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1. Introduction

It is well known that the auxiliary principle technique plays an efficient and important role
in variational inequality theory. In 1988, Cohen [1] used the auxiliary principle technique
to prove the existence of a unique solution for a variational inequality in reflexive Banach
spaces, and suggested an innovative and novel iterative algorithm for computing the solution
of the variational inequality. Afterwards, Ding [2], Huang and Deng [3], and Yao [4] obtained
the existence of solutions for several kinds of variational-like inequalities. Fang and Huang
[5] and Liu et al. [6] discussed some classes of variational inequalities involving various
monotone mappings. Recently, Liu et al. [7, 8] extended the auxiliary principle technique to
two new classes of variational-like inequalities and established the existence results for these
variational-like inequalities.

Inspired and motivated by the results in [1–13], in this paper, we introduce and
study a class of generalized strongly nonlinear mixed variational-like inequalities. Making
use of the auxiliary principle technique, we construct an iterative algorithm for solving the



2 Journal of Inequalities and Applications

generalized strongly nonlinear mixed variational-like inequality. Several existence results of
solutions for the generalized strongly nonlinear mixed variational-like inequality involving
strongly monotone, relaxed Lipschitz, cocoercive, relaxed cocoercive and generalized
pseudocontractive mappings, and the convergence results of iterative sequence generated
by the algorithm are given. The results presented in this paper extend and unify some known
results in [9, 12, 13].

2. Preliminaries

In this paper, let R = (−∞,+∞), let H be a real Hilbert space endowed with an inner product
〈·, ·〉 and norm ‖ · ‖, respectively, let K be a nonempty closed convex subset of H. Let N :
H × H → H,η : K × K → H, and let T,A : K → H be mappings. Now we consider
the following generalized strongly nonlinear mixed variational-like inequality problem: find
u ∈ K such that

〈N(Tu,Au), η(v, u)〉 + b(u, v) − b(u, u) − a(u, v − u) ≥ 0, ∀v ∈ K, (2.1)

where a : K × K → R is a coercive continuous bilinear form, that is, there exist positive
constants c and d such that

(C1) a(v, v) ≥ c‖v‖2, ∀v ∈ K;

(C2) a(u, v) ≤ d‖u‖‖v‖, ∀u, v ∈ K.
Clearly, c ≤ d.

Let b : K ×K → R satisfy the following conditions:

(C3) for each v ∈ K, b(·, v) is linear in the first argument;

(C4) b is bounded, that is, there exists a constant r > 0 such that b(u, v) ≤ r‖u‖‖v‖, ∀u, v ∈
K;

(C5) b(u, v) − b(u,w) ≤ b(u, v −w), ∀u, v,w ∈ K;

(C6) for each u ∈ K, b(u, ·) is convex in the second argument.

Remark 2.1. It is easy to verify that

(m1) b(u, 0) = 0, b(0, v) = 0, ∀u, v ∈ K;

(m2) |b(u, v) − b(u,w)| ≤ r‖u‖‖v −w‖,
where (m2) implies that for each u ∈ K, b(u, ·) is continuous in the second argument on K.

Special Cases

(m3) IfN(Tu,Au) = Tu−Au, a(u, v −u) = 0 and b(u, v) = f(v) for all u, v ∈ K,where f :
K → R, then the generalized strongly nonlinear mixed variational-like inequality
(2.1) collapses to seeking u ∈ K such that

〈Tu −Au, η(v, u)〉 + f(v) − f(u) ≥ 0, ∀v ∈ K, (2.2)

which was introduced and studied by Ansari and Yao [9], Ding [11] and Zeng [13],
respectively.
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(m4) If η(v, u) = g(v) − g(u) for all u, v ∈ K, where g : K → H, then the problem (2.2)
reduces to the following problem: find u ∈ K such that

〈Tu −Au, g(v) − g(u)〉 + f(v) − f(u) ≥ 0, ∀v ∈ K, (2.3)

which was introduced and studied by Yao [12].

In brief, for suitable choices of the mappings N,T,A, η, a and b, one can obtain a
number of known and new variational inequalities and variational-like inequalities as special
cases of (2.1). Furthermore, there are a wide classes of problems arising in optimization,
economics, structural analysis and fluid dynamics, which can be studied in the general
framework of the generalized strongly nonlinear mixed variational-like inequality, which is
the main motivation of this paper.

Definition 2.2. Let T,A : K → H,g : H → H,N : H × H → H and η : K × K → H be
mappings.

(1) g is said to be relaxed Lipschitz with constant r if there exists a constant r > 0 such
that

〈
g(u) − g(v), u − v

〉 ≤ −r‖u − v‖2, ∀u, v ∈ H. (2.4)

(2) T is said to be cocoercive with constant r with respect to N in the first argument if
there exists a constant r > 0 such that

〈N(Tu, x) −N(Tv, x), u − v〉 ≥ r‖N(Tu, x) −N(Tv, x)‖2, ∀x ∈ H,u, v ∈ K. (2.5)

(3) T is said to be g-cocoercive with constant r with respect to N in the first argument
if there exists a constant r > 0 such that

〈
N(Tu, x) −N(Tv, x), g(u) − g(v)

〉 ≥ r‖N(Tu, x) −N(Tv, x)‖2, ∀x ∈ H,u, v ∈ K. (2.6)

(4) T is said to be relaxed (p, q)-cocoercivewith respect toN in the first argument if there
exist constants p > 0, q > 0 such that

〈N(Tu, x) −N(Tv, x), u − v〉

≥ −p‖N(Tu, x) −N(Tv, x)‖2 + q‖u − v‖2, ∀x ∈ H,u, v ∈ K.
(2.7)

(5) A is said to be Lipschitz continuous with constant r if there exists a constant r > 0
such that

‖A(u) −A(v)‖ ≤ r‖u − v‖, ∀u, v ∈ K. (2.8)

(6) A is said to be relaxed Lipschitz with constant r with respect to N in the second
argument if there exists a constant r > 0 such that

〈N(x,Au) −N(x,Av), u − v〉 ≤ −r‖u − v‖2, ∀x ∈ H,u, v ∈ K. (2.9)
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(7) A is said to be g-relaxed Lipschitz with constant r with respect to N in the second
argument if there exists a constant r > 0 such that

〈
N(x,Au) −N(x,Av), g(u) − g(v)

〉 ≤ −r‖u − v‖2, ∀x ∈ H,u, v ∈ K. (2.10)

(8) A is said to be g-generalized pseudocontractive with constant r with respect to N in
the second argument if there exists a constant r > 0 such that

〈
N(x,Au) −N(x,Av), g(u) − g(v)

〉 ≤ r‖u − v‖2, ∀x ∈ H,u, v ∈ K. (2.11)

(9) η is said to be strongly monotonewith constant r if there exists a constant r > 0 such
that

〈
η(u, v), u − v

〉 ≥ r‖u − v‖2, ∀u, v ∈ K. (2.12)

(10) η is said to be relaxed Lipschitz with constant r if there exists a constant r > 0 such
that

〈
η(u, v), u − v

〉 ≤ −r‖u − v‖2, ∀u, v ∈ K. (2.13)

(11) η is said to be cocoercivewith constant r if there exists a constant r > 0 such that

〈
η(u, v), u − v

〉 ≥ r
∥∥η(u, v)

∥∥2
, ∀u, v ∈ K. (2.14)

(12) η is said to be Lipschitz continuous with constant r if there exists a constant r > 0
such that

‖η(u, v)‖ ≤ r‖u − v‖, ∀u, v ∈ K. (2.15)

(13) N is said to be Lipschitz continuous in the first argument if there exists a constant
r > 0 such that

‖N(u, x) −N(v, x)‖ ≤ r‖u − v‖, ∀u, v, x ∈ H. (2.16)

Similarly, we can define the Lipschitz continuity of N in the second argument.

Definition 2.3. Let D be a nonempty convex subset of H, and let f : D → R ∪ {+∞} be a
functional.

(d1) f is said to be convex if for any x, y ∈ D and any t ∈ [0, 1],

f
(
tx + (1 − t)y

) ≤ tf(x) + (1 − t)f
(
y
)
; (2.17)

(d2) f is said to be concave if −f is convex;
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(d3) f is said to be lower semicontinuous on D if for any t ∈ R ∪ {+∞}, the set {x ∈ D :
f(x) ≤ t} is closed in D;

(d4) f is said to be upper semicontinuous on D, if −f is lower semicontinuous on D.

In order to gain our results, we need the following assumption.

Assumption 2.4. The mappings T,A : K → H,N : H ×H → H,η : K ×K → H satisfy the
following conditions:

(d5) η(v, u) = −η(u, v), ∀u, v ∈ K;

(d6) for given x, u ∈ K, the mapping v �→ 〈N(Tx,Ax), η(u, v)〉 is concave and upper
semicontinuous on K.

Remark 2.5. It follows from (d5) and (d6) that

(m5) η(u, u) = 0, ∀u ∈ K;

(m6) for any given x, v ∈ K, the mapping u �→ 〈N(Tx,Ax), η(u, v)〉 is convex and lower
semicontinuous on K.

Proposition 2.6 (see [9]). Let K be a nonempty convex subset of H. If f : K → R is lower
semicontinuous and convex, then f is weakly lower semicontinuous.

Proposition 2.6 yields that if f : K → R is upper semicontinuous and concave, then f
is weakly upper semicontinuous.

Lemma 2.7 (see [10]). Let X be a nonempty closed convex subset of a Hausdorff linear topological
space E, and let φ, ψ : X ×X → R be mappings satisfying the following conditions:

(a) ψ(x, y) ≤ φ(x, y), ∀x, y ∈ X, and ψ(x, x) ≥ 0, ∀x ∈ X;

(b) for each x ∈ X,φ(x, ·) is upper semicontinuous on X;

(c) for each y ∈ X, the set {x ∈ X : ψ(x, y) < 0} is a convex set;

(d) there exists a nonempty compact set Y ⊆ X and x0 ∈ Y such that ψ(x0, y) < 0, ∀y ∈ X\Y.
Then there exists ŷ ∈ Y such that φ(x, ŷ) ≥ 0, ∀x ∈ X.

3. Auxiliary Problem and Algorithm

In this section, we use the auxiliary principle technique to suggest and analyze an iterative
algorithm for solving the generalized strongly nonlinear mixed variational-like inequality
(2.1). To be more precise, we consider the following auxiliary problem associated with the
generalized strongly nonlinear mixed variational-like inequality (2.1): given u ∈ K, find z ∈
K such that

〈g(u) − g(z), v − z〉
≥ −ρ〈N(Tu,Au), η(v, z)〉 + ρb(u, z) − ρb(u, v) + ρa(u, v − z), ∀v ∈ K,

(3.1)

where ρ > 0 is a constant, g : H → H is a mapping. The problem is called a auxiliary problem
for the generalized strongly nonlinear mixed variational-like inequality (2.1).
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Theorem 3.1. LetK be a nonempty closed convex subset of the Hilbert spaceH. Let a : K ×K → R

be a coercive continuous bilinear form with (C1) and (C2), and let b : K × K → R be a functional
with (C3)–(C6). Let g : H → H be Lipschitz continuous and relaxed Lipschitz with constants ζ and
λ, respectively. Let η : K ×K → H be Lipschitz continuous with constant δ, T,A : K → H, and
letN : H ×H → H satisfy Assumption 2.4. Then the auxiliary problem (3.1) has a unique solution
in K.

Proof. For any u ∈ K, define the mappings φ, ψ : K ×K → R by

φ(v, z) = 〈g(u) − g(v), v − z〉 + ρ〈N(Tu,Au), η(v, z)〉
− ρb(u, z) + ρb(u, v) − ρa(u, v − z), ∀v, z ∈ K,

ψ(v, z) = 〈g(u) − g(z), v − z〉 + ρ〈N(Tu,Au), η(v, z)〉
− ρb(u, z) + ρb(u, v) − ρa(u, v − z), ∀v, z ∈ K.

(3.2)

We claim that the mappings φ and ψ satisfy all the conditions of Lemma 2.7 in the weak
topology. Note that

φ(v, z) − ψ(v, z) = −〈g(v) − g(z), v − z〉 ≥ λ‖v − z‖2 ≥ 0, (3.3)

and ψ(v, v) ≥ 0 for any v, z ∈ K. Since b is convex in the second argument and a is a coercive
continuous bilinear form, it follows from Remark 2.1 and Assumption 2.4 that for each v ∈ K,
φ(v, ·) is weakly upper semicontinuous onK. It is easy to show that the set {v ∈ K : ψ(v, z) <
0} is a convex set for each fixed z ∈ K. Let v0 ∈ K be fixed and put

ω = λ−1
(
ζ‖u − v0‖ + ρδ‖N(Tu,Au)‖ + ρr‖u‖ + ρd‖u‖),

Y = {z ∈ K : ‖z − v0‖ ≤ ω}.
(3.4)

Clearly, Y is a weakly compact subset of K. From Assumption 2.4, the continuity of η and g,
and the properties of a and b, we gain that for any z ∈ K \ Y

ψ(v0, z) = 〈g(z) − g(v0), z − v0〉 + 〈g(v0) − g(u), z − v0〉
+ ρ〈N(Tu,Au), η(v0, z)〉 − ρb(u, z) + ρb(u, v0) − ρa(u, v0 − z)

≤ −λ‖z − v0‖
[
‖z − v0‖ − λ−1

(
ζ‖u − v0‖ + ρδ‖N(Tu,Au)‖ + ρr‖u‖ + ρd‖u‖)

]
< 0.

(3.5)

Thus the conditions of Lemma 2.7 are satisfied. It follows from Lemma 2.7 that there exists a
ẑ ∈ Y ⊆ K such that φ(v, ẑ) ≥ 0 for any v ∈ K, that is,

〈g(u) − g(v),v − ẑ〉 + ρ〈N(Tu,Au),η(v, ẑ)〉 − ρb(u, ẑ) + ρb(u, v) − ρa(u, v − ẑ) ≥ 0, ∀v ∈ K.
(3.6)
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Let t ∈ (0, 1] and v ∈ K. Replacing v by xt = tv + (1 − t)ẑ in (3.6) we gain that

0 ≤ 〈g(u) − g(xt), xt − ẑ〉 + ρ〈N(Tu,Au), η(xt, ẑ)〉
− ρb(u, ẑ) + ρb(u, xt) − ρa(u, xt − ẑ)

= t〈g(u) − g(xt), v − ẑ〉 − ρ〈N(Tu,Au), η(ẑ, tv + (1 − t)ẑ)〉
− ρb(u, ẑ) + ρb(u, tv + (1 − t)ẑ) − tρa(u, v − ẑ)

≤ t〈g(u) − g(xt), v − ẑ〉 + ρt〈N(Tu,Au), η(v, ẑ)〉
+ tρ(b(u, v) − b(u, ẑ)) − tρa(u, v − ẑ).

(3.7)

Letting t → 0+ in (3.7), we get that

〈g(u) − g(ẑ), v − ẑ〉
≥ −ρ〈N(Tu,Au), η(v, ẑ)

〉 − ρb(u, v) + ρb(u, ẑ) + ρa(u, v − ẑ), ∀v ∈ K,
(3.8)

which means that ẑ is a solution of (3.1).
Suppose that z1, z2 ∈ K are any two solutions of the auxiliary problem (3.1). It follows

that

〈
g(u) − g(z1), v − z1

〉

≥ −ρ〈N(Tu,Au), η(v, z1)
〉 − ρb(u, v) + ρb(u, z1) + ρa(u, v − z1), ∀v ∈ K,

(3.9)

〈g(u) − g(z2), v − z2〉
≥ −ρ〈N(Tu,Au), η(v, z2)〉 − ρb(u, v) + ρb(u, z2) + ρa(u, v − z2), ∀v ∈ K.

(3.10)

Taking v = z2 in (3.9) and v = z1 in (3.10) and adding these two inequalities, we get that

〈g(z2) − g(z1), z2 − z1〉 ≥ 0. (3.11)

Since g is relaxed Lipschitz, we find that

0 ≤ 〈g(z2) − g(z1), z2 − z1〉 ≤ −λ‖z2 − z1‖2 ≤ 0, (3.12)

which implies that z1 = z2. That is, the auxiliary problem (3.1) has a unique solution in K.
This completes the proof.

Applying Theorem 3.1, we construct an iterative algorithm for solving the generalized
strongly nonlinear mixed variational-like inequality (2.1).
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Algorithm 3.2. (i) At step 0, start with the initial value u0 ∈ K.
(ii) At step n, solve the auxiliary problem (3.1) with u = un ∈ K. Let un+1 ∈ K denote

the solution of the auxiliary problem (3.1). That is,

〈g(un) − g(un+1), v − un+1〉
≥ −ρ〈N(Tun,Aun), η(v, un+1)〉 + ρb(un, un+1) − ρb(un, v) + ρa(un, v − un+1), ∀v ∈ K,

(3.13)

where ρ > 0 is a constant.
(iii) If, for given ε > 0, ‖xn+1 − xn‖ < ε, stop. Otherwise, repeat (ii).

4. Existence of Solutions and Convergence Analysis

The goal of this section is to prove several existence of solutions and convergence of
the sequence generated by Algorithm 3.2 for the generalized strongly nonlinear mixed
variational-like inequality (2.1).

Theorem 4.1. LetK be a nonempty closed convex subset of the Hilbert spaceH. Let a : K ×K → R

be a coercive continuous bilinear form with (C1) and (C2), and let b : K × K → R be a functional
with (C3)–(C6). Let N : H × H → H be Lipschitz continuous with constants i, j in the first and
second arguments, respectively. Let T,A : K → H,g : H → H and η : K ×K → H be Lipschitz
continuous with constants ξ, μ, ζ, δ, respectively, let T be cocoercive with constant β with respect to
N in the first argument, let g be relaxed Lipschitz with constant λ, and let η be strongly monotone
with constant α. Assume that Assumption 2.4 holds. Let

L = δ−1
(
λ −

√
1 − 2λ + ζ2 −

√
1 − 2α + δ2

)
, F = 1 − L2,

E = i2ξ2β − L
(
jμ + δ−1(r + d)

)
, D = i2ξ2 −

(
jμ + δ−1(r + d)

)2
.

(4.1)

If there exists a constant ρ satisfying

2β ≤ ρ <
δL

jμδ + r + d
(4.2)

and one of the following conditions:

D > 0, E2 > DF,

∣∣∣∣ρ − E

D

∣∣∣∣ <

√
E2 −DF

D
, (4.3)

D < 0, E2 > DF,

∣∣∣∣ρ − E

D

∣∣∣∣ >
−
√
E2 −DF

D
, (4.4)

D = 0, E > 0, F > 0, ρ >
F

2E
, (4.5)

D = 0, E < 0, F < 0, ρ <
F

2E
, (4.6)
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then the generalized strongly nonlinear mixed variational-like inequality (2.1) possesses a solution
u ∈ K and the sequence {un}n≥0 defined by Algorithm 3.2 converges to u.

Proof. It follows from (3.13) that

〈g(un−1) − g(un), un+1 − un〉
≥ −ρ〈N(Tun−1, Aun−1), η(un+1, un)〉 + ρb(un−1, un) − ρb(un−1, un+1)

+ ρa(un−1, un+1 − un), ∀n ≥ 1,

〈g(un) − g(un+1), un − un+1〉
≥ −ρ〈N(Tun,Aun), η(un, un+1)〉 + ρb(un, un+1) − ρb(un, un)

+ ρa(un, un − un+1), ∀n ≥ 0.

(4.7)

Adding (4.7), we obtain that

− 〈g(un) − g(un+1), un − un+1〉
≤ 〈un − un−1 + g(un) − g(un−1), un − un+1〉
+ 〈un−1 − un − ρ(N(Tun−1, Aun−1) −N(Tun,Aun−1)), η(un, un+1)〉
− ρ〈N(Tun,Aun−1) −N(Tun,Aun), η(un, un+1)〉
+ 〈un−1 − un, un − un+1 − η(un, un+1)〉 + ρb(un − un−1, un)

− ρb(un − un−1, un+1) + ρa(un−1 − un, un − un+1)

≤ ‖un − un−1 + g(un) − g(un−1)‖‖un − un+1‖
+ ‖un−1 − un − ρ(N(Tun−1, Aun−1) −N(Tun,Aun−1))‖‖η(un, un+1)‖
+ ρ‖N(Tun,Aun−1) −N(Tun,Aun)‖‖η(un, un+1)‖
+ ‖un−1 − un‖‖un − un+1 − η(un, un+1)‖
+ ρr‖un − un−1‖‖un − un+1‖ + ρd‖un−1 − un‖‖un − un+1‖, ∀n ≥ 1.

(4.8)

Since g is relaxed Lipschitz and Lipschitz continuous with constants λ and ζ, and η is strongly
monotone and Lipschitz continuous with constants α and δ, respectively, we get that

∥∥un − un−1 + g(un) − g(un−1)
∥∥2 ≤

(
1 − 2λ + ζ2

)
‖un − un−1‖2, ∀n ≥ 1,

∥∥un − un+1 − η(un, un+1)
∥∥2 ≤

(
1 − 2α + δ2

)
‖un − un+1‖2, ∀n ≥ 0.

(4.9)
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Notice that N is Lipschitz continuous in the first and second arguments, T and A are both
Lipschitz continuous, and T is cocoercive with constant r with respect to N in the first
argument. It follows that

∥
∥un−1 − un − ρ(N(Tun−1, Aun−1) −N(Tun,Aun−1))

∥
∥2

≤
(
1 + i2ξ2

(
ρ2 − 2ρβ

))
‖un−1 − un‖2, ∀n ≥ 1,

‖N(Tun,Aun−1) −N(Tun,Aun)‖‖η(un, un+1)‖

≤ jμδ‖un−1 − un‖‖un − un+1‖, ∀n ≥ 1.

(4.10)

Let

θ = λ−1
[√

1 − 2λ + ζ2 +
√
1 − 2α + δ2 + δ

√
1 + i2ξ2

(
ρ2 − 2ρβ

)
+ ρ

(
jμδ + r + d

)
]
. (4.11)

It follows from (4.8)–(4.10) that

‖un − un+1‖ ≤ θ‖un−1 − un‖, ∀n ≥ 1. (4.12)

From (4.2) and one of (4.3)–(4.6), we know that θ < 1. It follows from (4.12) that {un}n≥0 is a
Cauchy sequence inK. By the closedness ofK there exists u ∈ K satisfying limn→∞un = u. In
term of (3.13) and the Lipschitz continuity of g, we gain that

〈g(un) − g(un+1), v − un+1〉 + ρ〈N(Tun,Aun), η(v, un+1)〉

+ ρ(b(un, v) − b(un, un+1)) − ρa(un, v − un+1) ≥ 0, ∀n ≥ 0,

∣∣〈g(un) − g(un+1), v − un+1〉
∣∣

≤ ζ‖un − un+1‖‖v − un+1‖ −→ 0 as n −→ ∞.

(4.13)

By Assumption 2.4, we deduce that

〈N(Tu,Au), η(v, u)〉 ≥ lim sup
n→∞

〈N(Tu,Au), η(v, un+1)〉. (4.14)
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Since N(Tun,Aun) → N(Tu,Au) as n → ∞ and {η(v, un+1)}n≥0 is bounded, it follows that

0 ≤ 〈N(Tu,Au), η(v, u)〉 − lim sup
n→∞

〈N(Tu,Au), η(v, un+1)〉

= lim inf
n→∞

{〈N(Tu,Au), η(v, u)〉 − 〈N(Tu,Au), η(v, un+1)〉
}

= lim inf
n→∞

{〈
N(Tu,Au), η(v, u)

〉 − 〈
N(Tu,Au), η(v, un+1)

〉

+〈N(Tu,Au) −N(Tun,Aun), η(v, un+1)〉
}

= lim inf
n→∞

{〈
N(Tu,Au), η(v, u)

〉 − 〈
N(Tun,Aun), η(v, un+1)

〉}
,

(4.15)

which implies that

〈N(Tu,Au), η(v, u)〉 ≥ lim sup
n→∞

〈N(Tun,Aun), η(v, un+1)〉. (4.16)

In light of (C3) and (m2), we get that

|b(un, un+1) − b(u, u)| ≤ |b(un, un+1) − b(un, u)| + |b(un, u) − b(u, u)|
≤ r‖un‖‖un+1 − u‖ + r‖un − u‖‖u‖ −→ 0 as n −→ ∞,

(4.17)

which means that b(un, un+1) → b(u, u) as n → ∞. Similarly, we can infer that b(un, v) →
b(u, v) as n → ∞. Therefore,

〈N(Tu,Au), η(v, u)〉 + b(u, v) − b(u, u) − a(u, v − u) ≥ 0, ∀v ∈ K. (4.18)

This completes the proof.

Theorem 4.2. Let K, H, g, a, b, N, F, and L be as in Theorem 4.1. Assume that T,A : K → H,
η : K × K → H are Lipschitz continuous with constants ξ, μ, and δ, respectively, η is relaxed
Lipschitz with constant α, and A is relaxed Lipschitz with constant β with respect toN in the second
argument. Let

D = j2μ2 −
(
iξ +

r + d

δ

)2

, E = β − Liξ − L(r + d)
δ

. (4.19)

If there exists a constant ρ satisfying

0 < ρ <
δL

iξδ + r + d
(4.20)

and one of (4.3)–(4.6), then the generalized strongly nonlinear mixed variational-like inequality (2.1)
possesses a solution u ∈ K and the sequence {un}n≥0 defined by Algorithm 3.2 converges to u.
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Proof. As in the proof of Theorem 4.1, we deduce that

− 〈g(un) − g(un+1), un − un+1〉

≤ 〈un − un−1 + g(un) − g(un−1), un − un+1〉

+ 〈un − un−1 + ρ(N(Tun−1, Aun) −N(Tun−1, Aun−1)), η(un, un+1)〉

− ρ〈N(Tun−1, Aun) −N(Tun,Aun), η(un, un+1)〉

+ 〈un−1 − un, un − un+1 + η(un, un+1)〉 − ρb(un−1 − un, un)

+ ρb(un−1 − un, un+1) + ρa(un−1 − un, un − un+1), ∀n ≥ 1.

(4.21)

Because η is relaxed Lipschitz and Lipschitz continuous, A is relaxed Lipschitz with respect
toN in the second argument and Lipschitz continuous, andN is Lipschitz continuous in the
second argument, we conclude that

∥∥un − un+1 + η(un, un+1)
∥∥2

≤
(
1 − 2α + δ2

)
‖un − un+1‖2, ∀n ≥ 0,

∥∥un − un−1 + ρ(N(Tun−1, Aun) −N(Tun−1, Aun−1))
∥∥2

≤
(
1 − 2ρβ + ρ2j2μ2

)
‖un−1 − un‖2, ∀n ≥ 1.

(4.22)

The rest of the argument is the same as in the proof of Theorem 4.1 and is omitted. This
completes the proof.

Theorem 4.3. Let K, H, g, a, b, A, N, D, and E be as in Theorem 4.1, and let η be as in
Theorem 4.2. Assume that T is g-cocoercive with constant β with respect to N in the first argument
and Lipschitz continuous with constant ξ. Let

L = δ−1
[
λ −

(
1 +

√
1 − 2λ + ζ2

)√
1 − 2α + δ2

]
, F = ζ2 − L2. (4.23)

If there exists a constant ρ satisfying (4.2) and one of (4.3)–(4.6), then the generalized strongly
nonlinear mixed variational-like inequality (2.1) possesses a solution u ∈ K and the sequence {un}n≥0
defined by Algorithm 3.2 converges to u.
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Proof. As in the proof of Theorem 4.1, we derive that

− 〈g(un) − g(un+1), un − un+1〉

≤ 〈g(un) − g(un−1) + un − un−1, un − un+1 + η(un, un+1)〉

+ 〈g(un−1) − g(un) − ρ(N(Tun−1, Aun−1) −N(Tun,Aun−1)), η(un, un+1)〉

− ρ〈N(Tun,Aun−1) −N(Tun,Aun), η(un, un+1)〉

+ 〈un−1 − un, un − un+1 + η(un, un+1)〉 + ρb(un − un−1, un)

+ ρb(un−1 − un, un+1) + ρa(un−1 − un, un − un+1), ∀n ≥ 1.

(4.24)

Because g is Lipschitz continuous, N is Lipschitz continuous in the first argument, and T is
g-cocoercive with with respect to N in the first argument and Lipschitz continuous, we gain
that

∥∥g(un−1) − g(un) − ρ(N(Tun−1, Aun−1) −N(Tun,Aun−1))
∥∥2

≤
(
ζ2 +

(
ρ2 − 2ρβ

)
i2ξ2

)
‖un−1 − un‖2, ∀n ≥ 1.

(4.25)

The rest of the proof is identical with the proof of Theorem 4.1 and is omitted. This completes
the proof.

Theorem 4.4. Let K, H, g, a, b, and N be as in Theorem 4.1. Let D and F be as in Theorems 4.2
and 4.3, respectively. Assume that T,A : K → H, η : K ×K → H are Lipschitz continuous with
constants ξ, μ, and δ, respectively, A is g-generalized pseudocontractive with constant β with respect
toN in the second argument, and η is cocoercive with constant α ∈ (0, 1/2]. Let

L = δ−1
[
λ −

√
1 + (1 − 2α)δ2

(
1 +

√
1 − 2λ + ζ2

)]
, E = −β − L

(
iξ +

r + d

δ

)
. (4.26)

If there exists a constant ρ satisfying

0 < ρ <
δL

δiξ + r + d
(4.27)

and one of (4.3), (4.4), and (4.6), then the generalized strongly nonlinear mixed variational-like
inequality (2.1) possesses a solution u ∈ K and the sequence {un}n≥0 defined by Algorithm 3.2
converges to u.
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Proof. By a similar argument used in the proof of Theorem 4.1, we conclude that

− 〈g(un) − g(un+1), un − un+1〉
≤ 〈g(un) − g(un−1) + un − un−1, un − un+1 − η(un, un+1)〉
− 〈g(un−1) − g(un) + ρ〈N(Tun−1, Aun−1) −N(Tun−1, Aun), η(un, un+1)〉
− ρ〈N(Tun−1, Aun) −N(Tun,Aun), η(un, un+1)〉
+ 〈un−1 − un, un − un+1 − η(un, un+1)〉 + ρb(un − un−1, un)

+ ρb(un−1 − un, un+1) + ρa(un−1 − un, un − un+1), ∀n ≥ 1.

(4.28)

Since A is g-generalized pseudocontractive with respect to N in the second argument and
Lipschitz continuous, g is Lipschitz continuous and N is Lipschitz continuous in the second
argument, η is cocoercive and Lipschitz continuous, it follows that

∥∥g(un−1) − g(un) + ρ(N(Tun−1, Aun−1) −N(Tun−1, Aun))
∥∥2

≤
(
ζ2 + 2ρβ + ρ2j2μ2

)
‖un−1 − un‖2, ∀n ≥ 1,

∥∥un − un+1 − η(un, un+1)
∥∥2

≤
(
1 + (1 − 2α)δ2

)
‖un − un+1‖2, ∀n ≥ 0.

(4.29)

The rest of the argument follows as in the proof of Theorem 4.1 and is omitted. This completes
the proof.

Theorem 4.5. Let K, H, g, η, a, b, N, and F be as in Theorem 4.1. Assume that T,A : K → H
are Lipschitz continuous with constants ξ, μ, respectively, T is relaxed (p, q)-cocoercive with respect
to N in the first argument, A is g-relaxed Lipschitz with constant β with respect to N in the second
argument. Let

J =
δ
√
ζ2 − 2β + j2μ2 + δ

√
1 − 2q +

(
2p + 1

)
i2ξ2 + δ + r + d

1 +
√
1 − 2λ + ζ2

,

L =
λ

1 +
√
1 − 2λ + ζ2

, D = δ2 − J2, E = α − JL.

(4.30)

If there exists a constant ρ satisfying

0 < ρ <
L

J
(4.31)

and one of (4.3)–(4.6), then the generalized strongly nonlinear mixed variational-like inequality (2.1)
possesses a solution u ∈ K and the sequence {un}n≥0 defined by Algorithm 3.2 converges to u.
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Proof. Notice that

− 〈g(un) − g(un+1), un − un+1〉
≤ 〈g(un−1) − g(un) + un−1 − un, ρη(un, un+1) − (un − un+1)〉
+ 〈un − un−1, ρη(un, un+1) − (un − un+1)〉
− 〈g(un−1) − g(un) +N(Tun−1, Aun−1) −N(Tun−1, Aun), ρη(un, un+1)〉
+ 〈un−1 − un − (N(Tun−1, Aun) −N(Tun,Aun)), ρη(un, un+1)〉
+ 〈un − un−1, ρη(un, un+1)〉 + ρb(un − un−1, un)

+ ρb(un−1 − un, un+1) + ρa(un−1 − un, un − un+1), ∀n ≥ 1,
∥
∥ρη(un, un+1) − (un − un+1)

∥
∥2

≤
(
1 − 2ρα + ρ2δ2

)
‖un − un+1‖2, ∀n ≥ 0,

∥∥g(un−1) − g(un) +N(Tun−1, Aun−1) −N(Tun−1, Aun)
∥∥2

≤
(
ζ2 − 2β + j2μ2

)
‖un−1 − un‖2, ∀n ≥ 1,

‖un−1 − un − (N(Tun−1, Aun) −N(Tun,Aun))‖2

≤
(
1 − 2q +

(
2p + 1

)
i2ξ2

)
‖un−1 − un‖2, ∀n ≥ 1.

(4.32)

The rest of the proof is similar to the proof of Theorem 4.1 and is omitted. This completes the
proof.

Remark 4.6. Theorems 4.1–4.5 extend, improve, and unify the corresponding results in [9, 12,
13].
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