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1. Introduction and Definitions
Let T, (p) denote the class of functions f(z) of the form

f(z) =2 - Z arzk (ar >0, n,peN=1{1,2,3,..}), (1.1)
k=n+p

which are analytic and multivalent in the unit disk U = {z: z € C and |z| < 1}.
The fractional calculus are defined as follows (e.g., [1, 2]).

Definition 1.1. The fractional integral of order 6 is defined by

L (7 f©)

NGl fere: de (6>0), (1.2)

2.0 f(z) =

where f(z) is an analytic function in a simply-connected region of the z-plane containing the

origin and the multiplicity of (z — ¢)°" is removed by requiring log (z — ¢) to be real when
z-¢>0.
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Definition 1.2. The fractional derivative of order 6 is defined by

1 d (" f@
(1-06)dz 0(z—¢)

20 f(2) =1 —dé (0<6<1), (1.3)
where f(z) is constrained and multiplicity of (z - .g)‘5 is removed as in Definition 1.1.
Definition 1.3. Under the hypotheses of Definition 1.1, the fractional derivative of order (n+6)

is defined by

dn
dzn

D10 f(z) = —— D0 f(z) (0<6<1, neNy=NU{0}). (1.4)

(a), denotes the Pochhammer symbol (or the shifted factorial), since
(1), =n! forneNy:=NuU{0}, (1.5)

defined (for a,v € C and in terms of the Gamma function) by

(1.6)

(@, D@ (1, (v=0, acC\ (0}),
Yo = I'(a) a(a+1)---(a+n-1), (v=neN; aeC).

The earlier investigations by Goodman [3, 4] and Ruscheweyh [5], we define the (n,p, €)-
neighborhood of a function f € C,(p) by

N5, (D, D0 ) = {getn(p):g(z) =zl = 3 bez*, > (k+1-6)sk|ar - byl Ss},

k=n+p k=n+p
(1.7)

so that, obviously,

N, (D2h, D0 g) = {getn(p):g(z) =2V — > bezN, D (k+1-8)sk|bx] sg}, (1.8)

k=n+p k=n+p
where

h(z) = zP. (1.9)



Journal of Inequalities and Applications 3

The class SEIP(A, a) denote the subclass of T, (p) consisting of functions f(z) which
satisfy

z¥'(z)
F(z)

Re

>a (0<a<p, peN), (1.10)

where
F(z) =1z 0f(2) + (1 - V)0 f(z) (0<A<1,0<6<1). (1.11)

We note that the class 581 (A, @) was investigated by Altintas [6] and the class 59140 A, a)
was studied by Altintas et al. [7, 8] .
We donote by

30,(0,a) = Sp(p,a),  S,(La)=Culp,a) (1.12)

the classes of p-valently starlike functions of order a in U (0 < a < p) and p-valently convex
functions of order a in U (0 < a < p), respectively [see, [2, 9]].

Finally ch,p()t, a,n) denote the subclass of the general class T,(p) consisting of
functions f(z) € C,(p) satisfying the following nonhomogeneous Cauchy-Euler differential
equation:

2227000 + 21+ W)z Pw + (1 + WDw = (p-6+u)(p -6+ u+1)dlg, (1.13)

where w = f(z), f(z) € Cu(p), g = g(2) € 51‘2’p()t, a)and u > 6 —p.
The main object of the present paper is to give coefficients bounds and distortion
inequalities for functions in the classes SS,p()L, a) and ch,p A, a, p).

2. Coefficient Bounds and Distortion Inequalities
We begin by proving the following result.

Lemma 2.1. Let the function f(z) € T, (p) be defined by (1.1). Then f(z) is in the class 524, A a)
if and only if

i (k+1-06)s(k—a-06)[1+AMk-1-08)]ax < (p+1-0)s5(p—a-06)[1+A(p-1-0)]
k=n+p
(0<A<L;, 0<a<p-6,0<6<1;, peN).
(2.1)

The result is sharp for the function f(z) given by

(p+1-6)s(p-a-6)[1+Mp-1-6)] nep

& = Gy 1 Bymep-a- 61+ A rp-1-5)]

(2.2)
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Proof. Let f(z) € C,(p) and ¥(z) be defined by (1.11). Suppose that f(z) € 52,10 (A, a). Then,
in conjunction with (1.10) and (1.11) yields

(p+1-6)5(p-6) [1+M(p-1-6)]2 O- 52, (k+1-6)(k - 6)[1+ 1 (k-1-6) ] axz*~0

> a.
(p+1-6)5[1+Mp-1-8)]2"0 - 332, ,(k+1-6)5[1+ Mk ~1-8)]axz"? .

(2.3)
By letting z — 1~ along the real axis, we arrive easily at the inequality in (2.1). O

Lemma 2.2. Let the function f(z) given by (1.1) be in the class 5,'2/,,();, a). Then

& 1-6 —a-0)[1+Mp-1-06
Z(k+1_6)5ak§(p+ )s(p —a—8)[1+A(p )], (2.4)

Koy (m+p-—a-0)[1+A(n+p-1-0)]

& 1-6 —a-0)[1+Mp-1-6

$ k1 okay < PO a= O A 1Ol mrp)

Koy (m+p-—a-0)[1+A(n+p-1-0)]

Proof. By using Lemma 2.1, we find from (2.1) that
(m+p-—a-06)[1+A(n+p-1-0)] Z (k+1-06)sax
k=n+p
< Z (k+1-08)s(k—a—-0)[1+Ak-1-06)]ax 26)
k=n+p
Sp+1-6)s(p-a-0)[1+A(p-1-6)],
which immediately yields the first assertion (2.4) of Lemma 2.2. O
For the proof of second assertion, by appealing to (2.1), we also have
[1+J\(n+p—5—1)]{ > (k+1-6)skag - (a+6) D, (k+1—6)5ak}

k=n+p k=n+p (2-7)

Sp+1-0)s(p-a-0)[1+A(p-1-0)],

by using (2.4) in (2.7), we can easily get the assertion (2.5) of Lemma 2.2.
The distortion inequalities for functions in the class JCﬁ,p (A, a, u) are given by
Theorem 2.3 below.
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Theorem 2.3. Let a function f(z) € T,(p) be in the class ch,p()t, a,p). Then

(p+1-0)s(p—a-0)(p-6+u)(p-6+pu+1) 1+A(p-6-1)

< = 8, e p—a-b)nrp—6+p) 1+imp—6-D"
(2.8)

(p+1-8)s(p-—a-0)(p-6+u)(p-06+u+1) 1+Ap-6-1) -

& 2 = =8, ep-a-6)nep-6+p) 1+insp-6-D"
(2.9)

Proof. Suppose that a function f(z) € C,(p) is given by (1.1) and also let the function g(z) €
SS,p()L, a) occurring in the nonhomogenous differential equation (1.13) be given as in the
Definitions (1.2) or (1.3) with of course

by >0 (k=n+pn+p+1,...). (2.10)

Then we easily see from (1.13) that

_(p-6+p)p-6+pu+1)

%= ki pk—srprn KEnrpmrprl.). (2.11)
So that
S & (p-6+p)p-6+u+1l),
(@)=~ 3, mz" =2 - biz", (2.12)
4 k;ﬁ—pk kg;rp(k—5+y)(k—6+y+1)
& (p-6+u)(p-6+pu+1)
p Tl+p
If (2)] < |zlP + |z kzznﬂ,(k—5+#)(k—6+y+1)bk' (2.13)

Since g(z) € 52,}, (A, @), the first assertion (2.4) of Lemma 2.2 yields the following inequality:

(p+1-0)s(p—a-06)[1+AMp-06-1)]
|be] < (n+p+1-06);(n+p-a-6)[1+A(n+p-6-1)] (2.14)
From (2.13) and (2.14) we have
. (p+1-0)s(p—a-0)[1+Ap-6-1)]
If (@) < |z + |z p(n+p+1—6)6(n+p—a—6)[1+)L(n+p—6—1)] .

: 1
z:m-5+#xk—6+ﬂ+n'

k=n+p
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and also note that

i 1 _ i( 1 B 1 )
k:n+P(k—6+y)(k—6+y+1) Koty k-6+p k-6+pu+1 (2.16)
1

=n+p—6+;4’

where y € R\ {-n—p, —n—p-1,...}. The assertion (2.8) of Theorem 2.3 follows at once from
(2.15). The assertion (2.9) of Theorem 2.3 can be proven by similarly applying (2.12), (2.14),
and (2.15), and also (2.16). O

By setting 6 := 0 in Theorem 2.3, we obtain the following Corollary 2.4.

Corollary 2.4 (See Altintas et al. [8, Theorem 1]). If the functions f and g satisfy the nonhomoge-
neous Cauchy-Euler differential equation (1.13), then

p-a)p+W)p+p+ D1+ Ap-1)] 2P

< = (e p e L+ A+ p - 1)

(2.17)

(p-a)p+pp+p+H+Ap-D] .,
@22 = e s e pr i+ A p= D] 2

By letting 6 := 0, A :== 0 and 6 := 0, A := 1 in Theorem 2.3. We arrive at Corollaries 2.5
and 2.6 (see, [8]).

Corollary 2.5. If the functions f and g satisfy the nonhomogeneous Cauchy-Euler differential equa-
tion (1.13) with g € S;,(p, a), then

p-a)p+wp+p+l) .
|z|™*P,
(n+p-—a)y(n+p+p)

p-a)p+pw)p+p+l) .
|z|™*P.
(n+p-a)y(n+p+p)

If(2) <zl +

(2.18)

If(2)] > |z -

Corollary 2.6. If the functions f and g satisfy the nonhomogeneous Cauchy-Euler differential equa-
tion (1.13) with g € C,(p, a), then

pp-a)p+p)p+p+1) (2P
(n+p-a)n+p+p)(n+p) !

pp-a)p+p)p+p+1) 2P
(m+p-a)(n+p+p)(n+p) ’

If(2)] <z +

(2.19)

If(2)] 2 |z” -

3. Neighborhoods for the Classes 5,‘24,(/\, a) and ch/p()t, a, )

In this section, we determine inclusion relations for the classes SSIP()L, a) and JCﬁ,p A, a, )
concerning the (1, p, €)-neighborhoods is defined by (1.7) and (1.8).
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Theorem 3.1. Let a function f(z) € T,(p) be in the class .Sﬁlp()u,a). Then
Shp(ha) c A5 (200, D0), (3.1)

where h(z) is given by (1.9) and the parameter ¢ is the given by

_(n+p)(p-06)s(p-a-06)[1+Ap-1-06)]
- (m+p-—a-06)[1+A(n+p-1-0)]

(3.2)

Proof. Assertion (3.1) would follow easily from the definition of ,/Ufl,p(th, D¢ f), which is
given by (1.8) with g(z) replaced by f(z) and the second assertion (2.5) of Lemma 2.2.  [J

Theorem 3.2. Let a function f(z) € T,(p) be in the class ch,p()t, a,u). Then
K, (L a,p) € A5 (D0 g,D0f), (3.3)

where g(z) is given by (1.13) and the parameter € is the given by

_(m+p)(p-06)s(p-a-0)[1+A(p-1-0)][n+(p-6+p)(p-6+pu+2)]
- n+p-a-6)(n+p-6+u[l+A(n+p-1-06)] ’

(3.4)

Proof. Suppose that f(z) € JC‘Z,p (A, &, ). Then, upon substituting from (2.11) into the follo-
wing coefficient inequality:

[ee]

> (k=6)sk|bx —ar| < > (k=6)skbe+ >, (k- 6)skay, (3.5)
k=n+p k=n+p k=n+p

where a; > 0 and by > 0, we obtain that

> (k= 8)sk|br —ar| < D (k- 6)skbx
k=n+p k=n+p
p-06+wp-6+pu+1)
+Z(k 5+ (k=6 +pur1) K~ Oskbic

(3.6)

k=n+p
Since g(z) € 52/,,(1, a), the second assertion (2.5) of Lemma 2.2 yields that

(n+p)(p-6)s(p-a-06)[1+Mp-1-0)]

(k= Ok < e~ e+ A+ p-1-8)]

(k=n+pn+p+1,...). (37)
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Finally, by making use of (2.5) as well as (3.7) on the right-hand side of (3.6), we find that

D, (k= 6)sk|bx — axl

k=n+p

(3.8)
cntp)p-0)s(p-a-0)[1+Mp-1-96)] 1, P-0+pp-6+p+1)
- (m+p-—a-0)[1+A(n+p-1-0)] (k-6+p)(k-6+u+1) )’
which, by virtue of the identity (2.16), immediately yields that
> (k- 6)sk|bx — ax|
k=n+p
P p-0)s(p-a-0)[1+Mp-1-8)] [n+(p-0+u)(p-6+p+2)] _
n+p-a-6)[l+\n+p-1-56)] (n+p-6+p) e
(3.9)

Thus, by definition (1.7) with g(z) interchanged by f(z), f(z) € ,/Ufw(%g 2, 90f). This
evidently completes the proof of Theorem 3.2. O

By setting 6 = 0 in Theorem 3.2, we receive the following result.

Corollary 3.3. If the function f(z) € T,(p) is in the class chlp()t, a, u). Then
KO (L ) € (3, f), (3.10)

where g(z) is given by (1.13) and the parameter € is the given by

. PP+ Ap-Dlln+ (p+p)(p+p+2)]

(m+p-a)yn+p+p)[l+A(n+p-1)] (3.11)
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