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1. Introduction

Let A be the class of functions f of the form

f(z) = z +
∞∑

n=2

anz
n, (1.1)

which are analytic in the unit disc E = {z : |z| < 1}. We say that f ∈ A is subordinate to g ∈ A,
written as f ≺ g, if there exists a Schwarz function w(z), which (by definition) is analytic in
E with w(0) = 0 and |w(z)| < 1 (z ∈ E), such that f(z) = g(w(z)). In particular, when g is
univalent, then the above subordination is equivalent to f(0) = g(0) and f(E) ⊆ g(E).

For any two analytic functions

f(z) =
∞∑

n=0

anz
n, g(z) =

∞∑

n=0

bnz
n (z ∈ E), (1.2)

the convolution (Hadamard product) of f and g is defined by

(
f ∗ g)(z) =

∞∑

n=0

anbnz
n (z ∈ E). (1.3)
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We denote by S∗(α), C(α), (0 ≤ α < 1), the classes of starlike and convex functions of order
α, respectively, defined by

S∗(α) =
{
f ∈ A: Re

zf ′(z)
f(z)

> α, z ∈ E

}
,

C(α) =
{
f ∈ A: zf ′(z) ∈ S∗(α), z ∈ E

}
.

(1.4)

For α = 0, we have the well-known classes of starlike and convex univalent functions denoted
by S∗ and C, respectively.

Let Pk(α) be the class of functions p(z) analytic in the unit disc E satisfying the
properties p(0) = 1 and

∫2π

0

∣∣∣∣Re
p(z) − α

1 − α

∣∣∣∣dθ ≤ kπ, (1.5)

where z = reiθ, k ≥ 2, and 0 ≤ α < 1. For α = 0,we obtain the class Pk introduced in [1]. Also,
for p ∈ Pk(α), we can write p(z) = (1 − α)q1(z) + α, q1 ∈ Pk.We can also write, for p ∈ Pk(α) ,

p(z) =
1
2π

∫2π

0

1 + (1 − 2α)ze−it

1 − ze−it
dμ(t), z ∈ E, (1.6)

where μ(t) is a function with bounded variation on [0, 2π] such that

∫2π

0
dμ(t) = 2π,

∫2π

0

∣∣dμ(t)
∣∣ ≤ kπ. (1.7)

For (1.6) together with (1.7), see [2]. Since μ(t) has a bounded variation on [0, 2π], we may
write μ(t) = A(t) − B(t), where A(t) and B(t) are two non-negative increasing functions
on [0, 2π] satisfying (1.7). Thus, if we set A(t) = ((k/4) + (1/2))μ1(t) and B(t) = ((k/4) −
(1/2))μ2(t), then (1.6) becomes

p(z) =
(
k

4
+
1
2

)
1
2π

∫2π

0

1 + (1 − 2α)ze−it

1 − ze−it
dμ1(t)

−
(
k

4
− 1
2

)
1
2π

∫2π

0

1 + (1 − 2α)ze−it

1 − ze−it
dμ2(t).

(1.8)

Now, using Herglotz-Stieltjes formula for the class P(α) and (1.8), we obtain

p(z) =
(
k

4
+
1
2

)
p1(z) −

(
k

4
− 1
2

)
p2(z), z ∈ E, (1.9)

where P(α) is the class of functions with real part greater than α and pi ∈ P(α), for i = 1, 2.
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We define the following classes:

Rk(α) =
{
f : f ∈ A and

zf ′(z)
f(z)

∈ Pk(α), 0 ≤ α < 1
}
,

Vk(α) =

{
f : f ∈ A and

(
zf ′(z)

)′

f ′(z)
∈ Pk(α), 0 ≤ α < 1

}
.

(1.10)

We note that

f ∈ Vk(α) ⇐⇒ zf ′ ∈ Rk(α). (1.11)

For α = 0, we obtain the well-known classes Rk and Vk of analytic functions with bounded
radius and bounded boundary rotations, respectively. These classes are studied byNoor [3–5]
in more details. Also it can easily be seen that R2(α) = S∗(α) and V2(α) = C(α).

Goel [6] proved that f ∈ C(α) implies that f ∈ S∗(β),where

β = β(α) =

⎧
⎪⎨

⎪⎩

4α(1 − 2α)
4 − 22α+1

, α /=
1
2
,

1
2 ln 2

, α =
1
2
,

(1.12)

and this result is sharp.
In this paper, we prove the result of Goel [6] for the classes Vk(α) and Rk(α) by using

three different methods. The first one is the same as done by Goel [6], while the second and
third are the convolution and subordination techniques.

2. Preliminary Results

We need the following results to obtain our results.

Lemma 2.1. Let f ∈ Vk(α). Then there exist s1, s2 ∈ S∗(α) such that

f ′(z) =
(s1(z)/z)

(k/4)+(1/2)

(s2(z)/z)
(k/4)−(1/2) , z ∈ E. (2.1)

Proof. It can easily be shown that f ∈ Vk(α) if and only if there exists g ∈ Vk such that

f ′(z) =
(
g ′(z)

)1−α
, z ∈ E, see [2]. (2.2)
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From Brannan [7] representation form for functions with bounded boundary rotations, we
have

g ′(z) =

(
g1(z)
z

)
⎛

⎝
k

4

⎞

⎠+

⎛

⎝
1
2

⎞

⎠

(
g2(z)
z

)
⎛

⎝
k

4

⎞

⎠−
⎛

⎝
1
2

⎞

⎠

, gi ∈ S∗, i = 1, 2. (2.3)

Now, it is shown in [8] that for si ∈ S∗(α), we can write

si(z) = z

[
gi(z)
z

]1−α
, gi ∈ S∗, i = 1, 2. (2.4)

Using (2.3) together with (2.4) in (2.2), we obtain the required result.

Lemma 2.2 (see [9]). Let u = u1 + iu2, v = v1 + iv2, and Ψ(u, v) be a complex-valued function
satisfying the conditions:

(i) Ψ(u, v) is continuous in a domain D ⊂ C
2,

(ii) (1, 0) ∈ D and ReΨ(1, 0) > 0,

(iii) ReΨ(iu2, v1) ≤ 0, whenever (iu2, v1) ∈ D and v1 ≤ −(1/2)(1 + u2
2).

If h(z) = 1 + c1z + · · · is a function analytic in E such that (h(z), zh′(z)) ∈ D and
ReΨ(h(z), zh′(z)) > 0 for z ∈ E, then Reh(z) > 0 in E.

Lemma 2.3. Let β > 0, β + γ > 0, and α ∈ [α0, 1), with

α0 = max
{
β − γ − 1

2β
,
−γ
β

}
. (2.5)

If

{
h(z) +

zh′(z)
βh(z) + γ

}
≺ 1 + (1 − 2α)z

1 − z
, (2.6)

then

h(z) ≺ Q(z) ≺ 1 + (1 − 2α)z
1 − z

, (2.7)

where

Q(z) =
1

βG(z)
− γ

β
,

G(z) =
∫1

0

[
1 − z

1 − tz

]2β(1−α)
tβ+γ−1dt =

2F1
(
2β(1 − α), 1, β + γ + 1; z/(z − 1)

)
(
β + γ

) ,

(2.8)
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2F1 denotes Gauss hypergeometric function. From (2.7), one can deduce the sharp result that h ∈ P(β),
with

β = β
(
α, β, γ

)
= min ReQ(z) = Q(−1). (2.9)

This result is a special case of the one given in [10, page 113].

3. Main Results

By using the same method as that of Goel [6], we prove the following result. We include all
the details for the sake of completeness.

3.1. First Method

Theorem 3.1. Let f ∈ Vk(α). Then f ∈ Rk(β), where β = β(α) is given by (1.12). This result is
sharp.

Proof. Since f ∈ Vk(α), we use Lemma 2.1, with relation (1.11) to have

1 +
zf”(z)
f ′(z)

=
(
k

4
+
1
2

)
zs′1(z)
s1(z)

−
(
k

4
− 1
2

)
zs′2(z)
s2(z)

=
(
k

4
+
1
2

)(
zf ′

1(z)
)′

f ′
1(z)

−
(
k

4
− 1
2

)(
zf ′

2(z)
)′

f ′
2(z)

,

(3.1)

where si ∈ S∗(α) and fi ∈ C(α), i = 1, 2.
Therefore, from (2.4), we have

zf ′(z)
f(z)

=
(
k

4
+
1
2

)
z
[
g1(z)/z

]1−α
∫z
0

[
g1
(
φ
)
/φ
]1−α

dφ
−
(
k

4
− 1
2

)
z
[
g2(z)/z

]1−α
∫z
0

[
g2
(
φ
)
/φ
]1−α

dφ
, (3.2)

that is,

zf ′(z)
f(z)

=
(
k

4
+
1
2

)⎡

⎣
∫z

0

[
z

φ

]1−α[g1
(
φ
)

g1(z)

]1−α
dφ

z

⎤

⎦
−1

−
(
k

4
− 1
2

)⎡

⎣
∫z

0

[
z

φ

]1−α[g2
(
φ
)

g2(z)

]1−α
dφ

z

⎤

⎦
−1

,

(3.3)

where we integrate along the straight line segment [0, z], z ∈ E.
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Writing

zf ′(z)
f(z)

=
(
k

4
+
1
2

)
p1(z) −

(
k

4
+
1
2

)
p2(z), (3.4)

and using (3.3), we have

pi(z) =

⎡

⎣
∫z

0

[
z

φ

]1−α[gi
(
φ
)

gi(z)

]1−α
dφ

z

⎤

⎦
−1

, (3.5)

where pi(0) = 1 and hence by [11] we have

∣∣∣∣∣pi(z) −
1 + r2

1 − r2

∣∣∣∣∣ ≤
2r

1 − r2
, |z| = r, z ∈ E. (3.6)

Therefore,

min
fi∈C(α)

min
|z|=r

Re
[
pi(z)

]
= min

fi∈C(α)
min
|z|=r

∣∣pi(z)
∣∣. (3.7)

Let z = reiθ and φ = Reiθ, 0 < R < r < 1. For fixed z and φ, we have from (2.4)

∣∣∣∣∣
gi
(
φ
)

gi(z)

∣∣∣∣∣ ≤
R

r

(
1 + r

1 + R

)2

. (3.8)

Now, using (3.8), we have, for a fixed z ∈ E, |z| = r,

∣∣∣∣∣∣

∫z

0

[
z

φ

]1−α[gi
(
φ
)

gi(z)

]1−α
dφ

z

∣∣∣∣∣∣
≤
∫ r

0

(
1 + r

1 + R

)2(1−α)dR
r

. (3.9)

Let

T(r) =
∫ r

0

(
1 + r

1 + R

)2(1−α)dR
r

, (3.10)

with R = rt, 0 < t < 1, we have

T(r) =
∫1

0

(
1 + r

1 + rt

)2(1−α)
dt. (3.11)
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By differentiating we note that

T ′(r) = 2(1 − α)
∫1

0

(1 − t)

(1 + rt)2

(
1 + r

1 + rt

)(1−2α)
dt > 0, (3.12)

and therefore T(r) is a monotone increasing function of r and hence

max
0≤r≤1

T(r) = T(1) = 22(1−α)
∫1

0

dt

(1 + t)2(1−α)

=

⎧
⎪⎪⎨

⎪⎪⎩

(
2 − 4(1−α)

)

(2α − 1)
, if α/=

1
2

2 ln 2, if α =
1
2
.

(3.13)

By letting

β(α) = min

⎡

⎣

∣∣∣∣∣∣

∫z

0

[
z

φ

]1−α[gi
(
φ
)

gi(z)

]1−α
dφ

z

∣∣∣∣∣∣

⎤

⎦
−1

, z ∈ E, (3.14)

for all gi(z) ∈ S∗, we obtain the required result from (3.7), (3.13), and (3.14).
Sharpness can be shown by the function f0 ∈ Vk(α) given by

(
zf ′

0(z)
)′

f ′
0(z)

=
(
k

4
+
1
2

)(
1 − (1 − 2α)z

1 + z

)
−
(
k

4
− 1
2

)(
1 + (1 − 2α)z

1 − z

)
. (3.15)

It is easy to check that f0 ∈ Rk(β),where β is the exact value given by (1.12).

3.2. Second Method

Theorem 3.2. Let f ∈ Vk(α). Then f ∈ Rk(β), where

β =
1
4

[
(2α − 1) +

√
4α2 − 4α + 9

]
. (3.16)

Proof. Let

zf ′(z)
f(z)

=
(
1 − β

)
p(z) + β

=
(
1 − β

)[(k

4
+
1
2

)
p1(z) −

(
k

4
− 1
2

)
p2(z)

]
+ β

(3.17)
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p(z) is analytic in E with p(0) = 1. Then

(
zf ′(z)

)′

f ′(z)
=
(
1 − β

)
p(z) + β +

(
1 − β

)
zp′(z)

(
1 − β

)
p(z) + β

, (3.18)

that is,

1
1 − α

[(
zf ′(z)

)′

f ′(z)
− α

]
=

1
1 − α

[
(
1 − β

)
p(z) + β − α +

(
1 − β

)
zp′(z)

(
1 − β

)
p(z) + β

]

=

(
β − α

)

1 − α
+

(
1 − β

)

1 − α

[
p(z) +

(
1/
(
1 − β

))
zp′(z)

p(z) +
(
β/
(
1 − β

))
]
.

(3.19)

Since f ∈ Vk(α), it implies that

(
β − α

)

1 − α
+

(
1 − β

)

1 − α

[
p(z) +

(
1/
(
1 − β

))
zp′(z)

p(z) +
(
β/
(
1 − β

))
]
∈ Pk, z ∈ E. (3.20)

We define

ϕa,b(z) =
1

1 + b

z

(1 − z)a
+

b

1 + b

z

(1 − z)1+a
, (3.21)

with a = 1/(1 − β), b = β/(1 − β). By using (3.17) with convolution techniques, see [5], we
have that

ϕa,b(z)
z

∗ p(z) =
(
k

4
+
1
2

)[
ϕa,b(z)

z
∗ p1(z)

]
−
(
k

4
− 1
2

)[
ϕa,b(z)

z
∗ p2(z)

]
(3.22)

implies

p(z) +
azp′(z)
p(z) + b

=
(
k

4
+
1
2

)[
p1(z) +

azp′1(z)
p1(z) + b

]
−
(
k

4
− 1
2

)[
p2(z) +

azp′2(z)
p2(z) + b

]
. (3.23)

Thus, from (3.20) and (3.23), we have

(
β − α

)

1 − α
+

(
1 − β

)

1 − α

[
pi(z) +

azp′i(z)
pi(z) + b

]
∈ P, i = 1, 2. (3.24)
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We now form the functional Ψ(u, v) by choosing u = pi(z), v = zp′i(z) in (3.24) and note that
the first two conditions of Lemma 2.2 are clearly satisfied. We check condition (iii) as follows:

Re
[
ψ(iu2, v1)

]
=

1
1 − α

[
(
β − α

)
+ Re

(
v1

iu2 +
(
β/
(
1 − β

))
)]

=
1

1 − α

[
(
β − α

)
+

v1
(
β/
(
1 − β

))

u2
2 +
(
β/(1 − β)

)2

]

≤ 1
1 − α

[
(
β − α

) − 1
2

(
1 + u2

2

)(
β/
(
1 − β

))

u2
2 +
(
β/(1 − β)

)2

]

=
2
(
β − α

)(
u2
2 +
(
β/(1 − β)

)2) − (1 + u2
2

)(
β/
(
1 − β

))

2
(
u2
2 +
(
β/(1 − β)

)2)(1 − α)

=

[
2
(
β − α

)(
β2/

(
1 − β

)2) − (β/(1 − β
))]

+
(
2β − 2α − (β/(1 − β

)))
u2
2

2
(
u2
2 +
(
β/(1 − β)

)2)(1 − α)

=
A + Bu2

2

2C
, 2C > 0,

(3.25)

where

A =
β

(1 − β)2
[
2
(
β − α

)
β − (1 − β

)]
,

B =
1

1 − β

(
2
(
β − α

)(
1 − β

) − β
)
,

C = (1 − α)

(
u2
2 +
(

β

1 − β

)2
)

> 0.

(3.26)

The right-hand side of (3.25) is negative if A ≤ 0 and B ≤ 0. From A ≤ 0, we have

β = β(α) =
1
4

[
(2α − 1) +

√
4α2 − 4α + 9

]
, (3.27)

and from B ≤ 0, it follows that 0 ≤ β < 1.
Since all the conditions of Lemma 2.2 are satisfied, it follows that pi ∈ P in E for i = 1, 2

and consequently p ∈ Pk and hence f ∈ Rk(β), where β is given by (3.16). The case k = 2 is
discussed in [12].
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3.3. Third Method

Theorem 3.3. Let f ∈ Vk(α). Then f ∈ Rk(β), where

β = β1(α, 1, 0) =

⎧
⎪⎨

⎪⎩

2α − 1
2 − 22(1−α)

, if α/=
1
2
,

1
2 ln 2

, if α =
1
2
.

(3.28)

Proof. Let

zf ′(z)
f(z)

= p(z) =
(
k

4
+
1
2

)
zs′1(z)
s1(z)

−
(
k

4
− 1
2

)
zs′2(z)
s2(z)

, (3.29)

and let

zs′i(z)
si(z)

= pi(z), i = 1, 2. (3.30)

Then p, pi are analytic in E with p(0) = 1, pi(0) = 1, i = 1, 2.
Logarithmic differentiation yields

(
zf ′(z)

)′

f ′(z)
= p(z) +

zp′(z)
p(z)

=
(
k

4
+
1
2

)(
zs′1(z)

)′

s′1(z)
−
(
k

4
− 1
2

)(
zs′2(z)

)′

s′2(z)

=
(
k

4
+
1
2

)(
p1(z) +

zp′1(z)
p1(z)

)
−
(
k

4
− 1
2

)(
p2(z) +

zp′2(z)
p2(z)

)
.

(3.31)

Since f ∈ Vk(α), it follows that (zs′i)
′/s′i ∈ P(α), z ∈ E, or si ∈ C(α) for z ∈ E. Consequently,

(
pi(z) +

zp′i(z)
pi(z)

)
∈ P(α), (3.32)

where zs′i(z)/si(z) = pi(z), i = 1, 2. We use Lemma 2.3 with γ = 0, β = 1 > 0, α ∈ [0, 1), and
h = pi in (3.32), to have pi ∈ P(β),where β is given in (3.28) and this estimate is best possible,
extremal function Q is given by

Q(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − 2α)z

(1 − z)
[
1 − (1 − z)1−2α

] , if α/=
1
2
,

z

(z − 1) log(1 − z)
, if α =

1
2
,

(3.33)

see [10]. MacGregor [13] conjectured the exact value given by (3.28). Thus si ∈ S∗(β) and
consequently f ∈ Rk(β),where the exact value of β is given by (3.28).
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3.4. Application of Theorem 3.3

Theorem 3.4. Let g and h belong to Vk(α). Then F(z), defined by

F(z) =
∫z

0

(
g(t)
t

)μ(
h(t)
t

)η

dt, (3.34)

is in the class Vk(δ), where 0 ≤ μ < η ≤ 1, δ = δ(α) = (1 − (μ + η)(1 − β)), and β(α) is given by
(1.12).

Proof. From (3.34), we can easily write

(zF ′(z))′

F ′(z)
= μ

zg ′(z)
g(z)

+ η
zh′(z)
h(z)

+ 1 − (μ + η
)
. (3.35)

Since g and h belong to Vk(α), then, by Theorem 3.3, zg ′(z)/g(z) and zh′(z)/h(z) belong to
Pk(β), where β = β(α) is given by (1.12). Using

zg ′(z)
g(z)

=
(
1 − β

)
q1(z) + β, q1 ∈ Pk,

zh′(z)
h(z)

=
(
1 − β

)
q2(z) + β, q2 ∈ Pk,

(3.36)

in (3.35), we have

1
1 − δ

[
(zF ′(z))′

F ′(z)
− δ

]
=

μ

μ + η
q1(z) +

η

μ + η
q2(z). (3.37)

Now by using the well-known fact that the class Pk is a convex set together with (3.37), we
obtain the required result.

For α = 0, μ = 0, and η = 1, we have the following interesting corollary.

Corollary 3.5. Let f belongs to Vk(0). Then F(z), defined by

F(z) =
∫z

0

f(t)
t

dt
(
Alexander’s integral operator

)
, (3.38)

is in the class Vk(1/2).
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