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1. Introduction

For real and positive values of x the Euler gamma function Γ and its logarithmic derivative
ψ, the so-called digamma function, are defined as

Γ(x) =
∫+∞

0
tx−1e−tdt, ψ(x) =

Γ′(x)
Γ(x)

. (1.1)

For extension of these functions to complex variables and for basic properties see [1].
In recent years, many monotonicity results and inequalities involving the Gamma and

incomplete Gamma functions have been established. This article is stimulated by an open
problem posed by Guo and Qi in [2]. The extensions and generalizations of this problem can
be found in [3–5] and some references therein.

Using Stirling formula, for all nonnegative integers k, natural numbers n and m, an
upper bound of the quotient of two geometrical means of natural numbers was established
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in [4] as follows:

(∏n+k
i=k+1i

)1/n

(∏n+m+k
i=k+1 i

)1/(n+m)
≤
√

n + k

n +m + k
, (1.2)

and the following lower bound was appeared in [2, 5]:

n + k + 1
n +m + k + 1

<
n√(n + k)!/k!

n+m√(n +m + k)!/k!
, (1.3)

Since Γ(n + 1) = n!, as a generalization of inequality (1.3), the following monotonicity
result was obtained by Guo and Qi in [2]. The function

[Γ(x + y + 1)/Γ(y + 1)]1/x

x + y + 1
(1.4)

is decreasing with respect to x on [1,∞) for fixed y ≥ 0. Hence, for positive real numbers x
and y, we have

x + y + 1
x + y + 2

≤
[
Γ(x + y + 1)/Γ(y + 1)

]1/x
[
Γ(x + y + 2)/Γ(y + 1)

]1/(x+1) . (1.5)

Recently, in [6], Qi and Sun proved that the function

[
Γ(x + y + 1)/Γ(y + 1)

]1/x
√
x + y

(1.6)

is strictly increasing with respect to x ∈ [y + 1,∞) for all y ≥ y0.
Now, we generalize the function in (1.4) as follows: for positive real numbers x and y,

α ≥ 0, let

Fα(x, y) =

[
Γ(x + y + 1)/Γ(y + 1)

]1/x
(x + y + 1)α

. (1.7)

The aim of this paper is to discuss the monotonicity and logarithmical convexity of the
function Fα(x, y) with respect to parameter α.

For convenience of the readers, we recall the definitions and basic knowledge of
convex function and logarithmically convex function.
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Definition 1.1. Let D ⊂ R2 be a convex set, f : D → R is called a convex function on D if

f

(
x + y
2

)
≤ f(x) + f(y)

2
(1.8)

for all x,y ∈ D, and f is called concave if −f is convex.

Definition 1.2. Let D ⊂ R2 be a convex set, f : D → (0,∞) is called a logarithmically
convex function on D if ln f is convex on D, and f is called logarithmically concave if ln f
is concave.

The following criterion for convexity of function was established by Fichtenholz in [7].

Proposition 1.3. Let D ⊂ R2 be a convex set, if f : D → R have continuous second partial
derivatives, then f is a convex (or concave) function onD if and only if L(x) is a positive (or negative)
semidefinite matrix for all x ∈ D, where

L(x) =

(
f ′′
11 f ′′

12

f ′′
21 f ′′

22

)
(1.9)

and f ′′
ij = ∂2f(x1, x2)/∂xi∂xj for x = (x1, x2), i, j = 1, 2.

Notation 1. In Definitions 1.1, 1.2 and Proposition 1.3, we denote x,y by the points (or vectors)
of R2, and denote x, y by the real variables in the later.

Our main results are Theorems 1.4 and 1.5.

Theorem 1.4. (1) For any fixed y ≥ 0, Fα(x, y) is strictly increasing (or decreasing, resp.) with
respect to x on (0,∞) if and only if 0 ≤ α ≤ 1/2 (or α ≥ 1, resp.);

(2) For any fixed x > 0, Fα(x, y) is strictly increasing with respect to y on [0,∞) if and only
if 0 ≤ α ≤ 1.

Theorem 1.5. (1) If 0 ≤ α ≤ 1/4, then Fα(x, y) is logarithmically concave with respect to (x, y) ∈
(0,∞) × (0,∞);

(2) If E ⊂ (0,∞) × (0,∞) is a convex set with nonempty interior and α ≥ 1, then Fα(x, y) is
neither logarithmically convex nor logarithmically concave with respect to (x, y) on E.

The following two corollaries can be derived from Theorems 1.4 and 1.5 immediately.

Corollary 1.6. If (x, y) ∈ (0,∞) × (0,∞), then

x + y + 1
x + y + 2

<

[
Γ(x + y + 1)/Γ(y + 1)

]1/x
[
Γ(x + y + 2)/Γ(y + 1)

]1/(x+1) <

√
x + y + 1
x + y + 2

. (1.10)
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Remark 1.7. Inequality (1.3) can be derived from Corollary 1.6 if we take x, y ∈ N. Although
we cannot get the inequality (1.2) exactly from Corollary 1.6, but we can get the following
inequality which is close to inequality (1.2):

(∏n+k
i=k+1i

)1/n

(∏n+m+k
i=k+1 i

)1/(n+m)
≤
√

n + k + 1
n +m + k + 1

. (1.11)

Corollary 1.8. If (x1, y1), (x2, y2) ∈ (0,∞) × (0,∞), then

[
Γ
(
x1 + y1 + 1

)
/Γ

(
y1 + 1

)]1/x1 ·[Γ(x2 + y2 + 1
)
/Γ

(
y2 + 1

)]1/x2

[
Γ
((
x1 + x2 + y1 + y2)/2 + 1

)
/Γ

((
y1 + y2)/2 + 1

)]4/(x1+x2)

≤
√
2
[(
x1 + y1 + 1

)(
x2 + y2 + 1

)]1/4
√
x1 + y1 + x2 + y2 + 2

.

(1.12)

Remark 1.9. We conjecture that the inequality (1.2) can be improved if we can choose two
pairs of integers (x1, y1) and (x2, y2) properly.

2. Lemmas

It is well known that the Bernoulli numbers Bn is defined [8] in general by

1
et − 1

+
1
2
− 1

t
=

∞∑
n=1

(−1)n−1 t2n

(2n)!
Bn. (2.1)

In particular, we have

B1 =
1
6
, B2 =

1
30

, B3 =
1
42

, B4 =
1
30

. (2.2)

In [9], the following summation formula is given:

∞∑
n=0

(−1)n
(2n + 1)2k+1

=
π2k+1Ek

22k+2(2k)!
(2.3)

for nonnegative integer k, where Ek denotes the Euler number, which implies

Bn =
2(2n)!

(2π)2n

∞∑
m=1

1
m2n

, n ∈ N. (2.4)

Recently, the Bernoulli and Euler numbers and polynomials are generalized in [10–13].
The following two Lemmas were established by Qi and Guo in [3, 14].
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Lemma 2.1 (see [3]). For real number x > 0 and natural numberm, one has

ln Γ(x) =
1
2
ln(2π) +

(
x − 1

2

)
lnx − x +

m∑
n=1

(−1)n−1 Bn

2(2n − 1)n
· 1
x2n−1

+ (−1)mθ1 Bm+1

(2m + 1)(2m + 2)
· 1
x2m+1

, 0 < θ1 < 1;

(2.5)

ψ(x) = lnx − 1
2x

+
m∑
n=1

(−1)n Bn

2n
· 1
x2n

+ (−1)m+1θ2
Bm+1

(2m + 2)
· 1
x2m+2

, 0 < θ2 < 1; (2.6)

ψ ′(x) =
1
x
+

1
2x2

+
m∑
n=1

(−1)n−1 Bn

x2n+1
+ (−1)mθ3· Bm+1

x2m+3
, 0 < θ3 < 1; (2.7)

ψ ′′(x) = − 1
x2

− 1
x3

+
m∑
n=1

(−1)n(2n + 1)
Bn

x2n+2
+ (−1)m+1(2m + 3)θ4· Bm+1

x2m+4
, 0 < θ4 < 1. (2.8)

Lemma 2.2 (see [14]). Inequalities

lnx − 1
x
≤ ψ(x) ≤ lnx − 1

2x
, (2.9)

(k − 1)!
xk

+
k!

2xk+1
≤ (−1)k+1ψ(k)(x) ≤ (k − 1)!

xk
+

k!
xk+1

(2.10)

hold in (0,∞) for k ∈ N.

Lemma 2.3. Let r(x, y) = ψ(x + y + 1) − ψ(y + 1) − αx/(x + y + 1), then the following statements
are true:

(1) if 0 ≤ α ≤ 1, then r(x, y) ≥ 0 for (x, y) ∈ (0,∞) × [0,∞);

(2) if α > 1, then r(α, y) < 0 for y ∈ (2/(α − 1),∞).

Proof. (1) Making use of (2.6) we get

lim
y→∞

r(x, y) = lim
y→∞

[
ln(x + y + 1) − ln(y + 1)

]
= 0 (2.11)

for any fixed x > 0.
Since ψ(x + 1) = 1/x + ψ(x) and 0 ≤ α ≤ 1, we have

r(x, y) − r(x, y + 1) =
x
[
(1 − α)y + x + 2 − α

]
(y + 1)(x + y + 1)(x + y + 2)

> 0 (2.12)

for all (x, y) ∈ (0,∞) × [0,∞).
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Therefore, Lemma 2.3(1) follows from (2.11) and (2.12).
(2) If α > 1, then (2.12) leads to

r(α, y) − r(α, y + 1) < 0 (2.13)

for y ∈ (2/(α − 1),∞).
Therefore, Lemma 2.3(2) follows from (2.11) and (2.13).

Lemma 2.4. If g(x, y) = 2xψ(y+1)−2[ln Γ(x+y+1)− ln Γ(y+1)]+x2ψ ′(y+1), then g(x, y) > 0
for (x, y) ∈ (0,∞) × (0,∞).

Proof. It is easy to see that

g(0, y) = 0 (2.14)

for all y ∈ (0,∞).
Let g1(x, y) = ∂g(x, y)/∂x, then

g1(x, y) = 2
[
xψ ′(y + 1) − ψ(x + y + 1) + ψ(y + 1)

]
, (2.15)

g1(0, y) = 0, (2.16)
∂g1(x, y)

∂x
= 2

[
ψ ′(y + 1) − ψ ′(x + y + 1)

]
> 0 (2.17)

for x > 0. On the other hand, from (2.10)we know that ψ ′(x) is strictly decreasing on (0,∞).
Therefore, Lemma 2.4 follows from (2.14)–(2.17).

Remark 2.5. Let

a(x, y) =
2
x3

[
ln Γ(x + y + 1) − ln Γ(y + 1)

] − 2
x2

ψ(x + y + 1),

b(x, y) = − 1
x2

[
ψ(x + y + 1) − ψ(y + 1)

]
,

c(x, y) = − 1
x
ψ ′(y + 1).

(2.18)

Then simple computation shows that

g(x, y) = x3[2b(x, y) − a(x, y) − c(x, y)
]
. (2.19)

Lemma 2.6. Let d(x, y) = (1/x )ψ ′(x + y + 1) + α/(x + y + 1)2, then the following statements are
true:

(1) if 0 ≤ α ≤ 1/4, then

[
a(x, y) + d(x, y)

][
c(x, y) + d(x, y)

]
>
[
b(x, y) + d(x, y)

]2 (2.20)

for (x, y) ∈ (0,∞) × (0,∞);
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(2) if α ≥ 1, then

[
a(x, y) + d(x, y)

][
c(x, y) + d(x, y)

]
<
[
b(x, y) + d(x, y)

]2 (2.21)

for (x, y) ∈ (0,∞) × (0,∞).

Proof. Let

f(x, y) = 2ψ ′(y + 1)
[
xψ(x + y + 1) − ln Γ(x + y + 1) + ln Γ(y + 1)

]−[ψ(x + y + 1) − ψ(y + 1)
]2
,

p(x, y) = f(x, y) − g(x, y)
[
ψ ′(x + y + 1) +

αx

(x + y + 1)2

]
.

(2.22)

Then it is not difficult to verify

p(0, y) = 0, (2.23)

p(x, y) = x4
{[

a(x, y) + d(x, y)
][
c(x, y) + d(x, y)

] − [
b(x, y) + d(x, y)

]2}
, (2.24)

∂p(x, y)
∂x

= − αx

(x + y + 1)2
∂g(x, y)

∂x
− g(x, y)

[
ψ ′′(x + y + 1) +

α

(x + y + 1)2
− 2αx

(x + y + 1)3

]
.

(2.25)

(1) If 0 ≤ α ≤ 1/4, then making use of Lemmas 2.2, 2.4 and (2.25)we get

∂p(x, y)
∂x

> − αx

(x + y + 1)2
∂g(x, y)

∂x

+ g(x, y)
[

1

(x + y + 1)2
+

1

(x + y + 1)3
− α

(x + y + 1)2
+

2αx

(x + y + 1)3

]

>
1

(x + y + 1)2

[
(1 − α)g(x, y) − αx

∂g(x, y)
∂x

]
, (2.26)

for (x, y) ∈ (0,∞) × (0,∞).
Let gi(x, y) = ∂ig(x, y)/∂xi, i = 1, 2, 3, 4, q(x, y) = (1 − α)g(x, y) − αx(∂g(x, y)/∂x),

and qj(x, y) = ∂jq(x, y)/∂xj , j = 1, 2. Then simple computation leads to

g3(x, y) = −2ψ ′′(x + y + 1), (2.27)

g4(x, y) = −2ψ ′′′(x + y + 1), (2.28)

∂q2(x, y)
∂x

= (1 − 4α)g3(x, y) − αxg4(x, y), (2.29)

q2(0, y) = q1(0, y) = q(0, y) = 0 (2.30)

for all y ∈ (0,∞).
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It is well known that ln Γ(x) = −cx +
∑∞

k=1[x/k − ln(1 + x/k)] − lnx, where c =
0.577215 · · · is the Euler’s constant. From this we get

ψ(n) = (−1)n+1n!
∞∑
k=0

1

(k + x)n+1
. (2.31)

From Lemma 2.2, (2.27)–(2.29), (2.31) and the assumption 0 ≤ α ≤ 1/4, we conclude
that

∂q2(x, y)
∂x

> 0. (2.32)

Therefore, Lemma 2.6(1) follows from (2.23)–(2.26), (2.30), and (2.32).
(2) If α ≥ 1, then making use of (2.8), Lemma 2.4 and (2.25) we obtain

∂p(x, y)
∂x

< − αx

(x + y + 1)2
∂g(x, y)

∂x
+ g(x, y)

[
1

(x + y + 1)3
+

1

2(x + y + 1)4
+

2αx

(x + y + 1)3

]

< − αx

(x + y + 1)2
∂g(x, y)

∂x
+ g(x, y)

2α(x + 1)

(x + y + 1)3

<
α(x + 1)

(x + y + 1)3

[
2g(x, y) − x

∂g(x, y)
∂x

]
.

(2.33)

Let

v(x, y) = 2g(x, y) − x
∂g(x, y)

∂x
, vi(x, y) =

∂iv(x, y)
∂xi

, i = 1, 2. (2.34)

Then

v2(x, y) = 2xψ ′′(x + y + 1) < 0 (2.35)

for (x, y) ∈ (0,∞) × (0,∞) by Lemma 2.2, and

v(0, y) = v1(0, y) = 0 (2.36)

for y ∈ (0,∞).
Therefore, Lemma 2.6(2) follows from (2.23)–(2.25) and (2.33)–(2.36).
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3. Proofs of Theorems 1.4 and 1.5

Proof of Theorem 1.4. (1) Let G(x, y) = lnFα(x, y) and G1(x, y) = x2(∂G(x, y)/∂x), then

G1(x, y) = −[ ln Γ(x + y + 1) − ln Γ(y + 1)
]
+ xψ(x + y + 1) − αx2

x + y + 1
. (3.1)

The following three cases will complete the proof of Theorem 1.4(1).

Case 1. If 0 ≤ α ≤ 1/2, then (3.1) and Lemma 2.2 imply

∂G1(x, y)
∂x

= x

[
ψ ′(x + y + 1) − α(x + 2y + 2)

(x + y + 1)2

]

> x

[
1

x + y + 1
+

1

2(x + y + 1)2
− α(x + 2y + 2)

(x + y + 1)2

]

=
x

2(x + y + 1)2
[
(2 − 2α)x + (2 − 4α)y + 3 − 4α

]

> 0

(3.2)

for (x, y) ∈ (0,∞) × [0,∞).
From (3.2) and the fact that G1(0, y) = 0 for all y ∈ [0,∞) we know that Fα(x, y) is

strictly increasing with respect to x on (0,∞) for any fixed y ∈ [0,∞).

Case 2. If α ≥ 1, then (3.1) and (2.7) imply

∂G1(x, y)
∂x

< x

[
1

x + y + 1
+

1

2(x + y + 1)2
+

1

6(x + y + 1)3
− α(x + 2y + 2)

(x + y + 1)2

]

=
x

6(x + y + 1)3
[
(6 − 6α)x2 + λ1(y)x + λ2(y)

]

< 0

(3.3)

for (x, y) ∈ (0,∞)× [0,∞), where λ1(y) = (12− 18α)y + 15− 18α < 0 and λ2(y) = 6(1− 2α)y2 +
(15 − 24α)y + 10 − 12α < 0.

From (3.3) and the fact that G1(0, y) = 0 for all y ∈ [0,∞) we know that Fα(x, y) is
strictly decreasing with respect to x on (0,∞) for any fixed y ∈ [0,∞).

Case 3. If 1/2 < α < 1, let

G2(x, y) = ψ ′(x + y + 1) − α(x + 2y + 2)

(x + y + 1)2
. (3.4)
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Then

∂G1(x, y)
∂x

= xG2(x, y), (3.5)

G2(0, y) <
1

y + 1
+

1

2(y + 1)2
+

1

6(y + 1)3
− 2α
y + 1

=
1

6(y + 1)3
[
6(1 − 2α)y2 + (15 − 24α)y + 10 − 12α

]
< 0

(3.6)

for y ≥ (15 − 24α +
√
48α − 15)/(24α − 12).

It is obvious that (3.6) implies

G2

(
0,

15 +
√
48α − 15

24α − 12

)
< 0. (3.7)

The continuity of G2(x, y) with respect to x ∈ (0,∞) for any fixed y ∈ [0,∞) and (3.7) imply
that there exists δ = δ(α) > 0 such that

G2

(
x,

15 +
√
48α − 15

24α − 12

)
< 0 (3.8)

for x ∈ (0, δ).
From (3.5), (3.8) and G1(0, (15 +

√
48α − 15)/(24α − 12)) = 0 we know that Fα(x, y) is

strictly decreasing with respect to x on (0, δ) for y = (15 +
√
48α − 15)/(24α − 12).

On the other hand, making use of (2.5) and (2.6) we have

lim
x→+∞

G1(x, y) = lim
x→+∞

x

[
1 −

(
y +

1
2

)
ln(x + y + 1)

x
− αx

x + y + 1

]
+ C

(
y, θ1

)

= lim
x→+∞

(1 − α)x + C
(
y, θ1

)

= +∞,

(3.9)

where

C
(
y, θ1

)
=
(
y +

1
2

)
ln(y + 1) +

1
12(y + 1)

− 1
2
− θ1

360(y + 1)3
(3.10)

for y ∈ [0,∞) and 0 < θ1 < 1.
Equation (3.9) implies that there exists M = M(α) > δ(α) such that

G1

(
x,

15 +
√
48α − 15

24α − 12

)
> 0 (3.11)

for x ∈ (M,∞).
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Hence, from (3.11) we know that Fα(x, y) is strictly increasing with respect to x on
(M,∞) for y = (15 +

√
48α − 15)/(24α − 12).

(2) Since

x
∂G(x, y)

∂y
= ψ(x + y + 1) − ψ(y + 1) − αx

x + y + 1
= r(x, y), (3.12)

then, Theorem 1.4(2) follows from (3.12) and Lemma 2.3.

Proof of Theorem 1.5. Let G(x, y) = lnFα(x, y), G′′
11(x, y) = ∂2G(x, y)/∂x2, G′′

12 = ∂2G(x, y)/
∂x∂y and G′′

22(x, y) = ∂2G(x, y)/∂y2, then simple calculation yields

G′′
11(x, y) =

2
x3

[
ln Γ(x + y + 1) − ln Γ(y + 1)

] − 2
x2

ψ(x + y + 1)

+
1
x
ψ ′(x + y + 1) +

α

(x + y + 1)2

= a(x, y) + d(x, y),

(3.13)

G′′
12(x, y) = − 1

x2

[
ψ(x + y + 1) − ψ(y + 1)

]
+
1
x
ψ ′(x + y + 1) +

α

(x + y + 1)2

= b(x, y) + d(x, y),

(3.14)

G′′
22(x, y) =

1
x

[
ψ ′(x + y + 1) − ψ ′(y + 1)

]
+

α

(x + y + 1)2

= c(x, y) + d(x, y),

(3.15)

where a(x, y), b(x, y), c(x, y), and d(x, y) are defined in Remark 2.5 and Lemma 2.6.
According to the Definition 1.2 and Proposition 1.3, to prove Theorem 1.5 we need

only to show that

G′′
11(x, y) ≤ 0, (3.16)

G′′
11(x, y)G

′′
22(x, y) −

[
G′′

12(x, y)
]2 ≥ 0 (3.17)

for 0 ≤ α ≤ 1/4 and (x, y) ∈ (0,∞) × (0,∞), and

G′′
11(x, y)G

′′
22(x, y) −

[
G′′

12(x, y)
]2

< 0 (3.18)

for α ≥ 1 and (x, y) ∈ (0,∞) × (0,∞).
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Next, let w(x, y) = x3G′′
11(x, y), then

w(x, y) = 2
[
ln Γ(x + y + 1) − ln Γ(y + 1)

] − 2xψ(x + y + 1) + x2ψ ′(x + y + 1) +
αx3

(x + y + 1)2
,

w(0, y) = 0,
(3.19)

∂w(x, y)
∂x

= x2
[
ψ ′′(x + y + 1) +

α(x + 3y + 3)

(x + y + 1)3

]

< x2
[
α(x + 3y + 3)

(x + y + 1)3
− 1

(x + y + 1)2
− 1

(x + y + 1)3

]

=
x2

(x + y + 1)3
[
(α − 1)x + (3α − 1)y + 3α − 2

]

< 0

(3.20)

for (x, y) ∈ (0,∞) × [0,∞) by Lemma 2.2 and 0 ≤ α ≤ 1/4.
Therefore, (3.16) follows from (3.19) and (3.20), and (3.17) and (3.18) follow from

Lemma 2.6. The proof of Theorem 1.5 is completed.
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