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1. Introduction

The main work of this paper is study the properties of the solutions to the nonhomogeneous
A-harmonic equation for differential forms

d∗ A(x, u, du) = B(x, u, du). (1.1)

When u is a 0-form, that is, u is a function, (1.1) is equivalent to

divA(x, u,∇u) = B(x, u,∇u). (1.2)

In [1], Serrin gave some properties of (1.2) when the operator satisfies some conditions.
In [2, chapter 3], Heinonen et al. discussed the properties of the quasielliptic equations
−divA(x,∇u) = 0 in the weighted Sobolev spaces, which is a particular form of (1.2).
Recently, a large amount of work on the A-harmonic equation for differential forms has
been done. In 1992, Iwaniec introduced the p-harmonic tensors and the relations between
quasiregular mappings and the exterior algebra (or differential forms) in [3]. In 1993, Iwaniec
and Lutoborski discussed the Poincaré inequality for differential forms when 1 < p < n in
[4], and the Poincaré inequality for differential forms was generalized to p > 1 in [5]. In 1999,
Nolder gave the reverse Hölder inequality for the solution to theA-harmonic equation in [6],
and different versions of the Caccioppoli estimates have been established in [7–9]. In 2004,
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Ding proved the Caccioppli estimates for the solution to the nonhomogeneous A-harmonic
equation d∗A(x, du) = B(x, du) in [10], where the operator B satisfies |B(x, ξ)| ≤ |ξ|p−1. In
2004, D’Onofrio and Iwaniec introduced the p-harmonic type system in [11], which is an
important extension of the conjugate A-harmonic equation. Lots of work on the solution to
the p-harmonic type system have been done in [5, 12].

As prior estimates, the Caccioppoli estimate, the weak reverse Hölder inequality, and
the Harnack inequality play important roles in PDEs. In this paper, we will prove some
Caccioppoli estimates for the solution to (1.1), where the operators A : Ω × Λl × Λl+1 → Λl+1

and B : Ω ×Λl ×Λl+1 → Λl satisfy the following conditions on a bounded convex domain Ω:

|A(x, u, ξ)| ≤ a|ξ|p−1 + b(x)|u − uΩ|p−1 + e(x),

|B(x, u, ξ)| ≤ c(x)|ξ|p−1 + d(x)|u|p−1 + f(x),

〈ξ,A(x, u, du)〉 ≥ |ξ|p − d(x)|u − uΩ| − g(x)

(1.3)

for almost every x ∈ Ω, all l-differential forms u and (l + 1)-differential forms ξ. Where a is a
positive constant and b(x) through g(x) are measurable functions on Ω satisfying:

b, e ∈ Lm(Ω), c ∈ Ln/(1−ε), d, f, g ∈ Lt(Ω) (1.4)

with some 0 < ε ≤ 1, 1/m = 1 − 1/p − (p − 1)/χp, 1/t = 1 − ε/p − (p − ε)/χp, and χ is the
Poincaré constant.

Now we introduce some notations and operations about exterior forms. Let
e1, e2, . . . , en denote the standard orthogonal basis of Rn. For l = 0, 1, . . . , n, we denote the
linear space of all l-vectors by Λl = Λl(Rn), spanned by the exterior product eI = ei1 ∧ ei2 ∧
· · · ∧ eil , corresponding to all ordered l-tuples I = (i1, i2, . . . , il), 1 ≤ i1 < i2 < · · · < il ≤ n. The
Grassmann algebra Λ = ⊕Λl is a graded algebra with respect to the exterior products. For
α =

∑
αIeI ∈ Λ and β =

∑
βIeI ∈ Λ, then its inner product is obtained by

〈
α, β

〉
=
∑

αIβI (1.5)

with the summation over all I = (i1, i2, . . . , il) and all integers l = 0, 1, . . . , n. The Hodge star
operator ∗:Λ → Λ is defined by the rule

∗1 = ei1 ∧ ei2 ∧ · · · ∧ ein ,

α ∧ ∗β = β ∧ ∗α =
〈
α, β

〉
(∗1)

(1.6)

for all α, β ∈ Λ. Hence the norm of α ∈ Λ can be given by

|α|2 = 〈α, α〉 = ∗(α ∧ ∗α) ∈ Λ0 = R. (1.7)

Throughout this paper, Ω ⊂ R
n is an open subset. For any constant σ > 1, Q denotes a

cube such that Q ⊂ σQ ⊂ Ω, where σQ denotes the cube which center is as same as Q, and
diam (σQ) = σdiamQ. We say α =

∑
αIeI ∈ Λ is a differential l-form onΩ, if every coefficient
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αI of α is Schwartz distribution on Ω. We denote the space spanned by differential l-form on
Ω by D′(Ω,Λl). We write Lp(Ω,Λl) for the l-form α =

∑
αIdxI on Ω with αI ∈ Lp(Ω) for all

ordered l-tuple I. Thus Lp(Ω,Λl) is a Banach space with the norm

‖α‖p,Ω =
(∫

Ω
|α|p

)1/p

=

⎛

⎝
∫

Ω

(
∑

I

|αI |2
)p/2

⎞

⎠

1/p

. (1.8)

Similarly, Wk,p(Ω,Λl) denotes those l-forms on Ω which all coefficients belong to Wk,p(Ω).
The following definition can be found in [3, page 596].

Definition 1.1 ([3]). We denote the exterior derivative by

d : D′
(
Ω,Λl

)
−→ D′

(
Ω,Λl+1

)
, (1.9)

and its formal adjoint (the Hodge co-differential) is the operator

d∗ : D′
(
Ω,Λl

)
−→ D′

(
Ω,Λl−1

)
. (1.10)

The operators d and d∗ are given by the formulas

dα =
∑

I

dαI ∧ dxI, d∗ = (−1)nl+1 ∗ d ∗ . (1.11)

By [3, Lemma 2.3], we know that a solution to (1.1) is an element of the Sobolev space
W

1,p
loc (Ω,Λl−1) such that

∫

Ω

〈
A(x, u, du), dϕ

〉
+
〈
B(x, u, du), ϕ

〉 ≡ 0 (1.12)

for all ϕ ∈ W
1,p
0 (Ω,Λl−1)with compact support.

Remark 1.2. In fact, the usualA-harmonic equation is the particular form of the equation (1.1)
when B = 0 and A satisfies

|A(x, ξ)| ≤ K|ξ|p−1, 〈A(x, ξ), ξ〉 ≥ |ξ|p. (1.13)

We notice that the nonhomogeneous A-harmonic equation d∗A(x, du) = B(x, du) and the
p-harmonic type equation are special forms of (1.1).
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2. The Caccioppoli Estimate

In this section we will prove the global and the local Caccioppoli estimates for the solution
to (1.1) which satisfies (1.3). In the proof of the global Caccioppoli estimate, we need the
following three lemmas.

Lemma 2.1 ([1]). Let α be a positive exponent, and let αi, βi, i = 1, 2, . . . ,N, be two sets of N real
numbers such that 0 < αi < ∞ and 0 ≤ βi < α. Suppose that z is a positive number satisfying the
inequality

zα ≤
∑

αiz
βi (2.1)

then

z ≤ C
∑

(αi)γi , (2.2)

where C depends only on N,α, βi, and where γi = (α − βi)
−1.

By the inequalities (2.13) and (3.28) in [5], One has the following lemma.

Lemma 2.2 ([5]). LetΩ be a bounded convex domain in R
n, then for any differential form u, one has

|d|u − uΩ|| ≤ C
(
n, p

)|du|. (2.3)

Lemma 2.3 ([5]). If f, g ≥ 0 and for any nonnegative η ∈ C∞
0 (Ω), one has

∫

Ω
ηf dx ≤

∫

Ω
g dx, (2.4)

then for any h ≥ 0, one has

∫

Ω
ηfhdx ≤

∫

Ω
ghdx. (2.5)

Theorem 2.4. Suppose that Ω is a bounded convex domain in R
n, and u is a solution to (1.1) which

satisfies (1.3), and p > 1, then for any η ∈ C∞
0 (Ω), there exist constants C and k, such that

∥
∥ηdu

∥
∥
p,Ω ≤ C

{(
(diamΩ)s(p−1) + 1

)∥
∥(u − uΩ)dη

∥
∥
p,Ω + (diamΩ)s(p/ε−1)

∥
∥η(u − uΩ)

∥
∥
p,Ω

+k
(
(diamΩ)s(p−1) + 1

)∥
∥dη

∥
∥
p,Ω + k(diamΩ)sp/ε

}
,

(2.6)

where s = n/χp+1−n/p,C = C(n, p, l, a, ‖b‖, ‖d‖, ε), k = ‖e‖1/(p−1)+‖g‖1/p, and χ is the Poincaré
constant. (i.e., χ = 2 when p ≥ n, and χ = np/(n − p) when 1 < p < n).
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Proof. We assume that B(x, u, du) =
∑

I ωIdxI . For any nonnegative η ∈ C∞
0 (Ω), we let

ϕ1 = −∑
I η sign(ωI)dxI , then we have dϕ1 = −∑

I sign(ωI)dη ∧ dxI . By using ϕ = ϕ1 in
the equation (1.12), we can obtain

∫

Ω

〈

B(x, u, du),
∑

I

η sign(ωI)dxI

〉

dx =
∫

Ω

〈

A(x, u, du),−
∑

I

sign(ωI)dη ∧ dxI

〉

dx, (2.7)

that is,

∫

Ω

∑

I

η|ωI |dx =
∫

Ω

〈

A(x, u, du),−
∑

I

sign(ωI)dη ∧ dxI

〉

dx. (2.8)

By the elementary inequality

(
n∑

i=1

ai
2

)1/2

≤
n∑

i=1

|ai|, (2.9)

(2.8) becomes

∫

Ω
η|B(x, u, du)|dx =

∫

Ω
η

(
∑

I

ω2
I

)1/2

dx

≤
∫

Ω
η
∑

I

|ωI |dx

=
∫

Ω

〈

A(x, u, du),−
∑

I

sign(ωI)dη ∧ dxI

〉

dx

≤
∫

Ω

∣
∣
∣
∣
∣

〈

A(x, u, du),−
∑

I

sign(ωI)dη ∧ dxI

〉∣
∣
∣
∣
∣
dx.

(2.10)

Using the inequality

|〈a, b〉| ≤ |a| |b|, (2.11)

then (2.10) becomes

∫

Ω
η|B(x, u, du)|dx ≤

∫

Ω
|A(x, u, du)|

∣
∣
∣
∣
∣

∑

I

sign(ωI)dη ∧ dxI

∣
∣
∣
∣
∣
dx

≤
∫

Ω
|A(x, u, du)| ·

∑

I

∣
∣sign(ωI)dη ∧ dxI

∣
∣dx

=
∫

Ω
|A(x, u, du)|

∑

I

∣
∣dη

∣
∣dx.

(2.12)
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Since B(x, u, du) ∈ Λl−1,so we can deduce

∫

Ω
η |B(x, u, du)|dx ≤ Cl−1

n

∫

Ω
|A(x, u, du)|∣∣dη∣∣dx. (2.13)

Nowwe let ϕ2 = −(u− uΩ)ηp, then dϕ2 = −pηp−1dη ∧ (u− uΩ)− ηpdu. We use ϕ = ϕ2 in (1.12),
then we can obtain

−
∫

Ω

〈
A(x, u, du), pηp−1dη ∧ u + ηpdu

〉
dx −

∫

Ω

〈
B(x, u, du), ηpu

〉
dx ≡ 0. (2.14)

So we have

∫

Ω

〈
A(x, u, du), ηpdu

〉
dx = −

∫

Ω

〈
A(x, u, du), pηp−1dη ∧ (u − uΩ)

〉
dx

−
∫

Ω

〈
B(x, u, du), ηpu

〉
dx.

(2.15)

By (1.3), (2.13), (2.15) and Lemma 2.2, we have

0 ≤
∫

Ω
ηp|du|pdx ≤

∣
∣
∣
∣

∫

Ω

〈
A(x, u, du), ηpu

〉
dx

∣
∣
∣
∣ +

∫

Ω

(|d(x)| |u − uΩ|p +
∣
∣g
∣
∣
)
dx

≤
∫

Ω

∣
∣
∣
〈
A(x, u, du), pηp−1dη ∧ (u − uΩ)

〉∣
∣
∣dx +

∫

Ω

∣
∣
〈
B(x, u, du), ηp(u − uΩ)

〉∣
∣dx

+
∫

Ω
ηp(|d(x)| |u − uΩ|p +

∣
∣g
∣
∣
)
dx

≤
∫

Ω
|A(x, u, du)|pηp−1∣∣dη

∣
∣ |u − uΩ|dx +

∫

Ω
|B(x, u, du)|ηp|u − uΩ|dx

+
∫

Ω
ηp(|d(x)| |u|p + ∣

∣g
∣
∣
)
dx

≤
(
Cl−1

n + p
)∫

Ω
|A(x, u, du)|ηp−1∣∣dη

∣
∣|u − uΩ|dx +

∫

Ω
ηp(|d(x)| |u − uΩ|p +

∣
∣g
∣
∣
)
dx

≤ C1

(∫

Ω
ηp−1∣∣dη

∣
∣|u − uΩ||du|p−1dx +

∫

Ω
ηp−1∣∣dη

∣
∣|u − uΩ|

(
|b(x)| |u − uΩ|p−1 + |e|

)
dx

+
∫

Ω
ηp(|d(x)| |u − uΩ|p +

∣
∣g
∣
∣
)
dx

)

,

(2.16)

where C1 = (Cl−1
n + p)max(1, a).
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We suppose that u − uΩ =
∑

I uIdxI , k = ‖e‖1/(p−1) + ‖g‖1/p and let u1 =
∑

I(uI +
k sign(uI))dxI, then we have du1 = du and

|u − uΩ| + k ≤ |u1| =
(
∑

I

(|uI | + k)2
)1/2

≤ |u − uΩ| + Cl−1
n k. (2.17)

Combining (2.16) and (2.17), we have

∫

Ω
ηp|du1|pdx

≤ C1

(∫

Ω
ηp−1∣∣dη

∣
∣ |u − uΩ| |du|p−1dx +

∫

Ω
ηp−1∣∣dη

∣
∣|u − uΩ|

(
|b(x)| |u − uΩ|p−1 + |e|

)
dx

+
∫

Ω
ηp(|d(x)| |u − uΩ|p +

∣
∣g
∣
∣
)
dx

)

≤ C1

(∫

Ω
ηp−1∣∣dη

∣
∣ |u1| |du1|p−1dx +

∫

Ω
ηp−1∣∣dη

∣
∣ |u1|

(
|b(x)| + k1−p|e|

)(
|u − uΩ|p−1 + kp−1

)
dx

+
∫

Ω
ηp(|d(x)| + k−p∣∣g

∣
∣
)(|u − uΩ|p + kp)dx

)

≤ C2

(∫

Ω
ηp−1∣∣dη

∣
∣ |u1| |du1|p−1dx +

∫

Ω
ηp−1∣∣dη

∣
∣ |u1|

(
|b(x)| + k1−p|e|

)
(|u − uΩ| + k)p−1dx

+
∫

Ω
ηp(|d(x)| + k−p∣∣g

∣
∣
)
(|u − uΩ| + k)pdx

)

≤ C2

(∫

Ω
ηp−1∣∣dη

∣
∣ |u1||du1|p−1dx +

∫

Ω
ηp−1b1(x)

∣
∣dη

∣
∣ |u1|pdx +

∫

Ω
ηpd1(x)|u1|pdx

)

,

(2.18)

whereC2 = C12p−1, b1(x) = |b(x)|+k1−p|e| and d1(x) = |d(x)|+k−p|g|. By simple computations,
we get ‖b1(x)‖ ≤ ‖b(x)‖ + 1 and ‖d1(x)‖ ≤ ‖d(x)‖ + 1.

The terms on the right-hand side of the preceding inequality can be estimated by using
the Hölder inequality, Minkowski inequality, Poincaré inequality and Lemma 2.2. Thus

∫

Ω
ηp−1∣∣dη

∣
∣|u1| |du1|p−1dx ≤ ‖u1dη‖p,Ω‖ηdu1‖p−1p,Ω , (2.19)

∫

Ω
ηp−1b1(x)

∣
∣dη

∣
∣|u1|pdx =

∫

Ω
ηp−1b1(x)

∣
∣dη

∣
∣|u1||u1|p−1dx

≤ ‖b1(x)‖m,Ω

(∫

Ω

(
ηp−1∣∣dη

∣
∣|u1||u1|p−1

)m/(m−1)
dx

)1−1/m
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≤ ‖b1(x)‖m,Ω‖u1dη‖p,Ω‖u1η‖p−1χp,Ω

≤ C3‖b1(x)‖m,Ω(diamΩ)s(p−1)‖u1dη‖p,Ω‖d|u1η|‖p−1p,Ω

≤ C4(diamΩ)s(p−1)‖u1dη‖p,Ω
(
‖u1dη‖p,Ω + ‖d|u1|η‖p,Ω

)p−1

≤ C5(diamΩ)s(p−1)‖u1dη‖p,Ω
(
‖u1dη‖p−1p,Ω + ‖η|du|‖p−1p,Ω

)

= C5(diamΩ)s(p−1)‖u1dη‖p,Ω
(
‖u1dη‖p−1p,Ω + ‖η|du1|‖p−1p,Ω

)

= C5(diamΩ)s(p−1)
(
‖u1dη‖pp,Ω + ‖u1dη‖p,Ω‖ηdu1‖p−1p,Ω

)
.

(2.20)

By the similar computation, we can obtain

∫

Ω
ηpd1(x)|u1|pdx =

∫

Ω
ηpd1(x)|u1|p−ε|u1|εdx

≤ C6(diamΩ)s(p−ε)
∥
∥u1η

∥
∥ε

p,Ω

(∥
∥u1dη

∥
∥p−ε
p,Ω +

∥
∥ηdu1

∥
∥p−ε
p,Ω

)
.

(2.21)

We insert the three previous estimates (2.19), (2.20) and (2.21) into the right-hand side of
(2.15), and set

z =
‖ηdu1‖p,Ω
‖u1dη‖p,Ω

, ζ =
‖ηu1‖p,Ω
‖u1dη‖p,Ω

, (2.22)

the result can be written

zp ≤ C2z
p−1 + C5(diamΩ)s(p−1)

(
1 + zp−1

)
+ C6(diamΩ)s(p−ε)ζε

(
1 + zp−ε

)

≤ C7

{(
(diamΩ)s(p−1) + 1

)(
1 + zp−1

)
+ (diamΩ)s(p−ε)ζε

(
1 + zp−ε

)}
. (2.23)

Applying Lemma 2.1 and simplifying the result, we obtain

z ≤ C7

{(
(diamΩ)s(p−1) + 1

)
+ (diamΩ)s(p/ε−1)ζ

}
, (2.24)

or in terms of the original quantities

‖ηdu1‖p,Ω ≤ C7

{(
(diamΩ)s(p−1) + 1

)
‖u1dη‖p,Ω + (diamΩ)s(p/ε−1)‖ηu1‖p,Ω

}
. (2.25)
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Combining (2.17) and (2.25), we can obtain

‖ηdu‖p,Ω ≤ C7

{(
(diamΩ)s(p−1) + 1

)
‖(u − uΩ)dη‖p,Ω + k(diamΩ)sp/ε

+(diamΩ)s(p/ε−1)‖η(u − uΩ)‖p,Ω + k
(
(diamΩ)s(p−1) + 1

)
‖dη‖p,Ω

}
.

(2.26)

If 1 < p < n in Theorem 2.4, we can obtain the following.

Corollary 2.5. Suppose that Ω is a bounded convex domain in R
n, and u is a solution to (1.1) which

satisfies (1.3), and 1 < p < n, then for any η ∈ C∞
0 (Ω), there exist constants C and k, such that

‖ηdu‖p,Ω ≤ C
{∥
∥(u − uΩ)dη

∥
∥
p,Ω +

∥
∥η(u − uΩ)

∥
∥
p,Ω + k

∥
∥dη

∥
∥
p,Ω + k|Ω|

}
, (2.27)

where C = C(n, p, l, a, ‖b‖, ‖d‖, ε) and k = ‖e‖1/(p−1) + ‖g‖1/p.

When u is a 0-differential form, that is, u is a function, we have |d|u|| ≤ |du|. Now we
use u in place of u − uΩ in (1.3), then (1.1) satisfying (1.3) is equivalent to (5) which satisfies
(6) in [1], we can obtain the following result which is the improving result of [1, Theorem 2].

Corollary 2.6. Let u be a solution to the equation div A(x, u,∇u) = B(x, u,∇u) in a domain Ω.
For any 1 < p < n, one denotes χ = n/(n − p). Suppose that the following conditions hold

(i) |A(x, u, ξ)| ≤ a|ξ|p−1 + b|u|p−1 + e, where a > 0 is a constant, b, e ∈ Lq such that 2003(p −
1)/pχ + 1/p + 1/q = 1;

(ii) |B(x, u, ξ)| ≤ c|ξ|p−1 + d|u|p−1 + f,

(iii) ξ ·A(x, u, ξ) ≥ |ξ|p − d|u|p − g,

where b ∈ Ln/(p−1); c ∈ Ln/(1−ε); d, f, g ∈ Ln/(p−ε) with for some ε ∈ (0, 1]. Then for any σ > 1 and
any cubes or balls Q such that Q ⊂ σQ ⊂ Ω, one has

‖∇u‖p,Q ≤ C
(
r−1 + 1

)(
‖u‖p,σQ + krn/p

)
, (2.28)

where C and k are constants depending only on the above conditions and r is the diameter of Q. One
can write them

C = C
(
p, n, σ, ε;a, ‖b‖, ‖d‖),

k = ‖e‖1/(p−1) + ‖g‖1/p.
(2.29)
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If we let η ∈ C∞
0 (σQ) and η is a bump function, then we have the following.

Corollary 2.7. Suppose that Ω is a bounded convex domain in R
n, and u is a solution to (1.1) which

satisfies (1.3), and p > 1, then for any σ > 1 and any cubes or balls Q such that Q ⊂ σQ ⊂ Ω, there
exist constants C and k, such that

‖du‖p,Q ≤ C
{
‖u − uσQ‖p,σQ + k

}
, (2.30)

where C = C(n, p, l, a, ‖b‖, ‖d‖, ε,diamQ), k = ‖e‖1/(p−1) + ‖g‖1/p, and χ is the Poincaré constant.

3. Some Examples

Example 3.1. The Sobolev inequality cannot be deduced to differential forms. For any η ∈
C∞

0 (B),we only let

u = ηdx +
(∫

B

∂η

∂y
dx

)

dy +
(∫

B

∂η

∂z
dx

)

dz, (3.1)

then u ∈ C∞
0 (B,Λ1), and

du =
(
∂η

∂x
dx +

∂η

∂y
dy +

∂η

∂z
dz

)

∧ dx

+

(
∂η

∂y
dx +

(∫

B

∂2η

∂y2
dx

)

dy +

(∫

B

∂2η

∂y∂z
dx

)

dz

)

∧ dy

+

(
∂η

∂z
dx +

(∫

B

∂2η

∂y∂z
dx

)

dy +

(∫

B

∂2η

∂z2
dx

)

dz

)

∧ dz

= 0.

(3.2)

So we cannot obtain

(
1
|B|

∫

B

|u|pχdx
)1/pχ

≤ Cdiam (B)
(

1
|B|

∫

B

|du|pdx
)1/p

. (3.3)

Example 3.2. The Poincaré inequality can be deduced to differential forms. We can see the
following lemma.

Lemma 3.3 ([5]). Let u ∈ D′(D,Λl), and du ∈ Lp(D,Λl+1), then u − uD is in Lχp(D,Λl) and

(
1
|D|

∫

D

|u − uD|pχdx
)1/pχ

≤ C
(
n, p, l

)
diam (D)

(
1
|D|

∫

D

|du|pdx
)1/p

, (3.4)

for any ball or cube D ∈ R
n, where χ = 2 for p ≥ n and χ = np/(n − p) for 1 < p < n.
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tensors,” Proceedings of the American Mathematical Society, vol. 127, no. 9, pp. 2657–2664, 1999.

[9] X. Yuming, “Weighted integral inequalities for solutions of the A-harmonic equation,” Journal of
Mathematical Analysis and Applications, vol. 279, no. 1, pp. 350–363, 2003.

[10] S. Ding, “Two-weight Caccioppoli inequalities for solutions of nonhomogeneous A-harmonic
equations on Riemannian manifolds,” Proceedings of the American Mathematical Society, vol. 132, no.
8, pp. 2367–2375, 2004.

[11] L. D’Onofrio and T. Iwaniec, “The p-harmonic transform beyond its natural domain of definition,”
Indiana University Mathematics Journal, vol. 53, no. 3, pp. 683–718, 2004.

[12] G. Bao, Z. Cao, and R. Li, “The Caccioppoli estimate for the solution to the p-harmonic type system,”
in Proceedings of the 6th International Conference on Differential Equations and Dynaminal Systems (DCDIS
’09), pp. 63–67, 2009.


	1. Introduction
	2. The Caccioppoli Estimate
	3. Some Examples
	Acknowledgment
	References

