|2α+4
dAα(z) = 1.

(3.5)
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On the other hand, if |1 − zζ|/(1 − |a|) < γ for some fixed 0 < γ < 1/4, where ζ = a/|a|, that is,
z ∈ Qγδ(ζ), we have

1 − |a|2
|1 − az|2

=
1 − |a|2
(1 − |a|)2

(1 − |a|)2
|1 − az|2

=
1 − |a|2
(1 − |a|)2

⎛

⎜
⎝1 +

|a|
(
1 − zζ

)

1 − |a|

⎞

⎟
⎠

−2

≥ 1
(
1 + γ

)2
1 − |a|2
(1 − |a|)2

>
1 − |a|2

4(1 − |a|)2
≥ 1

4δ
.

(3.6)

Hence, for z ∈ Qγδ(ζ)we have

Φ−1
(

1 − |a|2
|1 − az|2

)α+2

≥ Φ−1
(

1
4δ

)α+2

. (3.7)

Thus, for z ∈ Qγδ(ζ)we obtain

Φ
(
log+
∣∣fa(z)

∣∣) = Φ
(
log+(1 − |a|)h(z)) = Φ

(
log+(1 − |a|) + log+|h(z)|)

≥ Φ
(
log+|h(z)|) = ∣∣ga(z)

∣∣ =

(
1 − |a|2
|1 − az|2

)α+2

≥
(

1
4δ

)α+2

.
(3.8)

So, for all ξ ∈ ∂D and 0 < δ < 1 we get

(
1
4δ

)α+2

μϕ

(
Qγδ(ξ)

) ≤
∫

Qγδ(ξ)
Φ
(
log+
∣∣fa(z)

∣∣)dμϕ ≤
∫

D

Φ
(
log+
∣∣fa(z)

∣∣)dμϕ

=
∫

D

Φ
(
log+
∣∣fa ◦ ϕ(z)

∣∣)dAα(z) =
∥∥Cϕfa

∥∥
Φ.

(3.9)

For the compactness of Cϕ, we know that ‖Cϕfa‖Φ → 0 as |a| → 1, which means that
limδ→ 1(μϕ(Qγδ(ξ))/δα+2) = 0 uniformly for ξ ∈ ∂D. This means that μϕ is a vanishing
Carleson measure. By Lemma 3.2, Cϕ is compact on A2

α.

For special case Φ(t) = tp(p > 1), the Bergman-Orlicz space LΦ
α is called the area-type

Nevanlinna class and we write Np
α.

Corollary 3.4. Let ϕ be an analytic self-map of D, then Cϕ is compact on A2
α if and only if Cϕ is

compact on Np
α.

Remark 3.5. Theorem 3.3 may be not true if Φ does not satisfy the given conditions in this
paper. For example, if Φ is a nonnegative function on R such that Φ → 0 as x → −∞, and
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Φ is nondecreasing but Φ(x) > 0 for some x /= 0. Then the compactness of Cϕ on the Bergman
space A2 (i.e., α = 0) is different from that on LΦ

α . Here LΦ
α is defined as follows:

LΦ
α =
{
f ∈ H(D) : ∃t > 0, s.t.

∫

D

Φ
(
log
∣
∣tf(z)

∣
∣)dA(z) < ∞

}
. (3.10)

If we take Φ(x) = 0 for x ≤ 1, and Φ(x) = ∞ for x > 1, then LΦ
α is H∞(D). We know that

Cϕ is compact on H∞(D) if and only if ‖ϕ‖∞ < 1 (consult [2]). But MacCluer and Shapiro
constructed an inner function ϕ in [4] such that Cϕ was compact on A2.

4. Closed Range

In this section we will develop a relatively tractable if and only if condition for the
composition operator on LΦ

α with closed range. Considering that any analytic automorphism
of D has the form ϕa(z) = c(z − a)/(1 − az), where |c| = 1 and a ∈ D. By [13], we have the
following lemma.

Lemma 4.1. If one of Cϕ, Cϕ◦ϕa , Cϕa◦ϕ has closed range on LΦ
α , so have the other two.

Now that LΦ
α,0 = {f ∈ LΦ

α : f(0) = 0} is a closed subspace of LΦ
α and dim(LΦ

α /L
Φ
α,0) = 1,

the following lemma is easily proved.

Lemma 4.2. Let ϕ be an analytic self-map of D, then Cϕ has closed range on LΦ
α if and only if Cϕ has

closed range on LΦ
α,0.

Recall that the pseudohyperbolic metric ρ(z,w), z,w ∈ D is given by

ρ(z,w) =
∣∣∣∣
w − z

1 −wz

∣∣∣∣. (4.1)

For z ∈ D and 0 < r < 1 we define D(z, r) = {w ∈ D : ρ(z,w) < r}. For ε > 0 we put
Ωε = {z ∈ D : (1 − |z|2)/(1 − |ϕ(z)|2) ≥ ε} and Gε = ϕ(Ωε). We say that Gε satisfies the
Φ-reverse Carleson measure condition if there exists a positive constant η such that

∫

Gε

Φ
(
1 + log

∣∣f(z)
∣∣2
)(

1 − |z|2
)α+2

dA(z) ≥ η

∫

D

Φ
(
1 + log

∣∣f(z)
∣∣2
)(

1 − |z|2
)α+2

dA(z),

(4.2)

where f is analytic in D and
∫
D
Φ(1 + log |f(z)|2)(1 − |z|2)α+2dA(z) < ∞.

Theorem 4.3. Let ϕ be an analytic self-map of D. Then Cϕ has closed range on LΦ
α if and only if there

exists ε > 0 such that Gε satisfies the Φ-reverse Carleson measure condition.
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Proof. We first assume that there exists ε > 0 such that Gε satisfies the Φ-reverse Carleson
measure condition. If f ∈ LΦ

α , then

∥
∥f ◦ ϕ∥∥Φ 
 Φ

(
log
(
1 +
∣
∣f ◦ ϕ(0)∣∣2

))
+
∫

D

(
f ◦ ϕ)Φ(z)

(
1 − |z|2

)α+2
dA(z)

≥ Φ
(
log
(
1 +
∣
∣f ◦ ϕ(0)∣∣2

))
+
∫

Ωε

(
f ◦ ϕ)Φ(z)

(
1 − |z|2

)α+2
dA(z)

≥ εα+2
(

Φ
(
log
(
1 +
∣
∣f ◦ ϕ(0)∣∣2

))
+
∫

Ωε

(
f ◦ ϕ)Φ(z)

(
1 − ∣∣ϕ(z)∣∣2

)α+2
dA(z)

)

= εα+2
∑

n

∫

Ωε∩Rn

(
f ◦ ϕ)Φ(z)

(
1 − ∣∣ϕ(z)∣∣2

)α+2
dA(z) + εα+2Φ

(
log
(
1 +
∣
∣f ◦ ϕ(0)∣∣2

))
,

(4.3)

whereZ is the zero point set of ϕ and {Rn} is a partition of D\Z into at most countably many
semiclosed polar rectangles such that ϕ is univalent on each Rn. Let Sn = ϕ(Rn ∩Ωε). Then by
the change of variables involving ϕ, the last line above becomes

εα+2
∑

n

∫

Gε

fΦ
(
1 − |w|2

)α+2
χSn(w)dA(z) + εα+2Φ

(
log
(
1 +
∣∣f ◦ ϕ(0)∣∣2

))

≥ εα+2
∫

Gε

fΦ
(
1 − |w|2

)α+2
dA(z) + εα+2Φ

(
log
(
1 +
∣∣f ◦ ϕ(0)∣∣2

))

≥ ηεα+2
∫

D

fΦ
(
1 − |w|2

)α+2
dA(z) + ηεα+2Φ

(
log
(
1 +
∣∣f ◦ ϕ(0)∣∣2

))
.

(4.4)

So we show that Cϕ has closed range on LΦ
α .

Conversely, by Lemma 4.2, we need to prove that Cϕ has closed range on LΦ
α,0. Suppose

that there does not exist ε > 0 such that Gε satisfies Φ-reverse Carleson measure condition.
We can choose a sequence {fn} in LΦ

α,0 such that
∫
D
Φ(1+ log |fn(z)|2)dAα+2(z) = 1 for all n and

yet
∫
Gn
fΦ(1 −w|2)α+2dA → 0 as n → ∞, where Gn = ϕ(Ωn) and Ωn = {z ∈ D : 1 − |ϕ(z)|2 ≤

n(1 − |z|2)}. Now

∥∥fn ◦ ϕ
∥∥
Φ 
 Φ

(
log
(
1 +
∣∣fn ◦ ϕ(0)

∣∣2
))

+
∫

D

(
fn ◦ ϕ

)Φ(z)dAα+2(z)

= Φ
(
log
(
1 +
∣∣fn ◦ ϕ(0)

∣∣2
))

+
∫

Ωn

(
fn ◦ ϕ

)Φ(z)dAα+2(z)

+
∫

D\Ωn

(
fn ◦ ϕ

)Φ(z)dAα+2(z).

(4.5)
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Since ϕ is an analytic self-map of D. The Nevanlinna counting function Nϕ,α+2 satisfies

Nϕ,α+2(z) = O

((
log

1
|z|
)α+2

)

(4.6)

as |z| → 1. Using (4.6) and decompositions of the disk into polar rectangles [8], one can find
a positive constant c1 such that

∫

Ωn

(
fn ◦ ϕ

)Φ
dAα+2(z) =

∫

Ωn

fΦ
n Nϕ,α+2dA(z) ≤ c1

∫

Gn

fΦ
n (z)

(
1 − |z|2

)α+2
dA(z) −→ 0 (4.7)

as n → ∞, and

∫

D\Ωn

(
fn ◦ ϕ

)Φ
dAα+2(z) ≤ 1

nα+2

∫

D\Ωn

(
fn ◦ ϕ

)Φ(1 − ∣∣ϕ(z)∣∣2
)α+2

dA(z)

≤ 1
nα+2

∫

D

fΦ
n Nϕ,α+2dA(z)

≤ 1
nα+2

∥∥fn
∥∥
Φ −→ 0

(4.8)

as n → ∞. Evidently, ‖fn ◦ ϕ‖Φ → 0 as n → ∞, though ‖fn‖Φ = 1 for all n. It follows that Cϕ

does not have closed range on LΦ
α .

We have offered a criterion for the composition operator with closed range on LΦ
α , but

it seems that it is difficult to check whether or notGε satisfies theΦ-reverse Carleson measure
condition.

Theorem 4.4. The composition operator Cϕ has closed range on LΦ
α if and only if there are positive

constants ε, c, and r such that Aα(Gε ∩D(z, r)) ≥ c|D(z, r)|α+2 for all z ∈ D.

Proof. We first assume that Cϕ has closed range on LΦ
α . Then there is a constant ε > 0 such

that Gε satisfies the Φ-reverse Carleson measure condition. Thus, applying the proceeding
constructed function h(z) to the Φ-reverse Carleson condition gives

∫

Gε

(
1 − |a|2
|1 − az|2

)α+2

dAα(z) ≥ η

∫

D

(
1 − |a|2
|1 − az|2

)α+2

dAα(z) = η. (4.9)

Since
∫
D
(1 − |z|2)αdA(z) < ∞, it allows to choose a fixed constant r > 0 such that

∫

D\D(b,r)

(
1 − |z|2

)α
dA(z) ≤ 1

2C

∫

D

(
1 − |z|2

)α
dA(z). (4.10)



Journal of Inequalities and Applications 13

Changing w = (b − a + (1 − ab)z)/(1 − ba + (b − a)z) in (4.10) gives

∫

D\D(a,r)

(
1 − |a|2
|1 − az|2

)α+2

dAα(z) ≤ 1
2C

∫

D

(
1 − |a|2
|1 − az|2

)α+2

dAα(z). (4.11)

Combing (4.11) gives

∫

Gε∩D(a,r)

(
1 − |a|2
|1 − az|2

)α+2

dAα(z) ≥ 1
2C

∫

D

(
1 − |z|2

)α
dA(z). (4.12)

The integral in the left of (4.12) is dominated by

Aα(Gε ∩D(a, r)) sup

⎧
⎨

⎩

(
1 − |a|2
|1 − az|2

)α+2

: z ∈ D(a, r)

⎫
⎬

⎭
. (4.13)

Since (1 − a|2)/|1 − az|2 
 1/|D(a, r)| for z ∈ D(a, r), we get

Aα(Gε ∩D(a, r))

|D(a, r)|α+2
≥ 1

2C

∫

D

(
1 − |z|2

)α
dA(z). (4.14)

The converse can be derived from modification of [18], so we omit it here.

Remark 4.5. From [18], we find that the composition operator has closed range on the
weighted Bergman space A

p
α if and only if there are positive constants ε, c and r such that

Aα(Gε ∩D(z, r)) ≥ c|D(z, r)|α+2 for all z ∈ D. Thus, we have the following fact.

The composition operator Cϕ has closed range on LΦ
α if and only if Cϕ has closed range

on A
p
α.
Let us further investigate the Φ-reverse Carleson measure condition, which can be

formulated as follows.
The space {f |Gε : f ∈ LΦ

α } is a closed subspace of LΦ
α if and only if there exists a constant

ε > 0 such that Gε satisfies Φ-reverse Carleson measure condition.
From the perspective of closed subspace, we will see the following special setting. Let

F = {zn : n = 1, 2, . . .} be a δ-sequence in D. That is, there is k with ρ(z, zk) < δ for every
z ∈ D. We also assume that F is γ separated for some fixed γ > 0, that is, ρ(zm, zn) ≥ γ for all
m/=n. Using the subharmonicity of log+|f(z)| for analytic function f(z), it is easy to see that

log+
∣∣f(zk)

∣∣ ≤ C

Aα

(
D
(
zk, γ/2

))
∫

D(zk,γ/2)
log+
(∣∣f(z)

∣∣)dAα(z). (4.15)

Since Φ(log+|f(z)|) is convex and increasing, we have

Φ
(
log+
∣∣f(zk)

∣∣) ≤ C

Aα

(
D
(
zk, γ/2

))
∫

D(zk,γ/2)
Φ
(
log+
∣∣f(z)

∣∣)dAα(z). (4.16)
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Moreover, the formula Aα(D(zk, γ/2)) 
 (1 − |zk|2)α+2 allows us to write

Φ
(
log+
∣
∣f(zk)

∣
∣) ≤ C

(
1 − |zk|2

)−α−2∫

D(zk,γ/2)
Φ
(
log+
∣
∣f(z)

∣
∣)dAα(z). (4.17)

Since D(zk, γ/2) are disjoint, we obtain

∑

k

Φ
(
log+
∣
∣f(zk)

∣
∣)
(
1 − |zk|2

)α+2 ≤
∫

D

Φ
(
log+
∣
∣f(z)

∣
∣)dAα(z). (4.18)

Hence, the map σ : f �→ f |F takes LΦ
α into LΦ(F, μ), where μ is a measure on F that assigns zk

to the mass (1 − |zk|2)α+2 and space LΦ(F, μ) = {f : F → C | ∫FΦ(log+|f |)dμ < ∞}. Of course,
the map σ may be one to one. If the map σ is one to one, the map σ has closed range if and
only if

∫

D

Φ
(
log+
∣∣f(z)

∣∣)dAα(z) ≤
∫

F
Φ
(
log+
∣∣f
∣∣)dμ =

∑

k

Φ
(
log+
∣∣f(zk)

∣∣)
(
1 − |zk|2

)α+2
. (4.19)
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[15] P. Lefèvre, D. Li, H. Queffèlec, and L. Rodrı́guez-Piazza, “Compact composition operators onH2 and
Hardy-Orlicz spaces,” Journal of Mathematical Analysis and Applications, vol. 354, no. 1, pp. 360–371,
2009.

[16] J. B. Garnett, Bounded Analytic Functions, vol. 96 of Pure and Applied Mathematics, Academic Press, New
York, NY, USA, 1981.

[17] J. S. Choa and S. Ohno, “Products of composition and analytic Toeplitz operators,” Journal of
Mathematical Analysis and Applications, vol. 281, no. 1, pp. 320–331, 2003.

[18] D. H. Luecking, “Inequalities on Bergman spaces,” Illinois Journal of Mathematics, vol. 25, no. 1, pp.
1–11, 1981.


	1. Introduction
	2. Preliminaries
	3. Compactness
	4. Closed Range
	Acknowledgments
	References

